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Abstract—This paper addresses the problem of range-based
Autonomous Underwater Vehicle (AUV) localization in the pres-
ence of unknown ocean currents. In the set-up adopted, the AUV
is equipped with an Attitude and Heading Reference System
(AHRS), a depth sensor, and an acoustic device that provides
measurements of its distance to a set of stationary beacons. We
consider the situation where the number of active beacons is not
known in advance and may vary with time. The objective is to
simultaneously localize the AUV and the beacons, that is, to find
their positions underwater.

We start by deriving conditions under which it is possible to
reconstruct the initial condition of the system under study. We
consider the design model where the states evolve continuously
with time but the range measurements are only available at
discrete instants of time, possibly in a non-uniform manner.
For trimming maneuvers that correspond to AUV trajectories
with constant linear and angular velocities expressed in the
body-frame, we show that if either the position of one of the
beacons or the initial position of the AUV are known, then even
without depth information the system is weakly observable (i.e.,
the set of states that are indistinguishable from a given initial
configuration contains only a set of finite isolated points). If depth
measurements are also available, then the system is observable
even in the presence of unknown constant ocean currents.

Equipped with these results, we then propose a novel observer
for simultaneous AUV and beacon localization. The mathemat-
ical set-up exploited borrows from minimum-energy estima-
tion theory applied to continuous-time processes with discrete
measurements, projection filters, and multiple-model estimation
techniques. Convergence analysis of the resulting observer system
yields conditions under which the estimation errors converge to
a small neighborhood of the origin (whose size depends on the
magnitude of the process and measurement noise). The results of
field experiments with a robotic marine vehicle show the efficacy
of the simultaneous AUV / multiple beacon localization system
proposed.

Index Terms—Range-based underwater localization, au-
tonomous underwater vehicles, observability analysis, minimum-
energy observers.

I. INTRODUCTION

A utonomous underwater vehicles (AUVs) are steadily be-
coming the tool of choice for the execution of a vast
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number of scientific and commercial missions at sea that
include ocean data acquisition, remote sensing, and mapping
of the spatial extent of pollutant spills, to name a few. Meeting
these objectives requires that the AUVs be equipped with cost-
effective, easy to install and use underwater navigation sys-
tems. Meeting this challenge may prove formidable, in view
of the fact that conventional methods of vehicle localization
that rely on GPS techniques cannot be used underwater, due
to the high attenuation of electromagnetic signals.

The above problem can in principle be overcome by re-
sorting to high-performance inertial navigation systems (INS).
However, the costs of such systems may be prohibitive.
Moreover, even with such high performance INS, drift is
inevitable. Other possible solution involve the use of acoustic
based systems that rely on the measurements of the ranges
between an AUV and a number of transponders in a baseline
configuration or on the computation of range as well as bearing
and elevation angles to a subsea transponder using an array
of hydrophones that detect the incoming wave emitted by
the transponder in response to a query by the AUV; see for
example [1] for the description of localization techniques that
include Ultra Short BaseLine (USBL), Long BaseLine (LBL),
and GPS Intelligent Buoy (GIB) systems. In practice, acoustic
localization systems are often affected by the presence of out-
liers, latency, and multi-path effects. In spite of this, however,
acoustic based methods for underwater vehicle navigation are
pervasive, and effective methodologies have been devised to
deal with the aforementioned problems. More recently, an
alternative technique for underwater vehicle localization has
attracted considerable attention: range-only (also called single-
beacon) based localization, whereby the position of an AUV
is estimated by using discrete measurements of the ranges
between the vehicle and a transponder fixed at a known
location, while the AUV undergoes persistently exciting spatial
maneuvers.

Previous work on single-beacon acoustic navigation can be
traced back to [2], where a least-squares algorithm is proposed
to compute the unknown initial position and constant speed
of an AUV moving in the horizontal plane, subjected to an
unknown constant current. The key concepts behind single-
beacon navigation can also be found in the earlier work of [3],
which describes a Synthetic Long BaseLine (SLBL) system
based on the combination of dead-reckoning (DR) and acoustic
range and/or range rate measurements from a single acoustic
source, e.g., a transponder moored to the sea floor. Further
relevant work can also be found in [4], where the authors
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describe an extended Kalman filter (EKF) for single-beacon
navigation. In [5], by combining dead-reckoning data with
measurements of the ranges between an underwater vehicle
and a single beacon, taken at successive instants of time, a
robust estimation algorithm is proposed for vehicle localization
in the presence of unknown ocean currents. In [6], a method
is described for precise post processed localization of a deep-
diving AUV using only a set of acoustic ranges from a
surface ship while the AUV executes a closed path under the
ship. The approach is validated through experimental results
with the Autosub 6000 AUV. For a concise and thorough
presentation of previous work in the field and the description
of a novel algorithm for single-beacon one-way-travel-time
acoustic navigation for underwater vehicles, the reader is
referred to [7], [8], and the references therein.

Some of the most recent solutions proposed for range-
based localization borrow from the concept of Simultaneous
Localization and Mapping (SLAM) that was first advanced in
the field of mobile robots. The key idea of SLAM is to build
a new map, or update an existing map of the environment,
while at the same time localizing a robot within that map.
Pioneering work in this area is described in [9], where a pure
range-only sub-sea SLAM approach is described for AUV
localization. The authors assume that the AUV is equipped
with a conventional LBL transceiver that measures the acoustic
times of flight (TOF) between the vehicle and a set of
submerged transponders. Using only range data and no prior
information other than the approximate water column depth,
they present a methodology to compute both the transponder
locations and the vehicle trajectories. See also [10], where a
range-only simultaneous AUV and beacon localization system
that assumes no prior knowledge of the beacons’ locations and
is robust against sensor noise and acoustic outliers is presented.
More recently, in [11] the authors propose a range-only system
for underwater vehicle localization that is based on a particle-
filtering implementation of SLAM, coupled with a mixture-
of-Gaussians representation of the posterior distribution of the
beacons’ positions.

No matter what particular algorithm is chosen for vehicle
localization, a crucial and often forgotten issue is that of
ascertaining the observability properties of the design model
adopted. In the absence of observability the attempt to design a
localization system will be destined to fail. For this reason, it is
important to find conditions under which the design model of
a range-based localization systems is observable. Examples of
observability studies include the work described in [12], where
a necessary and sufficient condition for local observability of
a two-dimensional maneuvering target tracking system with
range-only measurements is derived using estimation-theoretic
methods. Historically, one of the first formal studies of ob-
servability of single-beacon AUV localization is described in
[13], [14], where the authors use linearization techniques and
classical tools of Linear Time Invariant (LTI) observability
analysis. A different strategy is used in [15], [16] to study
the observability of a range-based localization system by
considering an equivalent augmented Linear Time Varying
(LTV) and resorting to LTV system analysis tools. See also
the approach in [16] for an interesting related study in the

discrete-time setting for uniform sampling set-up. Yet another
approach is described in [17], where the authors study the
problem of relative AUV localization using inter-vehicle range
measurements by exploiting tools from nonlinear observability
theory. The results obtained are validated experimentally in
an equivalent single-beacon navigation scenario. In spite of
substantial progress made in this area, however, work is
still required to characterize explicitly the types of AUV
trajectories that yield observability of range-based localization
systems.

Motivated by the above considerations, the first part of this
paper addresses key observability issues pertaining to the prob-
lem of range-based AUV localization using single and multiple
fixed beacons, in the presence of constant unknown ocean
currents. We consider explicitly the case where the positions
of the beacons may be unknown, and thus require that they
be localized as well. To this effect, we start by applying a
coordinate transformation similar to the one presented in [18],
implying a state augmentation that yields a state-affine system
with algebraic constraints. We then establish, for the important
case where the motion of the AUV is characterized by constant
linear and angular velocities expressed in the body-frame (that
is, trimming trajectories), conditions for which it is possible to
reconstruct the initial state of the resulting system. The latter
includes the position of the AUV as well as the positions of the
beacons. In the analysis, we borrow from the nomenclature and
the mathematical concepts of nonlinear system observability
introduced by [19]. We show, under some reasonable practical
conditions restricted to the assumption that the position of
at least one of the beacons or the initial position of the
AUV is known, that the localization system is at least weakly
observable, meaning that the set of indistinguishable initial
states is composed by a set of finite isolated points. By adding
depth measurements or allowing the vehicle to undergo motion
along the concatenation of at least two trimming trajectories,
the resulting system becomes observable, in the sense that the
set of indistinguishable points reduces to a singleton.

The key novel contributions that emerge from the first part
of the work are the following: i) we derive conditions for
the observability of the simultaneous AUV/beacon localization
system in terms of AUV motion characteristics that are natu-
rally expressed in the body frame and are therefore extremely
easy to interpret, ii) we address the case where the location
and number of the beacons may be unknown and vary over
time, and iii) we assume explicitly that the state of the system
under consideration evolves continuously in time but that the
measurements occur at discrete times and the sampling time
need not be constant (i.e., the measurement process is event-
driven). Finally, iv) the above issues are tackled by assuming
that there may be unknown but constant currents. Previous
related work on the issue of observability in the absence of
currents and assuming continuous time measurements can be
found in [20].

The second part of the paper addresses the problem of
range-based localization system design. We exploit the observ-
ability properties derived in the first part of the paper and use
the concepts of minimum-energy estimation, projection filters,
and multiple-model estimation techniques, to derive a novel
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observer that solves the AUV localization problem using rela-
tive range measurements to stationary beacons, the locations of
which may also be unknown. In contrast to a number of results
described in the literature, we give conditions under which
the AUV and beacon estimation errors converge to a small
neighborhood of zero (whose size depends on the magnitude
of the process/measurement noise). The rationale behind the
use of the techniques adopted stems from the following facts:

i) we resort to minimum-energy observers in a deterministic
setting because, as will become clear latter, for the local-
ization problem at hand it is not natural to assume that
the state and observation noise are stochastic processes
with Gaussian distributions. This is in striking contrast
to the assumptions that are at the root of Kalman filter
designs in a stochastic setting. We remind the reader
that a minimum-energy observer is an optimal filter that
produces an estimate of the state of a system that is most
compatible with the system dynamics and measured out-
puts for the lowest possible energy of the state and obser-
vation noise signals [21]. For linear systems, minimum-
energy observers yield a structure akin to that of Kalman
filters, albeit in a fully deterministic framework. See for
example in [18] the derivation of a minimum-energy
estimator for linear dynamic systems with perspective
outputs. The deterministic set-up adopted affords us an
expedite manner to assess the convergence properties
of the proposed estimator in terms of bounds on the
magnitude of the process and measurement noise.

ii) the state-affine design model that we develop has the
interesting property that the state must satisfy a set
of quadratic constraints. To address these constraints
explicitly, we exploit the techniques proposed in [21] to
solve the problem of minimum-energy state estimation
for systems with perspective outputs and state constraints.
They lead naturally to a so-called projection filter that
improves significantly the performance of the proposed
observer;

iii) localizing the beacons arises naturally from the fact that
we are also interested in estimating the location of the
beacons whose number and positions may be unknown;
and finally,

iv) the multiple-model approach adopted allows us to address
explicitly the fact that, according to the observability
results obtained, there may be distinct AUV trajectories
(generated by the same input) corresponding to multiple,
isolated initial conditions that will yield the same output
time histories.

The efficacy of the proposed observer structure is validated
through real-world field experiments using the MEDUSA-class
of autonomous marine robotic vehicles equipped with ranging
devices. In the experiment, one of the vehicles plays the role
of an AUV while the other two serve as proxies for underwater
beacons.

The paper is organized as follows: Section II derives the
model underlying the design of a range-based localization
system with single or multiple beacons. The observability
analysis of the proposed design model is done in Section III.

Section IV derives the observer that is used to estimate the
states of the system and discusses its convergence properties
in Section V. Section VI describes experimental results with a
set of marine vehicles that show the efficacy of the nonlinear
observer and illustrate the implications of the observability
conditions derived. Concluding remarks are given in Section
VII. All the proofs of the theorems in Section III are presented
in the Appendix.

II. PROCESS MODEL

This section introduces the model adopted to design an AUV
localization system that relies on the computation of the ranges
between the vehicle and one or more underwater beacons,
the location of which may be unknown. The objective is to
compute in real time an estimate of the position of the AUV
and simultaneously construct a map composed by the estimates
of the locations of the beacons. We consider that the AUV
motion is subjected to the influence of unknown but constant
ocean currents. In what follows, we introduce two coordinate
frames: an Earth-fixed or inertial coordinate frame {I} and a
body-fixed coordinate frame {B} that is attached to the AUV
and moves with it. We let (IpB,

I
BR) ∈ R3 × SO(3) be the

configuration of frame {B} with respect to {I}, where IpB is
the position of the AUV in frame {I} and IBR is the rotation
matrix from {B} to {I}. We denote by SO(3) the group of
special orthogonal matrices in three dimensional space. With
this notation, the kinematic equations of motion of the AUV
can be written as

IṗB = IBRν +Iνc (1)
I
BṘ = IBRS(ω) (2)
Iν̇c = 0 (3)

where ν,ω : [0,∞) → R3 denote the body-fixed linear and
angular velocities of the AUV respectively, relative to {I},
expressed in {B}, Iνc ∈ R3 is an unknown constant ocean
current in {I} and, for every a ∈ R3,

S(a) :=

 0 −a3 a2

a3 0 −a1

−a2 a1 0


is the skew-symmetric matrix representing the linear map a 7→
a×b, b ∈ R3, where “×” is the standard cross product in R3.

In what follows we will treat the linear and angular veloci-
ties ν and ω as inputs to the system (1)-(3) and use the Euler
angle vector η = [φ, θ, ψ] ∈ [0, 2π) ×

(
−π2 ,

π
2

)
× [0, 2π) to

parametrize the rotation matrix IBR, locally. For simplicity we
denote cθ :=cos θ and sθ :=sin θ. Let n∈ N be the number
of stationary beacons qi located at Iqi = [xi, yi, zi]

′ ∈ R3,
i ∈ {1, 2, ..., n} which we assume are not known, with the
exception of their depth coordinates zi. Clearly,

I q̇i = 0. (4)

For each i ∈ {1, 2, ..., n}, let ri(t) be the acoustic-based
measurement of the range between the AUV and the ith

beacon, acquired at time t≥ 0. Assuming that the depth z0
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Fig. 1. Illustration of representative state vectors in 2D space.

of the AUV can be measured, the measurement/output model
that we adopt can be written as

ri =
∥∥Iqi − IpB∥∥ (5)

zi = e′z
Iqi (6)

z0 = e′z
IpB (7)

where ex = [1, 0, 0]′, ey = [0, 1, 0]′, ez = [0, 0, 1]′.
Equations (1)-(7) represent the nonlinear continuous model

of the multiple beacon-AUV localization problem that we
address in this paper. In the sequel, for observability analysis
purposes, we will construct a state-affine system and derive
conditions under which this new system is equivalent to (1)-
(7), in the sense that there is a one-to-one correspondence
between the state trajectories of the original nonlinear system
and the newly constructed one. We remark that the strategy
adopted to obtain the equivalent state-affine system does not
follow the ones described in [22], [23], but is instead tailored
to our specific application. The key ideas exploited are to
express the positions of the beacons qi in the body frame {B}
and to introduce a virtual beacon, q0, located at an arbitrary
point that we take as the origin of the inertial frame {I} (see
Fig. 1). Following this strategy and exploiting some of the
concepts presented in [18] we define

Bpi = IBR′ Iqi − IBR′ IpB i ∈ {0, 1, . . . , n}, (8)

as the vector directed from the vehicle to beacon qi, expressed
in {B}. From (1), (2), and (4) it follows that

Bṗi = IBṘ′ (Iqi − IpB) + IBR′ Iq̇i − IBR′ IṗB
= −S(ω)Bqi − ν − Bνc

Using (2) and the equalities Bνc = I
BR′Iνc and Bqi =

I
BR′Iqi it can be verified that

Bν̇c = −S(ω) Bνc,
Bq̇i = −S(ω) Bqi.

Furthermore, from (8) and the fact that Bqi = Bpi−Bp0 the
range measurement equation (5) can be written as

ri =
∥∥Iqi −IpB∥∥ =

∥∥I
BR Bqi

∥∥ =
∥∥Bqi + Bp0

∥∥

where the last equality follows from the fact that any rotation
matrix is orthogonal.

To make the output equation (5) linear in the state variables
we rewrite it as ri = χi, with χi :=

∥∥Bqi + Bp0

∥∥ viewed as a
new extra state variable. Straightforward computations yield

χ̇i = −
(
ν′(Bqi + Bp0) + Bν′c(

Bqi + Bp0)
)
/ri. (9)

Notice that (9) is not valid when ri = 0, which corresponds to
the particular case where the position of the AUV coincides
with the location of the ith beacon. To avoid this singularity
(in particular at the observer design stage), one possible simple
solution is to add a small term ε > 0 to ri in (9). This term can
be a function of ri, and must be defined so as to be nonzero
when ri = 0. From a practical point of view this issue can
be avoided by preventing the vehicle’s position to coincide
with one of the positions of the beacons. For example, by
positioning the latter at depths different from those where the
AUV is expected to operate. Notice also that (9) contains
nonlinear terms such as the products of state variables. To deal
with this fact, we introduce an additional set of n + 1 state
variables. Define χc := Bν′c

Bνc and, for each i ∈ {1, . . . , n},
let χci := Bν′c(

Bqi+
Bp0). Straightforward computations show

that

χ̇i =−
(
ν′(Bqi + Bp0) + χci

)
/ri,

χ̇ci = Bν′cS(ω)Bp0 − Bν′c
(
S(ω)Bp0 + ν + Bνc

)
+ Bν′cS(ω)Bqi − Bν′cS(ω)Bqi = −ν′Bνc − χc,

χ̇c = Bν′cS(ω)Bνc − Bν′cS(ω)Bνc = 0.

Using the equalities Iqi = I
BR Bqi and IpB = −IBR Bp0, the

output equations (6) and (7) can be written as

zi = e′z
I
BR Bqi, z0 = −e′zIBR Bp0.

Putting together the above equations, we obtain a state-affine
system with state vector x ∈ R5n+7, input vector u ∈ R9,
and output vector y ∈ R2n+1, described by{

ẋ(t) = Au,y(t)x(t) + bu(t)
y(t) = Cu(t)x(t)

(10)

where

x :=
[Bp′0, [Bq′1 . . . Bq′n

]
, Bν′c, χc,

[
χc1 . . . χcn

]
,
[
χ1 . . . χn

]] ′,
u :=

[
ν′ ω′ η′

]′,y :=
[[
r1 . . . rn

]
, z0,

[
z1 . . . zn

]]′,
s :=

[
1
r1

1
r2

... 1
rn

]′
,Ω := S(ω),

Au,y :=−


Ω 0 I3 0 0 0
0 In ⊗ Ω 0 0 0 0
0 0 Ω 0 0 0
0 0 0 0 0 0
0 0 1n ⊗ ν′ 1n 0 0
s⊗ν′ diag(s)⊗ν′ 0 0 diag(s) 0

, bu :=


−ν
0
0
0
0
0

,

Cu :=

 0 0 0 0 0 In
−e′zIBR(η) 0 0 0 0 0

0 In⊗
(
e′z
I
BR(η)

)
0 0 0 0


that satisfies the following quadratic constraints for each i ∈
{1, 2, . . . , n}:

χ2
i =

∥∥Bqi + Bp0

∥∥2
, (11)

χc =
∥∥Bνc∥∥2

, (12)

χci = Bν′c(
Bqi + Bp0). (13)
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In the above model, we have used the following notation:
given M1,M2 ∈ Rmi×ni and v ∈ Rn, we denote by M1 ⊗
M2 ∈ Rm1n1×m2n2 the Kronecker product of M1 by M2 and
by diag(v) the diagonal n× n matrix with its main diagonal
given by v. Moreover, 0, 1n, and In denote a zero matrix of
appropriate dimension, a column vector of ones with length
n, and the identity matrix of size n, respectively.

Note that for any trajectory in the state-space of the original
system (1)-(3) there is a unique corresponding trajectory in the
augmented state-space of system (10). Conversely, combining
the quadratic constraints (11)-(13) with the state-affine system
(10) guarantees that every trajectory of (10) has a correspond-
ing state-space trajectory in (1)-(3). Once an equivalent state-
affine system is obtained, one can resort to powerful tools of
linear systems theory for observability analysis.

An important problem that needs to be addressed explicitly
is the fact that due to practical limitations, range/depth mea-
surements are only available at discrete instants of time. This
has direct impact on the observability of the underlying model
as well as on the performance of a corresponding observer.
Furthermore, the observations may not even be periodic due
to the fact that the times taken by acoustic waves to travel
between the beacons and the AUV will depend on their
relative positions. To accommodate these issues, we adopt
the following model with continuous-time state dynamics and
discrete observations:{

ẋ(t)=Au,y(t)x(t)+bu(t)
y(tk) = Cu(tk)x(tk)

(14)

where the possible non-uniform times tk, k ∈ {0, 1, 2, . . .}, are
the instants at which range/depth measurements are acquired
on board the AUV.

III. OBSERVABILITY ANALYSIS

This section addresses the observability of the model intro-
duced in section II. Specifically, given the dynamical system
(14) with unknown initial condition x(t0) = x0, subject
to (11)-(13), the objective is to determine conditions under
which it will be possible to compute x0 from the knowledge
of the input/output time histories {u(t), t ∈ [t0, tf ), y(tk),
tk ∈ [t0, tf )} for some tf > t0.

To set the stage for a formal discussion of observability,
we first introduce the following definitions adopted from [19],
[24]. Notice however that in this paper, for observability anal-
ysis purposes, we will not adopt the observability conditions
derived in [19] for general nonlinear systems. Instead, we will
derive specific conditions for the system under study that are
simple to characterize in terms of the type of motion imparted
to the AUV.

Definition 1. Given the system (14) and a time interval
[t0, tf ), two initial conditions z, z̆ are said to be indistin-
guishable on [t0, tf ) if the output-time histories {y(tk), tk ∈
[t0, tf )}, resulting from all admissible input time series
{u(t), t ∈ [t0, tf )} and satisfying the initial conditions
x(t0) = z and x(t0) = z̆ are identical. For every z, I(z) de-
notes the set of all initial conditions that are indistinguishable
from z on [t0, tf ).

Definition 2. The system (14) is observable at z on [t0, tf ) if
I(z) = {z}, and it is observable on [t0, tf ) if I(z) = {z}
for every z.

Definition 3. The system (14) is weakly observable at z on
[t0, tf ) if z is an isolated point of I(z) and it is weakly
observable on [t0, tf ) if it is weakly observable for every z.

Notice that weak observability at a point z does not imply
that every input from the class Uad of admissible inputs will
distinguish z from any other state in a small neighborhood
of z. Different inputs may be required to distinguish z from
other states in that neighborhood For this reason, the notion
of observability defined above, even though elegant, may not
be entirely satisfactory in a number of applications. Inter-
estingly enough, in some engineering problems dealing with
autonomous vehicles there exist reduced classes Uc ⊆ Uad
of admissible input signals named u∗, sufficiently general to
yield maneuvers of interest in a wide range of applications, and
yet restricted in the sense that they can be easily parametrized
in terms of a small number of parameters with a strong
physical interpretation. Such is the case with AUVs when
they undergo motion along trimming trajectories (generated by
holding the input actuators fixed) that are easily parametrized
by total speed, yaw rate, and flight path angle and correspond
to helices in 3D space that may degenerate into circumferences
and straight lines [25]. In these cases, it is of interest to a
practitioner to ascertain the observability properties of a given
system for a reduced class of inputs Uc, rather than allowing
for all inputs that are physically admissible. Motivated by these
considerations, we introduce a weaker notion of observability
originally proposed in [26], that, as we shall see, will allow
for the derivation of observability condition for the localiza-
tion system studied in this paper that are easy to interpret
physically.

Definition 4. Given the system (14) and a time inter-
val [t0, tf ), two initial conditions z, z̆ are said to be
u∗-indistinguishable on [t0, tf ) if the output-time histories
{y(tk), tk ∈ [t0, tf )}, for an input time series {u∗(t)∈ Uc, t ∈
[t0, tf )} and satisfying the initial conditions x(t0) = z and
x(t0) = z̆ are identical. For every z, Iu∗(z) denotes the set
of all initial conditions that are u∗-indistinguishable from z
on [t0, tf ).

Definition 5. Given u∗∈ Uc and a time interval [t0, tf ), the
system (14) is u∗-observable at z on [t0, tf ) if Iu∗(z) = {z},
and is u∗-observable on [t0, tf ) if Iu∗(z) = {z} for every z.

Definition 6. Given u∗∈ Uc and a time interval [t0, tf ), the
system (14) is u∗-weakly observable at z on [t0, tf ) if z is
an isolated point of Iu∗(z) and is u∗-weakly observable on
[t0, tf ) if it is u∗-weakly observable for every z.

Note that observability implies weak observability and u∗-
observability implies u∗-weak observability. Throughout the
paper we will use the weaker notions of observability. To
simplify the terminology, we shall often abbreviate the nomen-
clature of u∗-indistinguishable, u∗-observable, and u∗-weakly
observable to indistinguishable, observable, and weakly ob-
servable, respectively.
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We now define formally the class of admissible inputs
u ∈ Uc that we consider for the system described by (14). To
this effect, as explained before, we restrict ourselves to AUV
trimming (also called equilibrium or steady state) trajectories.
Straightforward computations similar to those in [25] done for
the case of aircraft show that at trimming

ωe= ψ̇e
[
−sθe sφecθe cφecθe

]′
= ψ̇e

I
BR′(ηe) ez, (15)

where the subscript “e” denotes the value of a variable at
steady state and φ(t) = φe, θ(t) = θe, and ψ̇e are the values
of roll angle, pitch angle, and yaw rate respectively, at steady
state.

For clarity of exposition, the observability analysis will be
first carried out for the case of one beacon only, that is,
n = 1. We will also work with the states χ2

1 and r2
1 (squared

range output) instead of χ1 and r1, respectively. With these
assumptions, (14) yields{

ẋ(t) = Au(t)x(t) + bu(t)
y(tk) = Cu(tk)x(tk)

(16)

where x :=
[Bp′0 Bq′1

Bν′c χc χc1 χ2
1

]′, y :=
[
r2
1 z0 z1

]′,
u :=

[
ν′e ω′e φe θe

]′, and

Au :=−


Ωe 0 I3 0 0 0
0 Ωe 0 0 0 0
0 0 Ωe 0 0 0
0 0 0 0 0 0
0 0 ν′e 1 0 0

2ν′e 2ν′e 0 0 2 0

, bu :=


−νe

0
0
0
0
0

,

Cu :=

 0 0 0 0 0 0 0 1
sθe −sφecθe −cφecθe 0 0 0 0 0
0 0 0 −sθe sφecθe cφecθe 0 0

.
At this point it is important to note that working with

the square of the ranges rather than the ranges themselves
does not change the observability results. Suppose for example
that (16) is u∗-observable for a given input u∗, in the sense
that for every pair of distinct initial conditions (x0, z0) there
exists a time interval t ∈ [t∗, tf ], t∗ ≥ 0 such that the
corresponding squared range outputs are different, that is,
y(t;u∗,x0) := r2

1(t;u∗,x0) 6= y(t;u∗, z0) := r2
1(t;u∗, z0).

Then, it also follows that r1(t;u∗,x0) 6= r1(t;u∗, z0), which
implies that the initial conditions (x0, z0) for the original
system (using ranges) will produce different outputs. The
converse implication holds as well.

In what follows, for simplicity of analysis, we will re-
write equations (16) by considering the so-called flow frame
{F} (also called wind frame in aerodynamics), instead of
the body fixed frame {B}. With this change of reference
frames, the total velocity vector at trimming is aligned with
the x−axis of {F}, that is, νe = [νe, 0, 0]′. As is well
known, the transformation from flow frame to body fixed
frame is done using a rotation matrix parametrized by the
angles of attack and side-slip, which are constant during a
trimming maneuver. Expressed in the flow frame, the body
angular velocity is also constant at trimming. Therefore, after
straightforward computations it can be concluded that the
single-beacon system using the linear velocity ν and the
angular velocity ω expressed in the flow frame take the same
form as (16), where in this case the orientation parametrized by
η is with respect to {F}. Throughout the paper, for simplicity

of exposition and to avoid changing the notation, we continue
to adopt the model defined by (16), with the understanding
that the variables are expressed in flow frame.

Returning to the observability problem, one immediate
result is that, unless there is an anchor which relates relative
localization with global (inertial) position, the system (16)
is not observable. This is due to the fact that range is a
relative measurement. To deal with this problem that arises
in any simultaneous localization and mapping approach, the
idea is to use a priori knowledge of the position of one of
the beacons/AUV and estimate the other unknown ones. For
instance, one practical scenario is to consider that the initial
position of the AUV is known, which is feasible if the AUV
starts from the surface with GPS. Another approach is to
consider that the location of one of the beacons is known. In
the sequel we consider the case where the initial condition of
the beacon Bq1(0) is known. Later on we will investigate the
dual case where the initial location of AUV Bp0(0) is known.

Given x0 ∈ R12, let Ir(x0) denote the set of indistin-
guishable initial conditions from x0 for the system (16) with
range-only measurements. The main result of this section is
stated in the next theorem, which characterizes Ir(·) under
some conditions.

Theorem 1. Consider the (16) with range-only measurement,
that is, Cu = [0, 1] subject to constraints (11)-(13). Suppose
that ωe = [ωex , ωey , ωez ]

′ ∈ R3 satisfies

‖ωe‖ > ‖ωex‖, (17)

and the number of available samples of measurements on
[t0, tf ) is at least 7 (that is nr ≥ 7). Moreover, let the inter-
arrival times, tk+1 − tk, be strictly positive. Then, for every
x0 ∈ R12 and almost all inter-arrival times, the set of all
initial conditions that are indistinguishable from x0 on [t0, tf )
is given by

Ir(x0)=


x0,x0+ 2

ω′eωe


−ωeω′e

(Bp0(0)+Bq1(0)
)

0
−ωeω′e(Bνc(0)+νe)

2ν′eωeω
′
e(
Bνc(0)+νe)

ν′eωeω
′
e

(Bp0(0)+Bq1(0)
)

0




. (18)

Further, in this case, the system (16) subject to constraints
(11)-(13) is weakly observable on [t0, tf ). Consider now the
degenerate case where the inter-arrival times are uniform, that
is, tk+1−tk = T for all tk ∈ [t0, tf ). Then, for all inter-arrival
times except for the zero measure set{

tk

∣∣∣tk+1 − tk = κπ‖ωe‖−1
, tk ∈ [t0, tf ), κ ∈ N+

}
(19)

the set of all initial conditions that are indistinguishable from
a given initial condition x0 ∈ R12 on [t0, tf ) is given by (18).

The above theorem allows for a simple geometrical inter-
pretation of the non-trivial point in Ir(x0). This stems from
the fact that the components of the non-trivial point in Ir(x0)
given by the AUV position and the ocean current velocity can
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be written as
Bp̆0(0) :=

(
I3−2‖ωe‖−2ωeω

′
e

)(Bp0(0)+Bq1(0)
)
−Bq1(0),

Bν̆c(0) :=
(
I3 − 2‖ωe‖−2ωeω

′
e

)(Bνc(0) + νe
)
− νe.

Note that from the Rodrigues’ rotation formula [27], it follows
that I3− 2‖ωe‖−2ωeω

′
e = −R (π,ωe/‖ωe‖). Geometrically,

this represents the rotation of −(Bp0(0)+Bq1(0)) about the ωe
axis by π. In other words, Bp̆0(0) is the vector sum of −Bq1(0)
and the mirror point of the vector Bp1(0) = Bp0(0) + Bq1(0)
with respect to plane orthogonal to ωe. In particular, when
Bp1(0) lies in the plane orthogonal to ωe,

Bp1(0) and its
mirror point coincide, thereby removing the ambiguity. This
is the case when the AUV moves in a horizontal plane.
Thus, the range-only system in 2D is observable since the
set of indistinguishable points contains only x0. The above
geometric interpretation can be exploited to show that a weakly
observable system with a given trimming angular velocity
(say ωe = ω̄e), will become observable by instantaneously
switching to another non-collinear trimming angular velocity
ωe = ω̆e such that ω̄e × ω̆e 6= 0. This means that the system
can become observable by concatenating appropriately chosen,
distinct trimming trajectories.

From Theorem 1 we obtain the following result for the
particular case where the current is zero or known.

Corollary 1. Consider the system (16) with range-only mea-
surement, subject to constraints (11)-(13), and let all the
requirements of Theorem 1 hold. Further assume that either
there is no ocean current or Bνc is known. Then for almost
all inter-arrival times the system (16) is observable, provided

ω′e
(Bνc + νe

)
6= 0. (20)

It is well known that the observability properties of a general
nonlinear system depend on a particular actuator-sensor con-
figuration. Furthermore, the introduction of additional sensors
has the potential to improve the observability properties of
the system. The next result shows that by including depth
and range measurements, the system becomes observable.
In what follows Irz(x) denotes the set of indistinguishable
states associated with the system (16) with range and depth
measurements.

Theorem 2. Consider the system (16) with range and depth
measurements. Suppose that ωe ∈ R3 satisfies (17) and the
number of available samples of measurements on [t0, tf ) is at
least 7 (that is nr ≥ 7). Moreover, let the inter-arrival times,
tk+1 − tk, be strictly positive. Then, for every x0 ∈ R12 and
almost all inter-arrival times, Irz(x0) = {x0} and the system
is observable on [t0, tf ).

The following corollary of Theorem 2 follows immediately.

Corollary 2. Consider the system (16) and let all the require-
ments of Theorem 2 hold. Further, assume that either there
is no ocean current or Bνc in known. Then, for almost all
inter-arrival times the system (16) is observable.

Theorem 1 gives sufficient condition (17) for weak ob-
servability of system (16) subject to constraints (11)-(13)
with range-only measurements. Further, introducing depth

measurements yields observability. This prompts the following
question: If condition (17) is not satisfied, then what can be
stated about the observability properties of system (16) with
range (and depth) measurements? The next result discusses
this case.

Theorem 3. Consider the system (16) subject to constraints
(11)-(13) and suppose that (17) does not hold. Then, the system
subject to constraints (11)-(13) is not observable.

Up until now we have investigated the case where the initial
location of the beacon, Bq1(0) is known and the initial position
of the AUV, Bp0(0) is unknown. We now consider the dual
case, that is, Bp0(0) is known but not the initial position of
the beacon. The following result holds.

Theorem 4. Consider the system (16), the constraints (11)-
(13), and assume that Bp0(0) is known. Then, (16) has
observability properties similar to those obtained for the case
where Bq1(0) is known (see Theorems 1-3), except that the set
of indistinguishable points is given by

Ir(x0)=


x0,x0+ 2

ω′eωe


0

−ωeω′e
(Bp0(0)+Bq1(0)

)
−ωeω′e(Bνc(0)+νe)

2ν′eωeω
′
e(
Bνc(0)+νe)

ν′eωeω
′
e

(Bp0(0)+Bq1(0)
)

0




. (21)

We are now ready to state the main result about system (14)
which extends the previous results to more than one beacon.

Theorem 5. Consider the system (14) with constant trimming
linear velocity νe 6= 0, angular velocity ωe ∈ R3 and
constraints (11)-(13). Suppose that there is an anchor, that
is, the initial condition Bp0(0) or the position of one of the
beacons Bqi(0) is known. Assume that at least 7 samples
of measurements, nr ≥ 7, are available on [t0, tf ) and
let the inter-arrival times, tk+1 − tk, be strictly positive.
Suppose also that (17) holds. Then, for every x0 ∈ R12 and
almost all inter-arrival times, the set of all initial conditions
that are indistinguishable from x0 ∈ [t0, tf ) is given by
Irz(x0) = {x0}.

Under the same conditions, but with the assumption that
only range measurements are available, it follows that the
initial condition of each unknown vector in {Bp0,

Bqi,
Bνc; i =

1, 2, ..., n} has two possible solutions. Otherwise, if (17) does
not hold, then the system subject to constraints (11)-(13) is
not observable.

IV. OBSERVER DESIGN

This section addresses the problem of range-based local-
ization system design by taking into consideration the results
derived in the previous sections. Consider system (14), cor-
rupted with deterministic but unknown bounded disturbance
d: [0, t]→∈ Rp and measurement noise n(tk), that is,{

ẋ(t)=Au,y(t)x(t)+bu(t) +Gud(t)
y(tk) = Cu(tk)x(tk) + n(tk)

(22)

The goal is to estimate the state vector x(t) given an
initial estimate x̂0 and the past control inputs and observations
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IOP

ME PF
ŷ(t) x̄(t)

Q(t)

x̂(t)
u(t)

y(tk)

CME

Fig. 2. Block diagram of the designed CME.

{u(τ),y(tτ ) : 0 ≤ τ ≤ t, tτ ∈ {t1, ..., tk} ⊂ [0, t]}, while
satisfying the constraints (11)-(13).

To this effect, we propose the observer architecture de-
picted in Fig. 2, which will be henceforth referred to as the
Constrained Minimum-Energy (CME) observer. The CME is
composed of the following sub-systems:
• A Minimum-Energy Estimator (ME), whose role is to

provide an estimate of the state x̄(t) by solving in real
time an unconstrained optimization problem (that will be
defined later);

• A Projection Filter (PF), which maps an unconstrained
solution x̄(t) onto a constrained solution x̂(t); and

• An Inter-sample Output Predictor (IOP), which provides
a continuous estimate of the range measurement variable
to be used by the ME estimator.

Later, we will i) extend the CME observer to deal with
the problem of multiple beacons whose number is not known
a-priori and can change over time and ii) use the concept
of multiple-models to improve the convergence time of the
proposed observer by taking into account the observability
properties described in the previous sections.

A. Minimum-Energy Estimator (ME)

The ME estimator is formulated in a deterministic setting by
producing an estimate for the state of the system that is most
compatible with the system’s dynamics and measured outputs.
In particular, the optimal state estimate x̄(t) is defined to be
the value for the state that is compatible with the observations
collected up to time t and the dynamics of the system, for
the lowest possible measurement noise and disturbance, with
lowest understood in an integral-square sense [18], [28]. More
precisely, the state estimate x̄ is obtained from the solution of
the optimization problem

x̄(t) = arg min
z∈Rns

J(z, t)

where the cost function J(z, t) is given by

J(z, t)=min
d,n

{
‖x(0)− x̄0‖Q0

+

∫ t

0

‖d(τ)‖2
R−1

d

dτ

+
∑k?

k=1 ‖n(tk)‖2
R−1

n
:x(t) = z, ẋ = Au,yx+bu(t) +Gud,

y(tk) = Cux(tk) + n(tk)
}

(23)

with Q0 � 0 and the index k? satisfying tk? = btc, where
btc denotes the maximum discrete time tk ∈ [0, t), which is
strictly less than t. The matrices Rd, Rn � 0 can be viewed
as weighting parameters associated with the disturbances and

measurement noises. Using the results of [18], [28], [21], it can
be concluded that this unconstrained state estimation problem
has the following exact iterative solution:
• for tk−1 ≤ t < tk, k = 1, ..., k?

Q̇(t) =−A′u,yQ(t)−Q(t)Au,y−Q(t)GuRdG
′
uQ(t) (24)

˙̄x(t) =Au,yx̄(t) + bu (25)

• for t = tk, k = 1, ..., k?

Q(tk)=Q(t−k )+C ′uR
−1
n Cu (26)

x̄(tk)=x̄(t−k )+Q−1(tk)C ′uR
−1
n

(
y(tk)−Cux̄(t−k )

)
(27)

while satisfyingQ(0) :=Q0�0 and x̄(0):=x̄0.

B. Projection Filter (PF)

In general, the solution obtained in the unconstrained state
estimation problem x̄(t) does not satisfy the constraints (11)-
(13). To solve this problem, we first notice that (11)-(13) can
be rewritten as quadratic constraints of the form z′Siz+r′iz=
0, i ∈ {1, ..., 2n+1}. Thus, one strategy is to compute x̂ such
that

x̂(t) = arg min
z∈Rns :

z′Slz+r′lz=0
∀l∈{1,...,2n+1}

(z − x̄)′Q(z − x̄). (28)

Since (28) does not have a closed-form expression, following
the ideas in [21], [29] we propose a scheme that solves asymp-
totically the related sufficient Karush-Kuhn-Tucker (KKT)
conditions [30, pp 243–244]. More precisely, consider the
Lagrangian function corresponding to the cost function in (28),
that is,

L(x̂,λ) = (x̂− x̄)′Q(x̂− x̄) +

2n+1∑
l=1

λl
(
x̂′Slx̂+ r′lz

)
where λ∈R2n+1 is the Lagrange multiplier vector. This leads
to the following sufficient KKT conditions for optimality:

e2 =Q̄x̂−Qx̄+ R̄λ=0, e3 =
(
S̄(x̂) + 2R̄

)′
x̂=0, (29)

where

S̄(x̂)=[S1x̂, S2x̂, . . . , S2n+1x̂],

R̄=[r1, r2, . . . , r2n+1]/2, Q̄=Q+
∑2n+1
i=1 λiSi. (30)

Suppose that along the trajectories of the system we have
Q̄�0 and S̄(x̂)+R̄ remains full column rank. Then, setting the
initial condition x̂(0) = x̄0, the following proposed solution
guaranties that the sufficient KKT conditions for (28) hold at
sampling times t = tk and asymptotically in [tk−1, tk), (i.e.,
e2 and e3 converge to zero as tk goes to infinity):
• for tk−1 ≤ t < tk, k = 1, ..., k?[
˙̂x

λ̇

]
=

[
Q̄ S̄(x̂) + R̄

S̄(x̂)′ + R̄′ 0

]−1([−Q̇x̂+Q ˙̄x+ Q̇x̄
0

]
−µ
[
Q(x̂− x̄) +

(
S̄(x̂) + R̄

)
λ(

1
2 S̄(x̂) + R̄

)′
x̂

])
(31)

• for t = tk, k = 1, ..., k?
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Fig. 3. Block diagram of the designed MMAE.[
x̂(tk)
λ(tk)

]
=

[
Q̄−1(tk)

(
Q(tk)x̄(tk)− R̄λ∗(tk)

)
λ∗(tk)

]
(32)

where µ > 0. The solution λ∗(tk) is obtained by solving
fl(λ, tk) = 0, l ∈ {1, 2, ..., 2n + 1} using an iterative
generalized Newton’s method, where each fl is given by

fl(λ, tk) =x̄′QQ̄−1SlQ̄
−1Qx̄+ λ′R̄′Q̄−1SlQ̄

−1R̄λ

− 2(x̄′QQ̄−1Sl + r′l)Q̄
−1R̄λ+ 2r′lQ̄

−1Qx̄.

C. Inter-sample Output Predictor (IOP)

In (24)-(25) we assumed that the observation y(t) is piece-
wise continuous in time, which is not (it is a discrete signal).
A straightforward approach to deal with this problem is to
hold y between sampling times. This, however, is not the best
solution because it can introduce significant model mismatch
if the inter-arrival times tk+1 − tk are not small enough. To
overcome this problem, we suggest the use of an inter-sample
output predictor such as the one described in [31]. For a
general nonlinear system

ẋ(t) = f
(
x(t),u(t)

)
, y(tk) = h

(
x(tk),u(tk)

)
the key idea consists of using the predicted output given by

˙̂y(t) =∇x̂h(x̂,u(t))f(x̂(t),u(t)), ŷ(tk) = y(tk),

for t ∈ [tk−1, tk). In our case, this corresponds to replacing
the signals ri in Au,y (see (10)) by r̂i, where

˙̂ri(t) = −
(
ν′
(Bpi + Bq0

)
+ χc + χci

)
/r̂i, t ∈ [tk−1, tk),

r̂i(tk) = ri(tk).

D. multiple-models

As discussed earlier, the process model (10) together with
constraints (11)-(13) may not be observable, but only weakly
observable (Theorem 1). In this case, the proposed CME
converges to one of the two elements of Ir(x0) (see equations
(18) and (21)), depending on the initial condition x̄(0) of the
observer. However, as soon as the system becomes observable,
the state estimate will, as shown in the next section, converge
to the true solution. In spite of this, there is still a problem
of performance because the time that the estimate x̂ takes to
reach a small neighborhood of the true solution x depends
on the magnitude of the initial state error ‖x̂(0) − x(0)‖.

This motivates the use of a Multiple-Model Adaptive Estimator
(MMAE) [32] with the structure shown in Fig. 3. The MMAE
consists of i) a bank of nm local CME observers, where each
observer is initialized with a different initial condition selected
according to a suitable criterion (explained later) and ii) a
dynamic weighting signal generator system that is responsible
for updating the piecewise constant weights ps(t)∈ [0, 1],
s = 1, 2, . . . , nm. The (final) state estimate x̂(t) is given by a
weighted sum of the local state estimates, that is,

x̂(t) =
∑nm
s=1 ps(tk)x̂s(t), t ∈ [tk, tk+1),

where each x̂s(t), s = 1, 2, . . . nm corresponds to a local state
estimate generated by the sth local CME observer. Following
the approach in [32] but adapted to the problem of continuous
dynamics with discrete measurements, the weights are piece-
wise constant signals that are updated at measurements times
t = tk according to

ps(tk)=
ps(tk−1)βs(tk)e−ws(tk)∑nm
l=1 pl(tk−1)βl(tk)e−wl(tk)

, s ∈ {1, 2, ..., nm}

where βs(·) is a positive bounded signal and ws(·) is an error
measuring function that maps the observations of the system
and the states of the sth local observer to a non-negative real
value. Examples of βs(·) and ws(·) are

βs(tk)= |Ss(tk)|−
1
2 , ws(tk)= 1

2

∥∥ŷs(t−k )− y(tk)
∥∥2

Ss(tk)−1 ,

Ss(tk) = Cu(tk)Q−1(tk)C ′u(tk) +Rn� 0.

In practice, to reduce memory and computing power, we have
slightly modified the MMAE scheme according to the follow-
ing procedure: Given the first range measurement obtained
from a newly observed beacon i at time tk, we generate two
initial conditions for Bp̄i(tk) that satisfy constraints (11)-(13),
using the expression (21) and an arbitrarily chosen Bp̄i(tk)
(which is typically set to [0, ri(tk), 0]′ + Bq̄0(tk)). Two new
CME observers are then created with the corresponding initial
condition. Then, we apply a MMAE scheme with the weights
initialized with p1(tk) = p2(tk) = 0.5 (for the case of two
models). Whenever one of the weights ps(·) reaches some
threshold near 1, the corresponding CME will be kept and all
the other CMEs are discarded.

V. OBSERVER CONVERGENCE

In this section we investigate under what conditions the
estimation error of the proposed observer converges to a
small neighbourhood of zero (or zero, in the absence of the
measurement noise and process disturbances). We first analyze
the stability properties of each local CME observer.

A. Convergence of the CME observer

In what follows we assume the following:

Assumption 1. The matrix Q̄(t) defined in (30) is positive
definite along the trajectories of the CME and S̄(x̂) + R̄
remains full column rank.

Assumption 2. Let Num(t, σ), 0 ≤ σ < t denote the number of
time instants at which measurement arrive in the open interval
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(σ, t). There exist finite positive constants τD and N0, for
which the following condition holds:

Num(t, σ) ≤ N0 + (t− σ) /τD. (33)

Regarding the first assumption, notice that Q is always
positive definite, which means that Q̄�0 for λ sufficiently
small. Also, the rank condition on S̄(x̂) + R̄ is the standard
condition on Lagrange multiplier theory for constraints inde-
pendence, which in this case holds because each constraint is
imposed on a different beacon. Assumption 2 typically arises
in the context of logic-based switching control and also in
estimation of continuous systems with discrete observations
[18]. The constant τD is called the average dwell-time and
N0 the chatter bound. The condition above guarantees that
the summation of ‖n(·)‖2 in (23) will not grow unbounded
due to too frequent measurements. This assumption is purely
technical and in practice always holds.

The next result establishes the convergence properties of the
proposed CME observer. We will need the standard definition
of class K and KL functions, see for instance [33, page 144].

Theorem 6. Suppose that Assumptions 1-2 hold and denote
e1 := x̄−x. Let u(t), y(tk) be a given input/output pair for
system (22). Then, there exist a KL function β and class K
functions γd, γn such that the estimation error associated with
the CME observer satisfies

‖ē(t)‖ ≤ β(‖e(0)‖, t) + γd( sup
τ∈[0,t]

‖d(τ)‖R−1
d

)

+ γn( sup
tτ∈[0,t]

‖n(tτ )‖R−1
n

) (34)

where ē :=[e′1, e
′
2, e
′
3]′ and e2, e3 are defined in (29).

Proof. Consider the following Lyapunov functions

V1 = e′1Q(t)e1, V2 = e′2e2/2 + e′3e3/2 (35)

which are bounded below and above by some class K func-
tions. Consider first the case where t ∈ [tk−1, tk) for some
sampling times tk−1 and tk. Computing the time derivative of
V1 and V2 yields

V̇1 =− e′1(QAu,y+A′u,yQ+QGuRdG
′
uQ)e1

+ e′1Q(Au,ye1 −Gud) + (Au,ye1 −Gud)′Qe1

=− 1

2
‖G′uQe1‖2Rd

−1

2
‖G′uQe1+2R−1

d d‖2Rd
+2‖d‖2

R−1
d

,

V̇2 =e′3

(
2(S̄(x̂) + R̄)′ ˙̂x

)
+ e′2

(
Q̄ ˙̂x−Q ˙̄x+Q̇x̂−Q̇x̄+

(
S̄(x̂) + R̄

)
λ̇
)

=

[
e2

e3

]([
Q̄ S̄(x̂)+R̄

S̄(x̂)′+R̄′ 0

] [
˙̂x

λ̇

]
+

[
Q̇x̂−Q ˙̄x−Q̇x̄

0

])
.

Using Assumption 1, equation (31), and the fact that δI ≤
GuRdG

′
u ≤ ∆I , we can conclude that

V̇1 ≤ −
1

2
δλmin(Q)V1 + 2‖d‖2

R−1
d

, V̇2 = −2µV2

where λmin(Q) is the smallest eigenvalue of matrix Q.
Notice that observability of the system (22) is a neces-
sary and sufficient condition for λmin(Q) > 0. Defining

γ:= 1
2δ infτ∈[tk−1,t) λmin(Q(τ)) we further conclude that

V1(t) ≤ V1(tk−1)e−γ(t−tk−1)+
2

γ
sup

τ∈[tk−1,t)

‖d(τ)‖2
R−1

d

, (36)

V2(t) = V2(tk−1)e−2µ(t−tk−1), (37)

for t ∈ [tk−1, tk). Note that from (37) it follows that conditions
(29) will be enforced (for sufficiently large µ and/or tk).

Now consider the case where t = tk. Using (27) we obtain

e1(tk)=(I−Q−1(tk)Ψ(tk))e1(t−k )+Q−1(tk)n̄(tk) (38)

where n̄(tk) = C ′uR
−1
n n(tk) and Ψ(tk) = C ′uR

−1
n Cu.

Thus, substituting (38) in (35) and considering the composite
function V = V1 + V2 we obtain

V (tk)=e1(t−k )′
(
Q(tk)+Ψ(tk)Q

−1(tk)Ψ(tk)−2Ψ(tk)
)
e1(t−k )

+ 2e1(t−k )′
(
I −Ψ(tk)Q−1(tk)

)
n̄(tk)

+ n̄(tk)′Q−1(tk)n̄(tk)

+
1

2
‖Q̄(tk)x̂(tk)−Q(tk)x̄(tk)‖2+

1

2
‖S̄(x̂)′x̂‖2

Notice that by using Assumption 1 and (32) it follows that
V2(tk) = 0. Using the matrix inversion lemma [34] and (26)
we can further simplify the terms in the above expression
containing Q(tk) as

I−ΨQ−1(tk) = I−L′FLQ−1,

Q(tk)+ΨQ−1(tk)Ψ−2Ψ =Q−L′FL,
Q−1(tk) = Q−1 −Q−1L′FLQ−1,

where Q = Q(t−k ), L = Ψ
1
2 (tk) is any matrix such that L′L =

Ψ(tk) and F =
(
I + LQ−1L′

)−1
is a positive definite matrix.

This leads to

V (tk) = V1(t−k )− e1(t−k )′ (L′FL) e1(t−k )

+ 2e1(t−k )′
(
I − L′FLQ−1

)
n̄(tk)

+ n̄(tk)′
(
Q−1 −Q−1L′FLQ−1

)
n̄(tk)

≤ V (t−k ) + n̄(tk)′Q−1n̄(tk) + 2e1(t−k )′n̄(tk)

− ‖F 1
2Le1(t−k )− F 1

2LQ−1n̄(tk)‖2

≤ (1 + ε)V (t−k ) + (1 + 1/ε)n̄(tk)′Q−1n̄(tk) (39)

where ε is an arbitrary small positive constant. Now, by
combining (39) with (36)-(37) it follows that

V (tk) ≤ (1 + ε)
[
V1(tk−1)e−γ∆tk + V2(tk−1)e−2µ∆tk

]
+ (ε+ 1)ak/ε+ bk (40)

where ∆tk = tk − tk−1, ak = λmax(Q−1)‖n̄(tk)‖2, and
bk = 2(1+ε)

γ supτ∈[tk−1,tk) ‖d(τ)‖2
R−1

d

. Solving (40) recur-
sively yields

V (tk) ≤(1 + ε)k
[
V1(t0)eγ(t0−tk)+V2(t0)e2µ(t0−tk)

]
+

k−1∑
j=0

(1 + ε)jeγ(tk−j−tk) ((ε+ 1) ak−j/ε+ bk−j)
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Using Assumption 2 (equation (33)) we can further simplify
the above inequality to

V (tk)≤
[
(1 + ε)e−γτD

]k
eγN0τDV1(t0)

+
[
(1 + ε)e−2µτD

]k
e2µN0τDV2(t0)

+

k−1∑
j=0

[
(1 + ε)e−γτD

]j
((ε+ 1) ak−j/ε+bk−j)e

γN0τD

By choosing µ, ε such that κ1 := (1+ε)e−γτD < 1 and κ2 :=
(1 + ε)e−2µτD < 1 it follows that V is a bounded function
and V (t) → 1

1−κ1

(
ε+1
ε maxk ak + maxk bk

)
eγmaxk{N0τD}

as t → ∞. Using the fact that ‖ē‖ ≤ ‖e1‖ + ‖e2‖ + ‖e3‖,
we can now conclude inequality (34).

In Theorem 6 we have used the fact that Q is a positive
definite matrix that is bounded below, which means that
λmin(Q) > 0. This is true if the system is observable, that is,
the observability matrix is full rank. This can be done either
by using range and depth measurements or, in the case of
range only measurements, by using at least two non-collinear
piecewise constant angular velocities. Notice also that the
estimate x̂(t) is the solution of the optimization problem (28)
pointwise at times tk and converges asymptotically to the
optimal in the intervals [tk−1, tk).

Remark 1. Consider system (10) without disturbance d(·) and
noise n(·). In this case it can be concluded that as t→∞ the
functions V1(t), V2(t) → 0 which implies that x̄(t) → x(t),
(S̄(x̂(t)) + 2R̄)′x̂(t) → 0, from which it follows that (x̂ −
x̄)′Q(x̂ − x̄) → 0. Since Q� 0, it follows that x̂(t) → x̄(t)
and therefore x̂(t)→ x(t) as t→∞.

B. Convergence of the MMAE

So far we have investigated the convergence properties of
each local CME observer, which implies that Theorem 6
and Remark 1 apply to each CME in the Multiple-Model
approach. We now show that similar properties apply to the
state estimate computed using the MMAE architecture. The
next result provides conditions for the convergence of the
dynamic weights ps(t). Roughly speaking, it says that the
“model” identified is the one that exhibits least output error
(residual) energy. The proof is omitted because it would be a
slightly variation of the one in [32].

Lemma 1. Let s? ∈ {1, . . . , nm} be an index corresponding
to one of the CME observers, and let S = {1, . . . , nm}\{s?}
be an index set. Suppose that there exist positive constants n′

and k′ such that for all k ≥ k′ and n ≥ n′ the following
condition holds for all j ∈ S
k+n−1∑
τ=k

(ws?(tτ )−lnβs?(tτ )) <

k+n−1∑
τ=k

(wj(tτ )−lnβj(tτ )) (41)

Then ps?(t)→ 1 as t→∞.

Condition (41) can be viewed as a distinguishability crite-
rion. The following result establishes the convergence of the
proposed observer.

Theorem 7. Suppose that Assumptions 1-2 hold, and let u(t),
y(tk) be a given input/output pair of system (22). Then, there
exist a KL function β, and class K functions γd, γn such that
the estimation error associated with the MMAE is bounded
and satisfies

‖eM (t)‖≤β(‖eM (0)‖, t) + γd( sup
τ∈[0,t]

‖d(τ)‖R−1
d

)

+ γn( sup
tτ∈[0,t]

‖n(tτ )‖R−1
n

) (42)

where eM (t) is the weighted sum of the error vectors associ-
ated to each model defined in Theorem 6, that is,

eM (t) :=

nm∑
s=1

ps(t)ēs(t) (43)

Suppose also that the distinguishability criterion (41) holds.
Then, there exists an index s∗ ∈ {1, 2, . . . , nm} such that
eM (t)→ ēs∗(t) as t→∞.

Proof. From (43) and (34) we can conclude that

‖eM (t)‖≤
nm∑
s=1

ps(t)

(
βs(‖ēs(0)‖, t)+γds(sup

τ∈[0,t]

‖d(τ)‖R−1
d

)

+γns( sup
tτ∈[0,t]

‖n(tτ )‖R−1
n

)

)
for some βs ∈ KL and γds , γns ∈ K, s ∈ {1, 2, . . . , nm}.
Thus, there exist class KL function β and class K functions γd,
γn such that (42) holds. Now, if the distinguishability criterion
(41) holds, we can conclude that ps∗ → 1 and ps → 0,∀s ∈ S.
This implies that eM (t)→ ēs∗(t) as t→∞.

VI. EXPERIMENTAL RESULTS

In this section we describe a set of experiments carried
out with three autonomous marine vehicles of the MEDUSA
class, developed at IST (see Fig. 4). Each vehicle has two
side thrusters that can be independently controlled to impart
forward and rotational motion and is equipped with an attitude
and heading reference unit (AHRS) that provides measurement
of body orientation η(t) and angular velocity ω(t). To obtain
the forward velocity ν(t), and since this class of vehicles do
not carry a Doppler velocity logger, an on-line computational
procedure was used to estimate it based on the readings of
the commands that are sent to the thrusters and using a quasi
steady-state model of the vehicle [35]. A GPS module was
used for ground truth comparison purposes. Each vehicle is
equipped with an acoustic Tritech Micron data modem and
ranging unit that is used for communications and also to
measure the ranges among vehicles. The tests were performed
in open water, in June 2012 at the Expo area of Lisbon,
Portugal (Lat: 38.766 Long: -9.03) (see Fig. 4 left). See [17],
[35] for more information on MEDUSA autonomous marine
vehicles and the experimental site in Lisbon. Throughout the
tests, two of the MEDUSA vehicles were kept in a hold position
mode to act as proxies for stationary beacons. The other
MEDUSA maneuvers at the surface and acts as proxy for an
underwater vehicle moving at constant depth, interrogating the
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Fig. 4. The three MEDUSA marine robotic vehicles.

beacons. This is realistic, because the vehicle does not use GPS
or aerial communications for localization purposes.

Due to space limitations, only three types of trajectories for
the moving MEDUSA are described below:

1) A lawn-mower trajectory (see Fig. 5) where the observ-
ability conditions are not satisfied initially. However, as
soon as the AUV turns, the observability condition (17)
holds.

2) A small circular trajectory performed with (commanded)
angular velocity ωez = 0.025[rad/s] (see Fig. 7). The
observability condition is satisfied from the time the
AUV starts.

3) A larger circumference performed with (commanded)
angular velocity ωez = 0.012[rad/s] (see Fig. 8). Since
the angular velocity ωez is smaller, when compared to
the second mission, different results are expected.

The moving MEDUSA, which starts at the initial position
identified by the symbol (�), moves with a commanded
forward velocity of 0.5[m/s] and interrogates each beacon in
cycles of 4 seconds, which guaranties that the inter-arrival
time condition (45) holds. After extensive trials we concluded
that the range measurements acquired by the modems can be
modeled as being corrupted with additive noise with a bounded
error of 0.3 [m]. In these experiments it was observed that
the movement of the AUV was affected by constant ocean
currents. Thus, without the knowledge of the ocean current
vector, the dead reckoning error accumulates very fast (see
the dead reckoning error in Fig. 5-8).

The local estimators in the proposed multiple-model
observer approach are initialized as described in Sec-
tion IV, meaning that one of the initial estimates of
the position of each beacon is on the left hand side
of the AUV and the other one on the right. The de-
sign parameters for the observers were set to Q(0) =
diag([102I2, 10−2I4, 102I2, 0.1I3, 10I2]), Rn = 0.25I2,
Rd = diag([5 × 10−3I2, 10−6I6, 0.1I3, 10−6, 10−4I2]), and
µ = 10 in the appropriate units.

1) Mission 1: Fig. 5 shows the trajectory of the AUV (GPS,
estimated trajectory using dead reckoning only, and estimated
trajectory using the proposed observer), the beacon locations
(the true locations and their estimates), estimation errors, and
estimated current velocity for mission 1. Clearly, as soon as
the vehicle turns and therefore the system becomes observable,
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Fig. 5. Mission 1: Top) Trajectory of the AUV (GPS, estimated using dead
reckoning only and estimated using the proposed observer) and beacon
locations (true position denoted by ‘O’, and estimated with initial condition
‘�’); Bottom) Estimation errors, and estimated current velocity.

the estimation error of the observer initialized with arbitrary
chosen initial condition converges to a small value close to
zero. This can also be seen in the evolution of the estimated
state of each local estimator, shown in Fig. 6. In this case,
model 1 converges to the true locations of the beacons, while
the other models converge to some or all of the mirror points
for each beacon. The evolution of the models weights is shown
in Fig. 10, where the weight of model 1 converges to 1 since
it has the least error function.

2) Mission 2: In this mission, see Fig. 7, ωez > 0
and therefore the observability condition (17) holds. Thus,
convergence of the estimator is achieved much faster when
compared to the first mission. This can also be observed from
the convergence of the models’ weights depicted in Fig. 10.

3) Mission 3: In the last mission, the AUV moves on a
larger circumference, with an average angular velocity which
is half of that in the second mission (see Fig. 8). Although
convergence of the models’ weights is similar to that observed
in mission 2 (note Fig. 10), the same is not true for the
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Fig. 6. Evolution of the AUV and estimated beacon positions for each model
presented in the XY plane, corresponding to mission 1.
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Fig. 7. Mission 2: Top) Trajectory of the AUV (GPS, estimated using dead
reckoning only and estimated using the proposed observer) and beacon
locations (true position denoted by ‘O’, and estimated with initial condition
‘�’); Bottom) Estimation errors, and estimated current velocity.

convergence of the states errors, which is slower. This is due
to the smaller magnitude of the angular velocity ωez which
leads to an observability matrix with higher condition number
and smaller minimum singular value. These two values are
a measure of the quality of the unobservability of the system
and the corresponding estimator. The reader is referred to [36],
[37] for a discussion of these unobservability measures.

In Fig. 11 we compare the effect of disabling one or more
of the designed blocks in the three missions. We consider five
observers: i) Complete observer consisting of the ME, PF,
IOP, and MMAE blocks; ii) Observer without the IOP module;
iii) Observer without using the PF module, which solves the
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Fig. 8. Mission 3: Top) Trajectory of the AUV (GPS, estimated using dead
reckoning only and estimated using the proposed observer) and beacon
locations (true position denoted by ‘O’, and estimated with initial condition
‘�’); Bottom) Estimation errors, and estimated current velocity.
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Fig. 9. Linear and angular velocities of the AUV for missions 1-3. Filtered
data are shown with a black solid line.

unconstrained problem; iv) Observer with only the ME and the
MMAE module; v) Plain ME observer. As expected, the fact of
taking into account the quadratic constraint together with the
IOP and the MMAE along with the ME observer improves
significantly the convergence of the estimation error during
the transient phase, when compared with the unconstrained
ME observer. Notice also in missions 2 and 3 that after
sufficient time has elapsed there is no significant difference in
the performance of these observers. This shows that the output
of the PF, x̂, converges to the output of ME, x̄, meaning that
x̄ satisfies the constraints (11)-(13).

VII. CONCLUSIONS

The paper addressed theoretical and practical issues related
to the problem of range-based simultaneous AUV/multi bea-
con localization in the presence of ocean currents. Conditions
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Fig. 10. Time evolution of the models weights for missions 1-3.

were derived under which it is possible to reconstruct the ini-
tial condition of the system under study. The latter includes the
position of the beacons and the vehicle. In the model adopted
for localization system design, the states evolve continuously
with time but the range measurements are only available at
discrete instants of time, in a possible non-uniform manner.
Motivated by practical considerations that have to do with
maneuverability and energy related issues, we considered the
important case where the AUV undergoes motion along trim-
ming trajectories. We have shown that this class of trajectories,
which are sufficiently general to be of practical use, allow
for a simple characterization of the types of maneuvers that
yield observability or weak observability of the underlying
design model. In particular, we proved that generically, for an
arbitrary range measurement schedule, if either the position
of one of the beacons or the initial position of the AUV are
known, then there are trimming trajectories such that even
without depth information the model is weakly observable. In
the process of deriving these results, we obtained a complete
mathematical characterization of the unobservable space and
interpreted it geometrically. If depth measurements are also
available, then the mode is observable even in the presence
of unknown constant ocean currents. The results derived have
a strong practical implication in that the concatenation of at
least two appropriately chosen different trimming trajectories
that do not necessarily yield observability individually, leads
to an observable system. Equipped with these results, in the
second part of the paper we proposed a novel multiple-model
observer for simultaneous AUV and beacon localization. The
set-up adopted was motivated by the fact that some of the
trajectories used may yield temporary unobservability over a
finite interval of time, thus warranting the use of multiple-
models running in parallel. The resulting observer borrows
concepts from minimum-energy estimation theory, projection
filters, and multiple-model estimation techniques. Convergence
analysis of the resulting observer system was formally done.
The results of field experiments with a robotic marine vehicle
showed the efficacy of the simultaneous AUV/multiple beacon

localization system.

ACKNOWLEDGMENT

The authors gratefully acknowledge the DSOR team for
their efforts in the development of the MEDUSA vehicles and
their support and collaboration on the planning and execution
of our sea trials, F. Almeida, J. Botelho, P. Góis, M. Ribeiro,
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APPENDIX

The following proposition is instrumental in analyzing the
impact of the sampling times on the observability properties
of the systems (14) and (16).

Proposition 1. Consider w > 0, and let t1 < t2 < · · · < tn,
n ≥ 7 be consecutive sampling times. Then the matrix Ot ∈
Rn×7, composed by rows of the form

Oti=
[
1 ti t2i sin(tiw) cos(tiw) ti sin(tiw) ti cos(tiw)

]
,

is full column rank, except on a zero measure set given by
|Ōt| = 0 with

Ōt =
[
A B
C D

]
, A=

[
β̄42 − β̄32 ᾱ42 − ᾱ32

β̄52 − β̄42 ᾱ52 − ᾱ42

]
, B=

[
β̄41 − β̄31 ᾱ41 − ᾱ31

β̄51 − β̄41 ᾱ51 − ᾱ41

]

, C=
[
β̄62 − β̄52 ᾱ62 − ᾱ52

β̄72 − β̄62 ᾱ72 − ᾱ62

]
, D=

[
β̄61 − β̄51 ᾱ61 − ᾱ51

β̄71 − β̄61 ᾱ71 − ᾱ61

]
,

and β̄ij =
sin(tiw)−sin(tjw)

ti−tj , ᾱij =
cos(tiw)−cos(tjw)

ti−tj . In par-
ticular, suppose the inter-arrival times are uniform, that is,
tk+1− tk = T for all tk ∈ [t0, tf ). Then, the matrix Ot is full
column rank except on a zero measure set described by (19).

Proof. Consider the following matrices P1, P2, P3, P4, and
P5 defined as

P1 := I7−


0 t1I2 s1 c1 0
0 0 0 0 0
0 0 0 0 t1I2
0 0 0 0 0

, P2 :=I6−
[
0 t2 β̄21 ᾱ21 s2 c2
0 0 0 0 0 0

]
,

P3 :=I5−
[

0 γ̄32 ν̄32 β̄32 ᾱ32

0 0 0 0 0

]
, P4 :=I4−

[
0 0
I3 0

]
, P5 :=

[
0 (t1−t2)I2
I2 I2

]
,

where si = sin(tiw), ci = cos(tiw), γ̄j2 =
β̄j1−β̄21

tj−t2 , ν̄j2 =
ᾱj1−ᾱ21

tj−t2 , i ∈ {1, . . . , 7}, j ∈ {3, . . . , 7}.
Notice that the determinant of the above matrices with

exception of P5 is one, that is, |P5| = (t2 − t1)2 > 0. Thus,
we may conclude that the determinant of Ot, composed by
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Fig. 11. Comparison of different methods for missions 1-3.

the first 7 row vectors Oti , i ∈ {1, 2, . . . , 7}, satisfies

|Ot| = |Ot · P1| =
∏7
i=2 (ti − t1)

∣∣∣∣∣∣∣
1 t2 β̄21 ᾱ21 s2 c2

...
...

...
...

...
...

1 t7 β̄71 ᾱ71 s7 c7

 .P2

∣∣∣∣∣∣∣
=
∏7
i=2 (ti − t1)

∏7
i=3 (ti − t2)

∣∣∣∣∣∣∣
1 γ̄32 ν̄32 β̄32 ᾱ32

...
...

...
...

...
1 γ̄72 ν̄72 β̄72 ᾱ72

 .P3

∣∣∣∣∣∣∣
= (t2 − t1)−2

∏7
i=2 (ti − t1)

∏7
i=3 (ti − t2)∣∣∣∣∣∣∣∣P4.


γ̄42 − γ̄32 ν̄42 − ν̄32 β̄42 − β̄32 ᾱ42 − ᾱ32

γ̄52 − γ̄32 ν̄52 − ν̄32 β̄52 − β̄32 ᾱ52 − ᾱ32

γ̄62 − γ̄32 ν̄62 − ν̄32 β̄62 − β̄32 ᾱ62 − ᾱ32

γ̄72 − γ̄32 ν̄72 − ν̄32 β̄72 − β̄32 ᾱ72 − ᾱ32

 .P5

∣∣∣∣∣∣∣∣
= (t2 − t1)−2

∏7
i=2 (ti − t1)

∏7
i=3 (ti − t2)|Ōt|. (44)

Since ti 6= tj for all i 6= j, first term on the right hand side
of (44) is nonzero.

Now consider the vector of inter-arrival times t̃ ∈ R6
+ where

t̃i = ti+1w − tiw, i ∈ {1, 2, . . . , 6}. The determinants of
the matrices A and Ōt can be written as |A| = f1 sin(t̃2) +
f2 sin2

(
t̃2/2

)
+f3t̃2 and |Ōt| = f̃4 sin(t̃6) + f̃6 sin2

(
t̃6/2

)
+

f̃8t̃6, where f̃i := fi + fi+1t̃6, i ∈ {4, 6, 8}. Notice that f1,
f2, and f3 are continuous functions of t̃3, and t̃4 and f4, . . .,
f9 are continuous functions of t̃1, . . ., t̃5. Furthermore, for
any given t̃3 and t̃4, |A| has countable zero crossings. Since
f1, f2, and f3 are continuous functions of t̃3 and t̃4, we can
conclude that the set of points satisfying |A| = 0 is composed
of a number of countable surfaces in R3

+, and is therefore a
zero measure set. Using the same reasoning as for matrix A,
it can be concluded that the set of points satisfying |Ōt| = 0
also has zero measure. Thus, the matrix Ot is generically of
full column rank, losing rank only at the set of zero measure
sample points given by |Ōt| = 0.

Consider the particular case where the inter-arrival times are
uniform, that is, tk+1−tk = T for all tk ∈ [t0, tf ). Then, it fol-
lows that |Ōt(T )| = 215T−4 sin12 (T‖ωe‖/2) sin4(T‖ωe‖).
This implies that the matrix Ot is of full column rank almost
everywhere, losing rank only at the zero measure sample
points described by the set (19).

In Proposition 1 we showed that the matrix Ot is full rank
almost everywhere except at a set of particular sample times of
zero measure defined by |Ōt| = 0. Thus, even if the matrix Ōt

is singular at a particular combination of sampling times, by
slightly perturbing the sample times it becomes non-singular.
For the non-uniform case, it is still possible to conclude
numerically that for all the points in the region defined by

0 < tk+1 − tk < κπ‖ωe‖−1
, tk ∈ [t0, tf ) (45)

for κ = 0.9 and at least 6 inter-arrival times, |Ōt| 6= 0.

Proof. [Theorem 1] Consider system (16) with initial condi-
tion x0 ∈ R12. Let ωe ∈ R3 be such that (17) holds. Without
loss of generality we consider t0 = 0. The state transition
matrix Φ(t, 0) ∈ R12×12 of (16) is given by

Φ(t, 0)=



Φ̄1(t, 0) 0 −tΦ̄1(t, 0) 0 0 0
0 Φ̄1(t, 0) 0 0 0 0
0 0 Φ̄1(t, 0) 0 0 0
0 0 0 1 0 0

0 0 Φ̄2(t,0)
2 −t 1 0

Φ̄2(t, 0) Φ̄2(t, 0) −tΦ̄2(t, 0) t2 −2t 1

 (46)

where Φ̄1(t, 0) is the state transition matrix of the linear
system ζ̇ = −S(ωe)ζ and Φ̄2(t, 0)=−2

∫ t
0
ν′eΦ̄1(s, 0)ds. The

observability matrix Onr ∈ Rnr×12, nr ≥ 7 associated with
the system (16) is, according to [38], defined by

Onr :=
[
(Cu(t0)Φ(t0, 0))′ . . . (Cu(tnr−1)Φ(tnr−1, 0))′

]′
,

where tk ∈ [t0, tf ), k ∈ {0, 1, 2, . . . , nr−1}. Note that Onr is
a function of the measurement sampling times, tk ∈ [t0, tf ).

We claim that Onr has rank 7 almost everywhere, with
the exception of a zero measure set. We show this by using
the rank-factorization theorem in [34, Theorem 3.13]. Note
that Onr = Ot(tj , ‖ωe‖)Or, j ∈ {0, 1, . . . , nr − 1}, where
Ot ∈ Rnr×7 whose jth row, Otj , is given by

Otj :=2νe

[
1

2νe
tj

1−cos(tj‖ωe‖)
‖ωe‖2

tj‖ωe‖−sin(tj‖ωe‖)
‖ωe‖3

t2j
2‖ωe‖2 tj

cos(tj‖ωe‖)−1
‖ωe‖2

tj sin(tj‖ωe‖)
‖ωe‖3

]
and Or ∈ R7×12 is given by

Or=



0 0 0 0 0 1
−e′x −e′x 0 0 −1

νe
0

e′x × ω′e e′x × ω′e 0 0 0 0
ω′eωee

′
x−e′xωeω′e ω′eωee

′
x−e′xωeω′e 0 0 0 0

0 0 2e′xωeω
′
e

‖ωe‖2
νe

0 0

0 0 e′x × ω′e 0 0 0
0 0 ω′eωee

′
x−e′xωeω′e 0 0 0


.

Resorting to Proposition 1 it can be concluded that for almost
all inter-arrival times Rank(Ot) = 7. Moreover, from (17) it
follows that Rank(Or) = 7. Thus, by the rank factorization
theorem it follows that Rank(Onr ) = Rank(Or).

Since Rank(Onr ) = Rank(Or), we can conclude that
Kernel(Onr ) = Kernel(Or). Thus, the null space associated
with the observability matrix is Kernel(Onr ) = Nα where

N =


ex (ex×ωe)ωez −(ex×ωe)ωey ωe−exe′xωe 0
−ex 2ωeωey−(ex×ωe)ωez 2ωeωez+(ex×ωe)ωey exe

′
xωe 0

0 0 0 0 ωe
0 −2eyν

′
eωeωey −2eyν

′
eωeωez −eyν′eωe−2ωeνe

 (47)
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and α = [α1, . . . , α5]′ ∈ R5.
Notice that all initial conditions of the form x̆0 := x0+Nα

are indistinguishable from x0. Since the initial condition of the
beacon is known, that is Bq̆1(0) = Bq1(0), this implies that
α1 = ωexα4 and α2 = α3 = 0. Moreover, notice that x̆0

must satisfy the constraints (11)-(13). Imposing the constraint
(12) we obtain α5 ∈

{
0,−2‖ωe‖−2ω′e

(
νe + Bνc(0)

)}
. Thus,

one solution is α5 = 0, yielding α4 = 0, which is the trivial
solution satisfying (11) and (13). The other nonzero solution of
α5 leads to α4 = −2‖ωe‖−2ω′e

(Bp0(0)+Bq1(0)
)
, satisfying

(11) and (13), which is the set defined in (18).
To show the reverse inclusion, consider z := x0 + v ∈
Ir(x0) where v ∈ Kernel(Or). Let r(x(t)) denote the range
output given initial condition x0, where x(t) is the solution
of (16) with x(0) = x0 and r(z(t)) denotes the range output
given the initial condition z, where z(t) is the solution of (16)
with x(0) = z. By noting that v ∈ Kernel(Or), it follows that
r(z(t)) = Cu(t)Φ(t, 0)x0 + Cu(t)Φ(t, 0)v = r(x(t)). Since
x0 is an arbitrary point, by definition, system (16) combined
with constraints (11)-(13) is weakly observable on [t0, tf ). The
proof for the case of uniform inter-arrival times follows from
the later part of Proposition 1.

Note that in Theorem 1 we used the fact that Rank(Onr ) =
min(Rank(Or), Rank(Ot)). Thus, the observability condition
(17) and the restriction on the inter-arrival times are derived
independently from the matrices Or and Ot. This is because
the rank of Or depends only on ωe as νe > 0 and the rank
of Ot depends only on tk ∈ [t0, tf ) as ‖ωe‖ > 0.

Proof. [Corollary 1] From Theorem 1 it follows that the set
of indistinguishable points is given by (18). Suppose that there
is no ocean current or Bνc in known. In this case, the set of
indistinguishable points is a subset of {x0, x̆0}, where x̆0 is
a non-trivial point in (18). Let us assume that the point x̆0

is indistinguishable from x0. Since Bν̆c = Bνc, we conclude
that Bνc = Bνc−2‖ωe‖−2ωeω

′
e(
Bνc+νe), which contradicts

with (20). Thus, x̆0 is distinguishable from x0 and the system
is observable.

Proof. [Theorem 2] Consider the system (16) with initial
condition x0 ∈ R12. From (2) and (46) we conclude that
e′z
I
BR(η) = e′z

I
BR(ηe)Φ̄1(t, 0)′.

Since S(ωe) is a skew symmetric matrix it follows that
Φ̄1(t, 0)′Φ̄1(t, 0) = I, ∀t. On the other hand, the depth
measurements yz satisfy yz = Cu,zΦ(t, 0)x0 = C̄u,zx0,
where

C̄u,z=

[[
−1 0 t
0 1 0

]
⊗
(
e′z
I
BR(ηe)

)
0

]
.

Note that, C̄u,z is a first order polynomial in t. Thus, each
row of the observability matrix corresponding to depth-only
measurements system (16) is a linear combination of rows of
Oz :=

[
I3 ⊗

(
e′z
I
BR(ηe)

)
0
]
.

Now, the observability of system (16) can be verified by
intersecting Kernel(Or) derived in (47) with Kernel(Oz).
Moreover, since the initial condition of the beacon is known,
from Theorem 1 it follows that α1 = ωexα4 and α2 = α3 = 0.
Intersecting the mentioned null spaces, the following equalities

must hold: α4e
′
z
I
BR(ηe)ωe = 0; α5e

′
z
I
BR(ηe)ωe = 0. Now,

using (15) and noticing that (17) implies that ψ̇e 6= 0, we
conclude that α4 = α5 = 0. Thus, the intersection of the two
null spaces defined above contains only the origin, Irz(x0) =
{x0}, and the system (16) is observable on [t0, tf ).

Proof. [Theorem 3] Consider the system (16) with initial
condition x0 ∈ R12 and let ωe ∈ R3 be such that (17) does
not hold, that is ωey = ωez = 0. Moreover, consider that
nr ≥ 3 measurement samples are available.

We claim that the range-only observability matrix, Onr , has
rank 3. We show this by using the rank-factorization theorem.
Define Or ∈ R3×12 and Ot ∈ Rnr×3 whose jth row, Otj ,
are given by

Or=

 0 0 0 0 0 1
e′x e′x 0 0 1

νe
0

0 0 2e′x
1
νe

0 0

,Otj := νe
[

1
νe
−2tj t2j

]
.

Note that Rank(Ot) = 3, given tk − tk−1 > 0. Moreover,
Rank(Or) = 3. It can be verified that Onr = Ot(tj)Or, j ∈
{0, 1, . . . , nr−1} holds, hence by the rank factorization theo-
rem it follows that Rank(Onr ) = 3. From a standard result in
linear algebra, it follows that Rank(Onr ) = Rank(Or). This
completes the proof of the claim.

Now, using Or and Oz from Theorem 2 it can be verified
that the concatenation of the two matrices Orz has the form

Orz =
[[
ey 0 0 ey 0 0 2ez 0 0

] [
1
νe
ez

1
νe
ey ex

]
I3 ⊗

(
e′z
I
BR(ηe)

)
0

]
.

In this case, the null space Kernel(Orz) = Nα, where

N =


0 0 ξ1 ξ2 0 0
ξ1 ξ2 0 0 0 0
0 0 0 0 ξ1 ξ2

−ey 0 −ey 0 −2ex 0

,
ξ1 = ex + eztan θe/cosφe, ξ2 = ey − ez tanφe, and α =
[α1, . . . , α6]′ ∈ R6. Imposing the constraint that the initial
condition of the beacon is known yields α1 = α2 = 0. We
thus have a 4th order linear subspace and only 3 quadratic state
constraints described by (11)-(13). Solving the corresponding
quadratic equations we may find a solution for α4-α6 but
the fifth order, α3, remains as a free parameter. This implies
that the set of indistinguishable points is at least a piecewise
continuous function of the free parameter α3 and the system
is not weakly observable.

Proof. [Theorem 4] The proof for the case of range-
only measurements is similar to that of Theorem 1 with
the only difference that we use the assumption Bp̆0(0) =
Bp0(0). This implies that α1 = α4 = 0 and ωezα2 =
ωeyα3. Moreover, notice that x̆0 must satisfy the constraints
(11)-(13). Imposing the constraint (12) we obtain α5 ∈{

0,−2‖ωe‖−2ω′e
(Bνc(0) + νe

)}
. Setting α5 = 0 implies

α2 = α3 = 0, which is the trivial solution ensuring that (11)
and (13) hold. The other nonzero solution of α5 leads to

[α2, α3] = −[ωey , ωez ]‖ωe‖−2ω′e
Bp1(0)/(ω2

ey+ω2
ez )

ensuring that the constraints (11) and (13) hold. With two
possible solutions for α, we conclude that I(x0) is given by
(21).
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Consider now the case were depth measurements are added
to the set of observations (similar to the conditions in Theorem
2). The observability of system (16) can be verified by
intersecting Kernel(Or) derived in (47) with Kernel(Oz),
but with the assumption that the initial condition of the AUV
is known, meaning α1 = α4 = 0 and ωezα2 = ωeyα3.
Intersecting the mentioned null spaces, the following must
hold:(
ωeyα2 + ωezα3

)
e′z
I
BR(ηe)ωe = 0, α5e

′
z
I
BR(ηe)ωe = 0.

At this point, using (15) and noticing that (17) implies that
ψ̇e 6= 0, we conclude that α2 = α3 = α5 = 0. Thus, the
intersection of the two null spaces defined above contains only
the origin, Irz(x0) = {x0}, and the system (16) is observable
on [t0, tf ).

Moreover, using the same reasoning as in Theorem 3, but
with the assumption Bp̆0(0) = Bp0(0), we conclude that
Irz(x0) is at least a piecewise continuous function of free
parameter α1. Thus, the system is not observable.

Proof. [Theorem 5] For one beacon only, the result follows
from Theorems 1-4. Consider now more than one beacon.
In this case it can be concluded from (14) that the dynamic
equations of each set {Bqi, χi, χci} do not depend on the other
sets. This means that the observability of the multiple beacon
system can be investigated by analyzing the observability of
each single-beacon system and the result follows immediately
from Theorems 1-4.
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