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Abstract—This paper introduces the Moving Path Following
(MPF) problem where a vehicle is required to converge to and
follow a desired geometric moving path, without a specific tem-
poral specification, thus generalizing the classical path following
that only applies to stationary paths. Possible tasks that can
be formulated as a MPF problem include tracking terrain/air
vehicles and gas clouds monitoring, where the velocity of the
target vehicle or cloud specifies the motion of the desired path.
We derive an error space for MPF for the general case of time
varying paths in a two dimensional space, and subsequently an
application is described for the problem of tracking single and
multiple targets on the ground using an Unmanned Aerial Vehicle
(UAV) flying at constant altitude. To this end, a Lyapunov based
MPF control law and a path generation algorithm are proposed
together with convergence and performance metric results. Real
world flight tests results that took place in OTA air base, Portugal
with the ANTEX-X02 UAV demonstrate the effectiveness of the
proposed method.

Index Terms—Aerial robotics, target tracking, path following.

I. INTRODUCTION

TRAJECTORY tracking and path following are typical
motion control tasks that autonomous robotic vehicles are

required to execute. In trajectory tracking, the vehicle should
follow a given trajectory with time constraints, while in path
following, time constraints are used for the vehicle to track
a desired speed assignment along a predefined path [1] or
there may be no time constraints and the vehicle can thus,
for example, move with constant speed and achieve smoother
convergence to the path [2]. For wheeled mobile vehicles, the
first works on this subject have been presented in a series
of groundbreaking papers by Samson et al. (see for example
[3] and the references therein). For path following, a classical
approach consists of defining the error space using the Serret-
Frenet frame concept [4],[5], associated to the path. The same
circle of ideas led to the development of trajectory tracking
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and path following systems for marine vehicles [1],[6] and
Unmanned Aerial Vehicles (UAVs) [7], [8], [9].

Both in classical trajectory tracking and path following the
reference trajectory/path is fixed in space. However, there are
applications where it is useful to follow a path that is attached
to a reference frame that moves with respect to an inertial
coordinate frame. A typical example, which will be considered
in this paper, is the case of a UAV following a path attached
to a vehicle to be tracked, moving with time varying linear
and angular velocities with respect to an inertial frame. Note
that this problem cannot be directly solved by simply recasting
it in a classical path following framework because the target
vehicle imposes time constraints and therefore the expected
performance (regarding path following objectives) could be
affected. Moreover, closed-loop system’s stability and robust-
ness would not be ensured. Motivated by this observation,
in this paper we present a solution to a new motion control
problem, the Moving Path Following (MPF) problem, where
the vehicle is required to converge to and follow a desired
geometric moving path without a specific absolute temporal
specification. By further extending the ideas in [10], the MPF
method here presented is applied to the general case of desired
paths moving with respect to an inertial coordinate frame
with time-varying linear and angular velocities, and with non-
constant curvature. The MPF method generalizes the classical
path following for stationary paths, thus providing a generic
tool to follow moving (time-varying) paths that can be applied
to several mission scenarios, like thermals soaring, gas clouds
monitoring (where the time-varying thermal/gas cloud center
coordinates may specify the motion of the desired path) or
terrain/air vehicles tracking [11], [12]. Thus, by design, the
MPF method retains all the desirable characteristics of the
classical path following method, namely smooth convergence
to the moving path and the possibility of doing so at constant
speed with respect to an inertial coordinate frame.

In this paper, we derive an error space for the general
kinematic MPF. Subsequently, an application to the problem
of tracking single and multiple targets on the ground using
a fixed-wing UAV is described. The standard approach with
UAV control is to assume that the vehicle has an off-the-shelf
inner loop controller that accepts references at kinematic level
(angular rates and linear velocities) and generates the UAV
control signals necessary to follow those references in the
presence of model uncertainty and external disturbances, like
wind [13], [14]. Outer loop control laws are thus derived using
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a kinematic model of the vehicle that provide the references
to the inner control loop. The same approach is adopted
here. A MPF control law is derived using Lyapunov methods,
assuming that the UAV flies at constant altitude and airspeed
(thus contributing to operational safety and preventing sudden
thrust bursts necessary to keep up with the moving path).
By explicitly taking into account UAV’s physical constraints,
this paper formally addresses the necessary conditions for the
moving path’s geometry and linear and angular velocities with
respect to the inertial frame that must be verified in order to
ensure that the MPF problem is well posed.

Two example scenarios regarding single and multiple target
tracking applications are presented in this paper.

For single ground target tracking, different strategies have
been proposed in the literature. Lee et al. [15] and Spry et al.
[16] designed a controller that switches between two modes
according to the relation between the UAV and the target
velocities. Dobrokhodov et al. [13] proposed a vision based
target tracking system using a guidance based algorithm. The
control objective is to keep the aircraft within a certain range
of the target and align the aircraft velocity vector with the
perpendicular to the direction of the line that connects the UAV
center of mass with the target (perpendicular to the line of sight
vector, so that the UAV performs a loiter centered at the target).
A Lyapunov guidance vector field strategy is proposed in [8].
A vector field with a stable limit cycle centered at the target
position is determined. From it, a scaled Lyapunov guidance
vector is computed and added to the target velocity, if known,
to provide a heading command to the UAV. However, this
may lead to an oscillating behaviour when the target speed
or wind speed is close to the UAV speed [9], [17]. Chen et
al. [17] proposed the use of a tangent-plus-Lyapunov vector
field which includes a switching logic between tangent and
Lyapunov vector fields to make convergence to the standoff
circle faster than the method presented in [8]. More recently,
Oh et al. [18] proposed a differential geometry approach
(depending on the initial positions and velocity magnitude
ratio between the UAV and the target) to compute a desired
tangent direction to a standoff orbit circle around the target
position.

MPF can be applied to single target tracking by attaching
to the target a path to be followed. The proposed method,
by design, eliminates the oscillating behaviour observed in
other approaches when the target speed or wind speed are
similar to the UAV speed [9], [17] (provided that the UAV’s
ground speed is higher than the target speed). If the target
speed is close to the UAV speed, the control law behaves
similarly to a controller that tracks a particular point on a
path that moves jointly with the target (further details can be
found in [10]). When the ground target moves slower than
the UAV, the control law makes the UAV to loiter above the
target. Additionally, in contrast with the methods proposed in
[17], [18], [19], the same control law is used in all operating
conditions, disregarding the relative initial position between
the UAV and the target, and their relative speeds. Finally, the
MPF method here presented is not limited to a standoff circle
centered at the target position (unlike most of the proposed
methods in the literature) and allows the use of any geometric

path shape (satisfying UAV’s physical constraints) attached to
the desired target, which may be useful for applications like
the ones presented in [20], [21]. For example, in [20] a ground
convoy of vehicles is restricted to be stationary or moving in
straight lines at constant speed while being protected by a
group of UAVs following an optimal path (with respect to
continuous convoy protection) above their position. For this
scenario, the MPF algorithm would allow an optimal path to
be attached to the convoy removing the restrictions on the
convoy movements. In order to illustrate these features, in the
single target tracking scenario here presented, a fixed wing
UAV is required to follow a lemniscate path centered at the
actual target position whose angular velocity is the same as
the target, keeping the UAV altitude and airspeed constants.

For multiple targets tracking applications, a path generation
method is proposed that combines with the MPF algorithm
here presented. The multiple target tracking problem is typ-
ically decomposed into two phases: the first phase estab-
lishes the order in which the targets should be visited and
subsequently, it uses a strategy of path generation (or target
interception) to successively intercept the targets (by the pre
determined order) until all the targets are visited. Solutions for
stationary targets [22], [23] and moving targets [24], [25], [26]
can be found in the literature. For most interception tasks, the
motion of the dynamic target is usually unknown in advance.
Thus, visual feedback [27] and line-of-sight methods [25],
[28] have been proven as effective approaches. The target
interception problem is a classic subject in the area of missile
guidance, where three fundamental guidance strategies [29],
[30] can be found: 1) Pure Pursuit Guidance (PP), where the
interceptor aligns its velocity with the line that connects its
position with that of the target. This strategy often results in
a tail chase [29]; 2) Line of Sight Guidance (LOS), where
the interceptor aligns itself with the line that connects a fixed
reference point and the target. This strategy is borrowed from
surface-to-air missiles control algorithms in which the target
is often illuminated by a beam originated in a ground station
[29]; 3) Constant Bearing (CB), where the interceptor aligns
its velocity relative to the target with the line that connects its
position to the target. This method seeks to reduce the line of
sight rotation rate to zero, such that the target is perceived by
the interceptor at a constant bearing, and thus the distance to
the target is reduced apparently on a direct collision course
[29]. We propose a path generation algorithm to solve the
interception of multiple targets that together with the MPF
guidance and control law behaves similarly to the guidance
strategies 2) and 3) described above. In practice, the proposed
path generation algorithm makes the vehicle to track a moving
Dubins path (with respect to an inertial frame) composed by
a fixed circular segment and a moving straight line with a
fixed initial position and a moving end point, solidary to the
current target position (or to its estimated interception position,
assuming it will keep its heading and velocity constant). This
paper demonstrates how the MPF approach (combined with
the path generation algorithm) provides a general tool that
encompasses distinct classical guidance strategies popular in
the missile guidance community. A detailed discussion regard-
ing the MPF performance using the proposed path generation
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algorithm is also addressed in this paper.
Briefly, this paper’s main contributions are: i) The formula-

tion of the general MPF problem and derivation of the error
space; ii) The design of Lyapunov-based nonlinear controllers
for the particular case of the MPF for a fixed-wing UAV; iii)
A new path-generation algorithm using the MPF approach for
multiple (possible moving) targets that encompasses distinct
classical guidance strategies; and iv) Validation and illustra-
tion of the proposed approach through field tests using the
ANTEX-X02 UAV.

The paper is organized as follows. Section II describes the
2D moving path following error space, and then, Section III
particularizes the error space for the problem of tracking a
target on the ground by a UAV. Section IV describes how the
MPF formulation previously presented can be applied to single
and multiple targets tracking problems and, subsequently,
Section V presents the flight test architecture used and their
results. Finally, Section VI contains the main conclusions
and future work. Path generation details for the multiple
targets tracking scenario, formal convergence conditions and
performance metrics can be found in Appendix. Part of the
work regarding the derivation of the MPF error space was
presented in preliminary form in [31].

II. ERROR SPACE FOR MOVING PATH FOLLOWING

This section presents the MPF problem and formulates
the resulting kinematic model written with respect to the
Serret-Frenet frame (see definition e.g., [4],[5]) associated to
a given reference planar path. Consider a local inertial frame
{I} = {−→x ,−→y } with the −→x axis pointing North and −→y East.
Consider also a path-transport frame {P} = {−→x P ,−→y P } and
let the origin of {P} expressed in {I} be denoted by p0.
Let pd(`)

P =
[

pP dx
(`) pP dy

(`)
]T

be a desired planar
geometric path parametrized by `, which for convenience
will be assumed to be the path length. Note that for a fixed
` ≥ 0, pd(`)

P is a point on the path expressed in the path-
transport frame. Additionally, let vd = ṗ0 =

[
vdx vdy

]T
and ωd be the corresponding linear and angular velocities of
the path-transport frame {P}, respectively, expressed in {I}.
The angular velocity ωd is positive if the {P} frame rotates
clockwise around the −→x P×−→y P direction when observed from
the origin of {I}. In practice, the path-transport frame specifies
the desired motion of the path with respect to the inertial frame
and a desired geometric path is considered to be a moving
path whenever vd or ωd are different from zero. Furthermore,
we consider the general case where vd and ωd can be time
varying, i.e., ω̇d 6= 0 and v̇d 6= 0.

The MPF problem can thus be formulated as follows: Given
a robotic vehicle moving at a given speed V and a desired
moving path Pd =

(
pd(`)

P , p0, vd, ωd
)
, design a control law

that steers and keeps the vehicle on the desired path Pd.
Let {F} = {−→t ,−→n } be the Serret-Frenet frame associated

to the desired path and κ(`) the path curvature. The {I},
{P} and {F} frames are depicted in Figure 1. Additionally,
a wind frame {W} = {−→xW ,−→y W } is considered, located at
the vehicle’s center of mass and with its −→xW -axis along the
direction of the vehicle velocity vector, the −→y W -axis parallel

Fig. 1. Moving path following: Error space frames and relevant variables,
illustrating the case of a UAV.

to the −→x −−→y plane, normal to −→xW , and pointing to the right
of an observer that moves in the same direction of the aircraft
(see Figure 1). From this definition, vW

W , the linear velocity
of {W} relative to {I} and expressed in {W}, is given by
vW
W =

[
V 0

]T
.

The vehicle center of mass coordinates are denoted by
p =

[
x y

]T
when expressed in the inertial frame {I} and

by pF =
[
xF yF

]T
when expressed in the Serret-Frenet

frame. A given path point pd(`)
P , parametrized by `, can be

expressed in the {I} frame through

pd(`)
I = p0 + RI P pd(`)

P ,

where RI P is the rotation matrix from {P} to {I}. For
convenience, a given path point pd(`)

I that is the closest to the
vehicle is denoted by pd. Setting the origin of {F} at the path
point pd, it follows that pF =

[
0 yF

]T
. From the previous

definition, the velocity of a given path point parametrized by
` relative to {I} and expressed in {I} (that will be needed in
the sequel) is given by

ṗd(`)
I = ṗ0 + RI P ṗd(`)

P + S (ωd) RI P pd(`)
P ,

where S (.) is a skew-symmetric matrix that satisfies

S (a) =

[
0 −a
a 0

]
.

Since by definition,

ṗd(`)
P = 0

RI P pd(`)
P = pd(`)

I − p0,

one obtains

ṗd(`)
I = vd + S (ωd)

(
pd(`)
I − p0

)
. (1)
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From the classical path following algorithms [3], the angular
velocity of the {F} frame with respect to the inertial frame,
written in the {F} frame, is given by

ωF F = κ(`) ˙̀.

Additionally, admitting that the planar path is also rotating
with an angular velocity given by ωd , it is straightforward to
verify that

ωF F = κ(`) ˙̀ + ωd .

The position of the UAV in the {I} frame can be written
as (see Figure 1)

p = pd + RI F pF (2)

where RI F is the rotation matrix from {F} to {I}. Differen-
tiating (2) with respect to time yields

ṗ = ṗd + RI F ṗF + RI F S
(
ωF F

)
pF .

Pre-multiplying by RF I one obtains

RF I ṗ = RF I ṗd + ṗF + S
(
ωF F

)
pF . (3)

The linear velocity RF I ṗd of a point on the path relative
to {I} and expressed in {F} is the sum of the linear velocity
of the point relative to {F} given by vF F =

[
˙̀ 0

]T
, with

the velocity of the Serret-Frenet frame relative to {I} (see
equation (1)), both expressed in {F}, i.e.,

RF I ṗd = vF F + RF I

(
vd + S (ωd) (pd − p0)︸ ︷︷ ︸

)
, (4)

vP

where (pd − p0) =
[

∆x ∆y
]T

is the vector from the
origin of {P} to the origin of the {F} frame on the path.
The path may rotate around p0, thus vP is the linear velocity
of pd due to the path’s angular velocity ωd. The left side of
(3) can be rewritten as

RF I ṗ = RF W vW
W . (5)

Therefore, combining (4) with (5), equation (3) gives

ṗF = RF W vW
W − S

(
ωF F

)
pF − vF F

− RF I (vd + S (ωd) (pd − p0)) . (6)

Since the moving path’s rotation axis is by definition
perpendicular to the −→x − −→y plane, the angular velocity of
the {F} frame with respect to the inertial frame, expressed in
the {W} frame (that will be necessary in the sequel) is

ωW
F = ωF F .

The relative angular velocity between the {F} frame and the
wind frame {W}, expressed in {W}, is given by

ωW r
W,F = ωW

W − ωW
F (7)

and thus,

ṘF W = RF W S
(

ωW r
W,F

)
. (8)

In summary, the complete MPF kinematic error dynamics is
given by equations (6) and (8). Note that for fixed paths, that
is with vd = 0, ωd = 0, (6) and (8) resume to the classical
path following expressions, which can be found in the works
[2], [3], [6].

III. MOVING PATH FOLLOWING CONTROL LAW: A
GENERIC TOOL TO FOLLOW TIME-VARYING PATHS

This section starts by particularizing the error space defined
in Section II to the case where the angles ψp, ψf and ψ̄ (see
Figure 1) are used to parametrize the rotation matrices between
reference frames. Then, an application is made to ground target
tracking by a UAV. The control law is derived using Lyapunov
methods, assuming that the UAV flies at constant altitude and
airspeed.

A. MPF error kinematics

Starting with the path-following controller, the goal is to
drive the lateral distance yF to zero and orient the UAV
such that the projection of its velocity vector onto the normal
−→n to the path equals the normal component of the velocity
of the Serret-Frenet frame origin given by the vector sum
vd + vp (see Figure 1 and equation (4)). Thus, the relative
motion between the vehicle and the desired moving path
occurs along the tangent

−→
t to the path. Note that by imposing

this goal to the kinematic path-following, the classical situation
of following paths that are fixed in space [32], [6], [7] is
included. Let ψp be the angle that parametrizes the rotation
matrix from {I} to {P} (thus, by definition ωd = ψ̇p) and
let ψ be the angle between the vehicle velocity vector and
the North direction. Additionally, let ψf be the yaw angle
that parametrizes the rotation matrix from {I} to {F}. The
angular displacement between the wind frame and the Serret-
Frenet frame is ψ̄ = ψ − ψf . Figure 1 shows the error space
for path following. Taking into account the last notation, the
UAV kinematic equations expressed in {I} are given by

ẋ = V cosψ

ẏ = V sinψ. (9)

ψ̇ = ω with ω ∈ [−ωmax, ωmax]

where ωmax represents the bound on the yaw rate, and rmin =
V

ωmax
is the minimum turning radius of the vehicle. Similarly,

the movement of the origin of the {P} frame is described by
the following kinematic equations in terms of the total speed
||vd|| and the yaw angle ψd

vdx = ||vd|| cosψd

vdy = ||vd|| sinψd. (10)

Therefore, equation (6) can be rewritten as[
0
ẏF

]
=

[
V cos ψ̄
V sin ψ̄

]
−
[

˙̀

0

]
− RF I (ψf )

([
vdx
vdy

]
+

[
0 −ωd
ωd 0

] [
∆x
∆y

])
−
[
− ˙̀ (κ(`) yF )− ωd yF

0

]
. (11)

Considering the case where the UAV will be flying at constant
altitude, the angular rate ψ̇ is related to the angular velocity
of the wind frame with respect to the inertial frame, expressed
in the wind frame through ωW

W = ψ̇.
For planar moving paths, it is straightforward to verify

that the relative angular velocity between {W} and {F} is



IEEE TRANSACTIONS ON ROBOTICS 5

related to the relative yaw angle rate ˙̄ψ, and therefore one can
conclude that (see also equation (7))

˙̄ψ = ψ̇ − κ(`) ˙̀− ωd . (12)

The previous result together with (11) gives the error kinematic
model for MPF

˙̀ =
V cos ψ̄ − (vdx − ωd ∆y) cosψf

1− κ(`) yF

−

(
vdy + ωd ∆x

)
sinψf − ωd yF

1− κ(`) yF
(13)

ẏF = V sin ψ̄ + (vdx − ωd ∆y) sinψf −
(
vdy + ωd ∆x

)
cosψf

˙̄ψ = ψ̇ − κ(`) ˙̀− ωd ,

where ψ̇ is the control variable for the kinematic controller.
It is assumed that 1− κ(`) yF 6= 0, which corresponds to the
vehicle not being exactly at the distance from the path point
pd (the closest path point to the vehicle - parametrized by `)
that corresponds to the inverse of the path’s curvature at that
point. For a method to avoid this singularity, please refer to
[1], [33].

The error space for MPF given by equation (13) will be
used in the sequel to derive the generic MPF control law for
planar paths.

B. MPF control law for planar paths

In this section, a generic MPF controller is derived and its
stability is proven. A simulation example is then presented to
illustrate the MPF method.

Figure 1 illustrates a MPF application example where a
UAV should follow a planar (horizontal) path moving with
linear velocity vd and angular velocity ωd with respect to an
inertial frame, keeping its altitude constant. Considering the
kinematic model (13), the steady state value ψ̄d for ψ can be
computed by setting ẏF = 0, which yields

ψ̄d = arcsin

(
− (vdx − ωd ∆y) sinψf +

(
vdy + ωd ∆x

)
cosψf

V

)
(14)

Note that the numerator of the arcsin argument is the sum
of the path-transport frame speed ‖vd‖ with the linear speed
‖vP ‖ of the origin of {F} along the normal to the path. In
order to ensure that equation (14) is always well defined, one
may have to introduce some restrictions on the chosen path’s
geometry or dynamics since it depends on the relation between
the path’s linear and angular velocities and also on the distance
between the origin of the path-transport frame and the Serret-
Frenet frame, given by

√
∆x2 + ∆y2. More specifically, from

(14), it must be ensured that

|ωd|
√

∆x2 + ∆y2 <
V − vd sin (ψd − ψf )

|sin
(
ψf + arctan

(
∆y
∆x

))
|

and

vd < V. (15)

Notice, for instance, that in the particular case where the path’s
angular velocity is equal to zero (ωd = 0 and vd 6= 0) it

Fig. 2. Relationship between the groundspeed vector, the airspeed vector and
the wind vector. Adapted from [34].

is enough to ensure that V > vd. Conversely, for the case
when the path only rotates around the origin of the path-
transport frame (ωd 6= 0 and vd = 0), one must ensure
that the distance between any path point Pd and its center of
rotation, i.e.

√
∆x2 + ∆y2, will always be smaller than V

|ωd| .
These particular cases provide an intuitive interpretation for
the conditions in (15). Additionally, a MPF control law should
drive the lateral distance yF and heading error ψ̃ = ψ̄− ψ̄d to
zero. Thus, considering equation (12), the steady state value
for the commanded yaw rate ψ̇ (obtained by setting ˙̃

ψ = 0)
will be

ψ̇ = ˙̄ψd + κ(`) ˙̀ + ωd . (16)

In order to take into account the vehicle kinematic constraints
|ω| < ωmax (see equation (9)), it is now straightforward to
conclude that condition

| ˙̄ψd + κ(`) ˙̀ + ωd | ≤ ωmax (17)

must also be ensured for the MPF problem to be always
well posed. This encompasses the classical path following
constraint where condition

|κ (`)| ≤ ωmax
V

must be verified for the path following problem to be well
posed. An illustration example is presented and discussed at
the end of this section (see Figure 3) in order to provide a
physical intuition for these results.

In order to avoid situations in which the UAV is required
to fly near its stall speed, it is desirable to keep the vehicle
airspeed (denoted by ‖V0‖) constant.1 Denoting the velocity of
the wind relative to {I} and expressed in {I} by vI wind , the
wind total speed by Wt = ‖ vI wind‖ and the wind direction
by χw (both assumed to be constant throughout the flight),
one can relate the airspeed vector V0 and the wind velocity

1Commercial autopilots usually accept airspeed references, expressed in the
vehicle body frame, assuming small angles of attack and small sideslip angles
with respect to the relative wind.
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vector vI wind with the UAV’s ground velocity (see Figure 2)
through [34]

V0 = RI W (ψ) vW
W − vI wind . (18)

Taking the squared norm of both sides of (18) and solving
the resulting quadratic equation for the ground speed V one
obtains

V =
√
‖V0‖2 +W 2

t (cos2 (ψ − χw)− 1) +Wt cos (ψ − χw) .

Considering the previous computations, the derivative of ψ̄d
with respect to time, that will be necessary in the sequel,
assuming that the autopilot is able to keep ‖V0‖ constant, is

˙̄ψd =
ρ

V

√
1−

(
−(vdx−ωd ∆y) sinψf+(vdy +ωd ∆x) cosψf

V

)2

−ψ̇ λ

V 2

√
1−

(
−(vdx−ωd ∆y) sinψf+(vdy +ωd ∆x) cosψf

V

)2
(19)

where

ρ =
(
−ψ̇f (vdx − ωd ∆y) + ω̇d ∆x+ ωd∆̂x

)
cosψf

+
(
−ψ̇f

(
vdy + ωd ∆x

)
+ ω̇d ∆y + ωd ∆̂y

)
sinψf

+ ||vd||ψ̇d cos (ψd − ψf ) + v̇d sin (ψd − ψf )

λ = V̂
(
− (vdx − ωd ∆y) sinψf +

(
vdy + ωd ∆x

)
cosψf )

)
with

∆̂x = ˙̀ cosψf − ωd ∆y

∆̂y = ˙̀ sinψf + ωd ∆x

V̂ = −Wt sin (ψ − χw)

 Wt cos (ψ − χw)√
‖V0‖2 +W 2

t (cos2 (ψ − χw)− 1)
+ 1

.
Equation (19) can be cast in the compact form

˙̄ψd = P − ψ̇Λ,

with

P =
ρ

V

√
1−

(
−(vdx−ωd ∆y) sinψf+(vdy+ωd ∆x) cosψf

V

)2

and

Λ =
λ

V 2

√
1−

(
−(vdx−ωd ∆y) sinψf+(vdy+ωd ∆x) cosψf

V

)2
,

where it can be shown that Λ 6= −1 under the conditions given
by equation (15). It is now possible to derive a control law to
drive the linear distance yF and heading error ψ̃ = ψ̄− ψ̄d to
zero. To that end, consider the control law

ψ̇ =
(
− g1 ψ̃ + κ (`) ˙̀ + ωd + P

− g2 yF (((vdx − ωd ∆y) sinψf

−
(
vdy + ωd ∆x

)
cosψf )

1− cos ψ̃

ψ̃

+ V cos ψ̄d
sin ψ̃

ψ̃
)
)
/(1 + Λ) (20)

and the Lyapunov function

V1 =
1

2

(
y2
F +

1

g2
ψ̃2

)
, (21)

where g1 and g2 are positive scalars assigning relative weights
between position and orientation errors. The following theo-
rem holds.

Theorem 1
Consider the MPF problem described by the UAV model (9)

in closed-loop with the control law (20), subject to (15) and
(17). Then, the closed-loop error signals ψ̃ and yF converge
to zero as t → ∞. Moreover, the origin of the closed-loop
error kinematic model is an exponentially stable equilibrium
point.

Proof
Convergence of the closed-loop errors to zero

Convergence of the errors to zero can be proved from
standard Lyapunov arguments using the Lyapunov function
(21) and the Barbalat lemma [35].

Differentiating V1 with respect to time yields

V̇1 = yF ẏF +
1

g2
ψ̃

˙̃
ψ

= V yF sin ψ̃ cos ψ̄d + V yF cos ψ̃ sin ψ̄d +

yF
(
(vdx − ωd ∆y) sinψf −

(
vdy + ωd ∆x

)
cosψf

)
+

1

g2
ψ̃
(

˙̄ψ − ˙̄ψd
)
. (22)

Since, by definition (cf. equation (14)),

V sin ψ̄d + (vdx − ωd ∆y) sinψf

−
(
vdy + ωd ∆x

)
cosψf = 0 (23)

the previous expression is equivalent to

V̇1 = V yF sin ψ̃ cos ψ̄d + 1
g2
ψ̃
(
ψ̇ (1 + Λ)− κ (`) ˙̀− ωd − P

)
+

yF

(
(vdx − ωd ∆y) sinψf −

(
vdy + ωd ∆x

)
cosψf

)(
1− cos ψ̃

)
.

The control law (20) with g1, g2 > 0 makes

V̇1 = −g1

g2
ψ̃2 6 0. (24)

Given the definition of V1 and the fact that V̇1 6 0, the errors
ψ̃ and yF are bounded. Computing the second derivative of V1

one can easily verify that the boundedness of the state variables
implies that V̇1 is uniformly continuous. Hence, Barbalat’s
lemma [35] allows for the conclusion that V̇1 and consequently
ψ̃ tend to zero as t→∞.
Rewritting (20) as

˙̃
ψ = −g1 ψ̃ − g2 yF ((vdx − ωd ∆y) sinψf (25)

−
(
vdy + ωd ∆x

)
cosψf ) 1−cos ψ̃

ψ̃
− g2 V yF cos ψ̄d

sin ψ̃

ψ̃
,

differentiating ˙̃
ψ with respect to time, and invoking the bound-

edness of the variables involved, one can conclude that ˙̃
ψ is

uniformly continuous. Applying once more Barbalat’s lemma
to conclude that ˙̃

ψ tends to zero, leads to the conclusion that
also yF tends to zero as t→∞.



IEEE TRANSACTIONS ON ROBOTICS 7

Local asymptotic stability
Under the proposed control law, the closed-loop error kine-

matic model is given by

ẏF = V sin
(
ψ̄d + ψ̃

)
+ (vdx − ωd ∆y) sinψf

−
(
vdy + ωd ∆x

)
cosψf

˙̃
ψ = −g1 ψ̃ − g2 yF

(
(vdx − ωd ∆y) sinψf

−
(
vdy + ωd ∆x

)
cosψf

) 1− cos ψ̃

ψ̃
− g2 V yF cos ψ̄d

sin ψ̃

ψ̃
,

(26)

which is a nonautonomous2 nonlinear system of the form ė =

f (t, e), where e =
[
yF ψ̃

]T
.

The Jacobian matrix A(t) = df
de (t, e) |e=0 is given by

A(t) =

[
0 V cos ψ̄d

−g2 V cos ψ̄d −g1

]
.

One can now propose a positive definite bounded matrix
P (t) = PT (t) that satisfies the Lyapunov equation

P (t)A(t) +AT (t)P (t) = −Q(t),

where Q(t) = QT (t) > 0 is a bounded matrix. In particular,
by setting

P (t) =

 g2 V
2 cos2 ψ̄d (g2 + 1) + g2

1

2 g1 g2 V 2 cos2 ψ̄d

1

2 g2 V cos ψ̄d
1

2 g2 V cos ψ̄d

g2+1
2 g1 g2


which is a positive definite bounded matrix for every positive
constants g1 and g2 > 0, one obtains

Q(t) = I2.

Thus, considering the following Lyapunov function

V2 = eT P (t) e,

its derivative is given by

V̇2 = −eT Q(t) e 6 − ‖ e ‖2,

and it is straightforward to conclude that under the proposed
control law, the origin of the closed-loop error kinematic
model (26) is an exponentially stable equilibrium point [35].
�

Figure 3 illustrates an example where a UAV flying at
‖V0‖ = V = 15m/s follows a moving straight line path
rotating around a fixed point p0 =

[
0 0

]
with an angular

velocity ωd = 0.025rad/s. The controller gains were set to
g1 = 1 and g2 = 0.002. By assigning a larger weight
to orientation errors when compared to position errors, a
smoother convergence to the reference paths is achieved. The
angle ψp between North and the straight line that connects
the origin of {I} with pd(`)

I at time instant t = 0s is zero
and increases as t increases, due to path’s angular velocity
ωd. For an observer fixed with the path-frame and standing at
the origin p0 looking towards the positive direction of −→x P ,
the UAV will be moving in a straight line with a decreasing

2Note that f (t, e) depends on the possibly time-varying variables vd and
ωd.

Fig. 3. Numerical simulation example: UAV following a moving straight line
that is rotating around a fixed point p0 =

[
0 0

]
with an angular velocity

ωd = 0.025rad/s.

forward speed as the distance between the origin of the path-
transport frame and the Serret-Frenet frame increases. From
equation (14) one can verify that this is due to the fact
that as

√
∆x2 + ∆y2 increases, the desired heading deviation

between the wind frame and the Serret-Frenet frame ψ̄d also
increases as the UAV needs to compensate for an increasing
normal component of vP with respect to the normal to the
path −→n . Thus, in this particular example, the straight line path
length is limited to be smaller than V

|ωd| = 600m (c.f. equation
(15)) in order to ensure that the MPF is well posed.

IV. SINGLE AND MULTIPLE TARGETS TRACKING PROBLEM
FORMULATION AS MPF

This section describes how the MPF formulation previously
presented can be applied to single and multiple targets tracking
problems.

A. Single target tracking
Application of the MPF control law to a single ground target

tracking scenario is straightforward. A given path with a pre-
defined geometry can be attached to the desired target (moving
together with it - with possible time varying linear and angular
velocities) and the control law given by equation (20) can be
used to make the UAV converge to and follow the moving
path. To illustrate this application, Figure 4 shows a numerical
simulation where a UAV flying at 20m/s airspeed is required
to track a target by following a lemniscate path that is moving
together with the target with 300m width, keeping the line
that connects the two foci always perpendicular to ψd (thus
ψ̇p = ψ̇d). The wind velocity Wt is set to 10m/s (blowing from
South) between 80 and 150 seconds (simulation time) and is
set to zero otherwise. The target was moving with time-varying
linear and angular velocities according to

(ptx , pty , ψt, ‖vt‖)|t=0 =(0m, 0m, 0, 4m/s)
‖v̇t‖ =0.2 sin (0.07 t) m/s2

ψ̇t =0.02 cos (0.03 t) rad/s (27)
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Fig. 4. Numerical simulation - aircraft’s trajectory following a target between
t=0s and t=200s.

Fig. 5. Numerical simulation - position and heading errors.

where vt corresponds to the target velocity and ψt is the target
heading. In order to attach the desired path to the target we set
the path fixed frame with p0|t=0 =

[
ptx pty

]
|t=0, vd = vt

and ψd = ψt.
The controller parameters used are listed in Table I.

TABLE I
NUMERICAL SIMULATION - CONTROLLER PARAMETERS.

g1 = 0.22 ωd = ψ̇d
g2 = 0.0002 ω̇d = ψ̈d = −0.0006 sin(0.03 t)

Figure 5 demonstrates the performance of the overall control
system. At time instants t = 80s and t = 150s a perturbation
on the distance and heading errors due to the imposed sudden
change on the wind velocity is observed. Later, in Section
V-B we present flight test results for a single target tracking
scenario, thus allowing a comparison between simulation and

Fig. 6. Dubins path: RS or LS.

experimental results.

B. Multiple targets tracking

Consider now the problem of assigning a desired path to a
vehicle that should visit a set of fixed targets whose positions
and visiting sequence are known. Assuming that the vehicle
and the target are initially at least 2 rmin apart, one strategy is
to use a Dubins path3 computed without specifying the course
angle at the end point [22]. Figure 6 illustrates this strategy
for path generation, given the start position ps = (xs, ys),
the initial course angle ψs, the minimum radius rmin and the
end position pe. For simplicity of notation, a curved segment
of radius rmin along which the vehicle executes a clockwise
maximum curvature rotational motion is denoted by R. L
denotes a maximum curvature rotation counterclockwise and
the segment along which the vehicle travels straight is denoted
by S. To choose from the RS and LS options, it is necessary
to compute the path length for these two cases depicted in
Figure 6. In particular, we have

dPi
= dSi

+ dCi
rmin (28)

where index i equals l or r for L or R curved segments
respectively, dCi

is the corresponding arc length and dSi
is

the distance along the straight line S.
As soon as the vehicle arrives at one of the targets, another

Dubins path towards the next target is computed using the
current course ψs and again without specifying the course
angle at the new target. This strategy can also be used with
moving targets, but in this case the Dubins path that connects
the last visited target and the next one will be changing over
time by taking into account the current target position, heading
and speed. More precisely, the idea is as follows:
• Compute the right and left Dubins path turning circles

given the vehicle’s current position ps and course angle
ψs (see Figure 6);

• From (28) select the curved segment with the minimum
path length and set it as the reference path until a criterion
(discussed in the sequel) to decide when to abandon the
right or left turn at the maximum turning rate and start
following a moving straight line that connects the current
vehicle position and the target’s position is met; and

3The shortest path that connects two points in the two-dimensional Eu-
clidean plane x−y, considering a constraint on the curvature of the path and
that the vehicle moves at constant speed.
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(a) Circular section. (b) Straight line section.

Fig. 7. Dubin’s path relevant parameters for moving targets, illustrating for
the right circular segment case.

• Switch from the current target to the next target when a
proximity condition (to be defined) is satisfied.

As in the fixed targets case, the circular section of the
generated path does not move. Consequently, the chosen circle
center ci and the angle ηs (between the line that connects ci to
the vehicle’s initial position, ps, and the −→x axis - see Figure
7) do not change over time (ċr = 0 and η̇s = 0). The proposed
criterion is to switch to a straight line when

ηvi ≥

{
〈2π − ηe + ηs〉 if i = l,
〈2π + ηe − ηs〉 if i = r

(29)

where ηe corresponds to the angle between the line that
connects ci to the boundary position pb (at which the straight
line should start to be followed) and the −→x axis and ηv is the
angular distance between ηs and the vehicle’s current position,
p (see Figure 7a). In (29), 〈η〉 , η mod 2π and mod is the
modulus operator that makes η ∈ [0 2π]. In this case, the arc
length of the chosen circular segment dCi

will be a function
of time because pe, ηe and pb can be time varying. Note that
the straight line segment will have a fixed initial position pb
and a moving end point pe solidary with the current target’s
position, which is similar to the MPF example discussed at
the end of Section III-B.

The angle ψp between this moving straight line and the −→x
axis can be computed through ψp = arctan

(
∆yt
∆xt

)
, where

(∆xt,∆yt) are the coordinates of the vector connecting pb to
pe in the inertial frame {I} (see Figure 7b). Its derivative is
given by

ψ̇p =
1

1 +
(

∆yt
∆xt

)2

∆ẏt ∆xt −∆yt ∆ẋt
∆x2

t

. (30)

Recalling the MPF problem formulation and the illustration
example discussed in Section III-B (see also Figure 3), it is
now possible to define the moving path Pd to be followed
for the case of the multiple target tracking. For the circular
segment, pd(`)

P components correspond to the circle para-
metric equations, p0 contains the circle center coordinates
and vd = ωd = 0 (thus corresponding to the classical
path following case). For the straight line segment, pd(`)

P

is formed by the straight line parametric equations, p0 = pb,

vd = 0 and ωd = ψ̇p. From equation (30), under the
assumption that the UAV and the target are initially at least
2 rmin apart, it can easily be shown that if the target’s speed
is always smaller than the UAV’s speed ‖vt‖ < V , then, the
conditions imposed by equations (15) and (17) always hold
(independently from the distance between the UAV and the
target for t > 0) and thus de MPF problem is always well
posed.

A rule must also be defined to switch from the current target
to the next target. To this end, consider the line perpendicular
to the vector that connects pb to the current target position
pe, that passes through the target position. This line divides
the plane in two half-planes, the half-plane Hb of the points
“behind the target” and the half-plane Ha of the points “after
the target” (see Figure 7). One approach is to make the vehicle
to switch to the next target when it enters the half-plane Ha.
This can be formalized as follows. Let−→n t be the unitary vector

−→n t = (cos ψp, sin ψp)

connecting pb to pe. The vehicle enters Ha when

(p− pe)T −→n t > 0. (31)

Algorithm 1 (in Appendix) summarizes the above described
strategy for a single vehicle to visit a group of moving targets
in a given order st.

Figure 8 shows a numerical simulation result where a UAV
moving at ‖V0‖ = V = 30m/s with minimum turning radius
rmin = 200m tracks three targets heading North at constant
speed ‖vt‖ = 15m/s in a pre-determined order (from target #1
to target #3) using Algorithm 1 to generate path parameters
and the MPF control law given by equation (20) to generate
its turn rate commands. Additionally, Figure 8 presents the
optimal trajectory (the one that minimizes the interception
time) that the autonomous vehicle should have adopted, if it
had a priori knowledge of the targets trajectories. Note that, in
the proposed algorithm, each subsequent optimal interception
point presented in Figure 8 is computed considering that
the starting position corresponds to the previous autonomous
vehicle true interception coordinates as detailed in Figure
9. From this observation, it can be inferred that we may
have an improvement of performance if the target’s heading
and velocity can be estimated to then obtain the expected
interception position. Algorithm 1∗ implements this idea. It
uses the same strategy as Algorithm 1 but now the estimated
target interception position is used as a “virtual target” instead
of the current target’s actual position (see Figure 10). A
detailed description of Algorithm 1∗ and formal convergence
conditions under which the vehicle reaches its moving target
are presented along with a perfomance metric (with respect to
the interception time) in Appendix.

V. FLIGHT TESTS

In this section we first present the flight test architecture
used to evaluate the MPF on real target tracking scenarios,
namely single and multiple targets tracking. Then, Section V-B
presents the field tests for the single target tracking scenario
and Section V-C presents the main test results for the case of
multiple targets.
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Fig. 8. Numerical simulation: an autonomous vehicle tracks three targets
heading North at constant speed using Algorithm 1 and the MPF control law
given by equation (20).

Fig. 9. Numerical simulation: optimal trajectory generation detail.

A. Flight test architecture

The ground target tracking algorithm was implemented and
tested on the ANTEX-X02 platform (see Figure 11 (a)). This
is one of the platforms built from scratch at the Portuguese
Air Force Academy Research Center (AFA) and available for
tests within the PITVANT4 and SEAGULL5 projects. The
main characteristics of ANTEX-X02 are listed in Table II.
The platform is equipped with a Piccolo II autopilot that
plays the role of an inner-loop controller that provides the

4http://www.emfa.pt/www/po/unidades/subPagina-10D00-
019.005.003.004-pitvant

5http://www.criticalsoftware.com/pt/seagull

Fig. 10. Illustration of a UAV intercepting a moving target, heading towards
its current estimated interception position.

(a) ANTEX-X02 (b) Ground station

Fig. 11. ANTEX-X02 and ground control station at flight test site.

required actuation signals for the UAV’s control surface’s
deflections and the engine power according to the UAV current
state that is inferred from the measurements of the on-board
sensors, and the reference signal that is transmitted by the
ground target tracking algorithm. The autopilot relies on a
mathematical model parameterized by the aircraft geometric
data and has a built-in wind estimator. Several model and
controller parameters can be set by the user [36]. In this
work, the parameters collected from more than 100 hours of
flight with the ANTEX-X02 were used. The proposed control

TABLE II
ANTEX-X02 - MAIN FEATURES.

Maximum takeoff weight 10kg
Wingspan 2.415m
Payload 4kg

Maximum Speed 100km/h
Autonomy 3h

algorithms for the UAV were implemented on a laptop (Com-
puter 2) connected to the Piccolo Command Center (running
on another computer - Computer 1) via an ethernet port to
receive the sensor data from the Piccolo autopilot and provide
the references to the aircraft as it is illustrated in Figure
12. Robot Operating System (ROS) software [37] was used
to establish a convenient communication interface between
these two computers. The targets coordinates were generated
according to a stochastic signal - see Section V-C - to simplify
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Fig. 12. Fligth test operation frame.

the test implementation6. Computer 2, after receiving the
sensors data from the Piccolo, computes and provides the
Piccolo Command Center (Computer 1) the control references
that are then sent to the Piccolo autopilot at a telemetry rate
of 2Hz. All flight data was monitored at the base station using
the Piccolo Command Center. High gain directional antennas
were used at the ground station (see Figure 11 (b)) in order
to reduce communications losses. The implemented control
system architecture for the multiple targets tracking flight test
is presented in Figure 21 and described in detail in Appendix.

Field tests were conducted at the Portuguese Air Force’s
UAV test facility, located at Ota, Portugal7. For the field tests,
a few safety measures were introduced. The bank reference
sent to the aircraft was limited to 20◦. The telemetry signals
from the aircraft were synchronized with the targets data and
then fed to the controller to compute the bank reference to
the aircraft. In the event of communications loss, the Piccolo
assumed the last bank reference for a maximum period of 5
seconds. After that period, the mission would be aborted and
the aircraft would be sent to a predefined lost-communication
waypoint.

B. Single target tracking

In this experiment, the goal was to make the UAV track a
ground vehicle by following a lemniscate centered at the target
position with a 300m width, keeping the line that connects
the two foci always perpendicular to ψt. The UAV was flying
at constant altitude - 200m above the ground - with 20m/s
commanded airspeed. The wind was blowing from south-east
with 3m/s average speed and the controller parameters were
set to g1 = 0.22 and g2 = 0.00012. The target trajectory
was emulated using the same parameters as in the numerical
simulation (cf. equations (27)).

The obtained qualitative behaviour of the UAV is similar
to the results presented for the numerical simulation. Figure
13 shows the overall UAV and target trajectories. The UAV,
target and path positions at sample time instants are also

6For the multiple target tracking scenario, the obtained target trajectories
were by construction similar to actual vessels trajectories at the Portuguese
coastline - https://www.marinetraffic.com/

7http://www.emfa.pt/www/po/unidades/subPagina-10D00-
019.001.003.010.003-infraestrutura-de-testes-de-uav

Fig. 13. Aircraft’s trajectory following a target on the ground (from t = 0s
to t = 250s).

Fig. 14. Commanded and actual bank for the single target tracking scenario.

presented. Figure 14 shows that the bank command and the
bank value are kept within the linear region. There is a non
negligible delay between the commanded bank and its actual
value thus decreasing system performance. However, distance
and angular errors plots in Figure 15 demonstrate the good
performance of the implemented control system.

C. Multiple targets tracking

In this case, the UAV was required to track four ground
vehicles 400m above the ground. During the flight test, the
wind was blowing from south-east with 7m/s average speed
and wind gusts of about 13m/s. The UAV airspeed reference
was set to 23m/s. The controller parameters for this flight test
were set to g1 = 0.15 and g2 = 0.00009.

Figure 16 shows the overall vehicle and targets trajectories.
Targets #1 and #2 started moving North (ψt|t=0 = 0rad) while
targets #3 and #4 started moving South (ψt|t=0 = πrad).
Targets sequenced order to be visited was predefined as
st = [1, 2, 3, 4]. All targets started moving at 3m/s (‖vt‖|t=0 =
3m/s). Both ‖v̇t‖ and ψ̇t were defined as stochastic signals
with a normal distribution, namely

‖v̇t‖ ∼ N (0, 0.05)

ψ̇t ∼ N (0, 0.03).

Distance and angular errors are depicted in Figure 17 showing
the good performance of the control strategy in the presence
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Fig. 15. Distance and heading errors for the single target tracking scenario.

Fig. 16. Aircraft’s trajectory following multiple targets on the ground.

of relatively high communication latency (see Figure 20). The
vertical lines indicate the time instants at which each target
interception has occurred.

The distances between the UAV and the current target at
each time of interception (where condition (31) is met) are
presented in Figure 19. The interception distances are always
below the UAV’s minimum turning radius, and thus it is
assumed that the current targets at the interception times were
always inside the on-board camera’s footprint (which typically
carry vision sensors that have footprints wider than 2 rmin).
The actual interception distance is mainly due to the delay
introduced by the pre-filter used to compute the current target’s
expected position (see Figure 21 - further details can be found
in Appendix). Figure 18 shows that the bank reference sent to
the aircraft was saturated for relatively long periods of time,
thus decreasing the system’s performance. This is particularly
noticeable at time instant t = 250s. However, the control
system proved to be sufficiently robust, tackling all these

Fig. 17. Distance and heading errors for the multiple targets tracking scenario.
The vertical lines indicate the time instants at which each target interception
has occurred.

Fig. 18. Commanded and actual bank for the multiple targets tracking
scenario.

situations that were not completely taken into account during
the control design.

VI. CONCLUSIONS

An error space for moving path following was presented, by
formally extending the classic path following algorithms to the
case of time varying paths in a two dimensional space. The
error space derived was used to design a kinematic ground
target tracking control law for an Unmanned Aerial Vehicle
(UAV) equipped with an autopilot that accepts references at
the kinematic level. An application was made to the problem
of tracking single and multiple targets on the ground using
a fixed wing UAV. Both single and multiple targets tracking
scenarios use the same MPF control law and the proposed
methods encompass the classical guidance strategies presented
in the literature. Formal convergence proofs and performance
metrics are provided and flight tests results demonstrate the ef-
fectiveness of the proposed methods. Future work will include
the flight test of the control law on-board the aircraft. Indeed,
system performance can be further improved when the control
law is implemented on-board the aircraft (with direct access
to the sensors data - allowing for higher control rates, which
otherwise are limited by bandwidth constraints). Additionally,
the problem of acquiring target’s information using passive
sensors should also be addressed. We foresee the use of an
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Fig. 19. Actual distance between UAV and current target at time of
interception for the multiple targets tracking scenario.

Fig. 20. Communications latency for the multiple targets tracking scenario.

Automatic Identification System (AIS) to track actual targets
(vessels) on the Portuguese coastline.
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Marques da Silva, former Captain of the Portuguese Air Force.
The authors are also in debt to every member of the SEAGULL
and PITVANT teams.

APPENDIX

This section provides a detailed description of Algorithm 1,
Algorithm 1∗ and the implemented control system architec-
ture. Formal convergence conditions under which the vehicle
reaches its moving target using Algorithm 1∗ are presented in
the sequel, along with a performance metric result.

A. Path generation Algorithm 1 and “virtual target” estima-
tion for Algorithm 1∗

The strategy for a single vehicle to visit a group of moving
targets in a given order st as proposed in Section IV-B is
summarized in Algorithm 1. Algorithm 1∗ implements the
idea of using the estimated target interception position as a
“virtual target” instead of the current target’s actual position
as in Algorithm 1 (see Figure 10). The estimated target
interception position for Algorithm 1∗ is computed as follows.

Let ‖vt‖ and ψt be the current target speed and course angle
respectively. Additionally, let pt0 be its current center of mass
coordinates. Thus, assuming that the target will keep moving
in a straight line at constant speed, its position after time ∆tt
will be

pt (∆tt) = pt0 + ‖vt‖ (cosψt, sinψt) ∆tt. (32)

ALGORITHM 1: Returns the path parameters for a single
vehicle to visit a group of moving targets in a given order.

Input: Vehicle start pose (p, ψ), sequenced target’s position
st = (t1, t2, . . . , tm) with tj =

(
xtj , ytj

)
, and path

constraints rmin.
Output: Minimal feasible path parameters (RS or LS).

Initialization: Set j = 1⇒ select first target;

while j 6 m⇒ vehicle hasn’t visited all the targets do
1. (p1, ψ1)← (p, ψ);
2. p2 ← tj ;
3. Compute the length of two possible paths (RS and LS)
between the vehicle’s current position p1 and p2:
{LRS , LLS};
4. Choose the path that has the minimum length:
L← arg min{LRS , LLS};

5. Compute and output chosen path parameters: ci, ηs, ηe,
ηv and dCi .

if 〈ηv〉i > dCi ⇒ vehicle has reached end of circular
section.

6. Set pb = p⇒ Set straight line start position.
while p 6∈ Ha ⇒vehicle hasn’t reached the end of

straight line do
7. Compute and output straight line segment path

parameters: pb, ψp, ψ̇p.
end

8. Set desired target as the next target ⇒ j ← j + 1;
9. Return to 1.

else
10. Return to 5.

end
end

Consequently, under the same assumption that the target will
keep moving in a straight line at constant speed, one can write
the autonomous vehicle’s total path length dPi (see equation
(28)) as a function of ∆tt as

dPi
(∆tt) = dSi

(∆tt) + dCi
(∆tt) rmin.

Hence, assuming that the vehicle moves with constant speed
V , the elapsed time between vehicle’s initial and final posi-
tions, ∆tv , can be obtained through

∆tv =
dPi

(∆tt)

V
. (33)

Note that if ∆tv = ∆tt = ∆t, it physically means that both
vehicle and target take the same time ∆t to reach their final
destinations, and thus, they arrive simultaneously to a given
“rendezvous” point at coordinates pe = pt (∆t). Variable ∆t
can be computed making ∆tv = ∆tt = ∆t and solving
equation (33) for ∆t. If the target moves at constant speed
‖vt‖ and heading ψt, the “virtual target” coordinates will be
kept constant and therefore the actual path travelled by the
vehicle will correspond to the optimal path.

For the general case of targets moving with time varying
velocity and/or heading (v̇t 6= 0, ψ̇t 6= 0) we propose
the following procedure that consists in filtering first the
“instantaneous” virtual target coordinates given by pt (∆t) -
see equation (32) - in order to obtain a filtered output of
pt (t) that will be sufficiently smooth with bounded derivatives,
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Fig. 21. Control system architecture.

and therefore it will play the role of a reference target to
comply with the MPF requirements. The filter was adopted
from [38] and consists of a cascade of two second-order non-
linear filters. The input of the first pre-filter is the output
position estimate of the target vehicle from pt (∆t), and the
output of the second pre-filter corresponds to the filtered target
interception position, p∗t (the input of the path generation
algorithm). The state space representation of each filter can
be written as

ẋ1 = a1 tanh (x2)
ẋ2 = a2 tanh (k1 u− k1 x1 − k2 x2)

(34)

where it is assumed that k1, k2, a1,and a2 are scalar positive
constants such that k2 a2 > k1 a1. By linearization, it is
straightforward to show that the pre-filter is locally input
to state stable. Invoking LaSalle’s Principle and using the
Lyapunov function given by

V =
1

2
e′

[
k21
k2 a2

k1
2 a2

k1
2 a2

k2
a2

]
e+

k1 a1

k2 a2
2

∫ e2

0

tanh (y) dy

where e = (e1, e2) := (x1 − u, x2), it can be proven that
for constant input commands (u̇ = 0), the equilibrium point
x1 = u, x2 = 0 is globally asymptotically stable [38]. Thus,
the filtered target interception position p∗t (t) will converge to
the “instantaneous” target interception position pt(t) if pt is
constant, otherwise it will stay close (depending on the rate
of pt).

The proposed strategy to intercept multiple targets behaves
similarly to the guidance strategies LOS and CB described in
Section I, depending on the commanded “look ahead distance”
for the virtual target position ‖vt‖∆t (cf. equation (33)). In
the case that ∆t is set to zero (and thus Algorithm 1 is
used) the proposed strategy is identical to the missile line of
sight guidance. Otherwise (when Algorithm 1∗ is used), the
system behaves similarly to the constant bearing guidance law
described in Section I.

B. Overall control architecture

The implemented control system architecture for the flight
test is presented in Figure 21 encompassing three stages:

1) From target and UAV pose updates, filter the estimated
interception position to ensure sufficiently smooth po-
sition estimates and boundedness of their derivatives.
Inputs:

a) UAV center of mass coordinates p =
[
x y

]T
and ground speed V ;

b) target’s current position pt0 , heading ψt, and speed
‖vt‖;

c) pre-filter parameters a1, a2, k1 and k2.
Output:

a) filtered target interception position estimate p∗t ,
heading ψ∗t , and speed ‖v∗t ‖.

2) Use the path generation algorithm to generate the time
varying (moving) path that connects the UAV’s current
position to the filtered target interception estimate;
Inputs:

a) UAV center of mass coordinates p =
[
x y

]T
,

course angle ψ, ground speed V and vehicle con-
straint rmin;

b) virtual target variables p∗t , ψ∗t , and ‖v∗t ‖ from
previous stage;

Output:
a) path parameters ci, ηs, ηe, pb, ψp and ψ̇p.

3) Use the MPF algorithm to allow the UAV to converge
to the current target.
Inputs:

a) UAV center of mass coordinates p =
[
x y

]T
,

course angle ψ, and ground speed V ;
b) path parameters ci, ψp, ψ̇p, ηs and ηe from previous

stage;
Output:

a) turn rate command ψ̇ to the UAV.

C. Convergence conditions

The next result concerns the conditions under which the
UAV reaches its moving target when navigating using Al-
gorithm 1∗ together with the MPF control law. Figure 10
presents the considered problem kinematics. It is assumed
that the target has limited speed 0 6 ‖vt‖ 6 Vtmax (where
Vtmax

is the assumed target’s maximum speed) and angular
velocity |ψ̇t|6 ψ̇tmax

(where ψ̇tmax
is the assumed target’s

maximum angular speed). Considering the general case were
the target moves with bounded time varying linear and angular
velocity, the virtual target position p∗t (t) output from the
implemented pre-filter (equation (34)) will also move with
bounded time varying linear and angular velocities. These
bounds are the same considered for the actual target, namely
0 6 ‖v∗t ‖ 6 Vtmax

and |ψ̇∗t | 6 ψ̇tmax
. Thus, the path’s straight

line segment that connects the fixed position pb to the virtual
target position p∗t may be moving with a given angular velocity
ψ̇p (see equation (30)). From Figure 10 it is straightforward
to verify that the desired heading deviation ψ̄d, (cf. Section
II) is

ψ̄d = arcsin

(
v∗t ⊥
V

)
,

where v∗t ⊥ is the normal component of v∗t with respect to the
straight line segment that connects pb to p∗t and thus one can
compute the upper bound for ψ̄d as

|ψ̄d| 6 arcsin

(
Vtmax

V

)
. (35)
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Additionally, from Figure 10 one can also verify that

V sin (ψp − ψ0) = vt sin (ψt − ψ0)

and thus, for any target’s orientation ψt, one can write a bound
for |ψp − ψ0| as

|ψp − ψ0| 6 arcsin

(
Vtmax

V

)
. (36)

The upper bounds in (35) and (36) will be used in the sequel.
Consider the proposed control system architecture and let ψ0

be the angle between the line of sight vector that connects
the UAV to the current target and the −→x axis, ψp be the angle
between the path’s straight line segment that connects the fixed
position pb to the virtual target position p∗t , and the −→x axis
(thus, in this particukar case, ψf = ψp), V be the UAV’s
ground speed, vt and ψt be the current target’s linear velocity
and heading, respectively, and finally let ψ̄d be the desired
heading deviation. The following theorem holds.

Theorem 2

The autonomous vehicle navigating under the MPF control
law reaches the moving target in finite time for any target
velocity and orientation when V > 2Vtmax .

Proof
From Figure 10 one can conclude that the relative closing

velocity between the robot and the target satisfies

ḋ = −V cos
(
ψp − ψ0 + ψ̄d

)
+ ‖vt‖ cos (ψt − ψ0) .

Note that, by definition, angle
(
ψp − ψ0 + ψ̄d

)
lies always

in the interval
]
−π2 ,

π
2

[
. Since the target has limited speed

0 6 ‖vt‖ 6 Vtmax
, for any target’s orientation ψt, one can

write
‖vt‖ cos (ψt − ψ0)

V
<
Vtmax

V
.

Additionally, if the following condition is met

cos
(
ψp − ψ0 + ψ̄d

)
>
Vtmax

V
, (37)

using the transitive property one obtains

cos
(
ψp − ψ0 + ψ̄d

)
>
‖vt‖ cos (ψt − ψ0)

V
,

which makes

ḋ = −V cos
(
ψp − ψ0 + ψ̄d

)
+ ‖vt‖ cos (ψt − ψ0) < 0.

Rewriting (37) yields the following convergence condition

|ψp − ψ0 + ψ̄d| < arccos

(
Vtmax

V

)
, (38)

which can be combined with (35) and (36) to obtain

2 arcsin

(
Vtmax

V

)
< arccos

(
Vtmax

V

)
. (39)

Thus, one can conclude that if V > 2Vtmax this inequality is
always satisfied and the robot will converge to the target in
finite time for any target’s speed or orientation. �

Fig. 22. Numerical simulation example: ratio between actual time for
interception and optimal time for interception.

D. Performance metric
To assess the performance of the proposed method, com-

putation of the optimal path (from current target to the
next target) can be achieved by an exhaustive a posteriori
search. For each interception it is possible to compute its
corresponding optimal path and compare the actual time for
interception using our proposed method with the optimal
time of interception (see Figure 22). Table III presents the
performance (in terms of average time for interception) of each
of the proposed methods (Algorithm 1 and Algorithm 1∗) with
respect to the optimal case. The parameters in Table III were
obtained from 500 Monte Carlo simulations. In each simula-
tion, the number of targets was randomly generated according
to a uniform distribution in the interval [3, 10]. Target’s initial
positions were also randomly generated according to a uniform
distribution over a squared area of 5000 × 5000m centred at
the origin of the inertial frame. Target’s sequence to be visited
was taken to be the same as the target’s generation order. All
targets started moving at 3m/s (‖vt‖|t=0 = 3m/s) with random
heading (ψt|t=0) according to a uniform distribution in the
interval ]−π, π[. Both v̇t and ψ̇t were defined as stochastic
signals with a normal distribution with a predefined mean and
standard deviation, namely

‖v̇t‖ ∼ N (0, 0.05)

ψ̇t ∼ N (0, 0.03)

and the target’s speed ‖vt‖ was limited to the interval [0, 8]
[m/s]. Each simulation lasted 500 seconds and the UAV
constant airspeed was chosen to be ‖V0‖ = 25m/s. The
performance metrics values presented in Table III for the
proposed method were computed through

1

500

500∑
i=1

ni∑
j=1

1

ni

t
j|i

toptj|i

where ni is the total number of target interceptions at simula-
tion i, t

j|i is the jth interception time at simulation i and toptj|i
is the corresponding optimal time for interception obtained
from a posteriori computations.

TABLE III
PROPOSED METHODS PERFORMANCE METRICS.

Algorithm 1 Algorithm 1∗

(%)topt 99.49 99.80

From Table III one can verify that, as previously argued,
Algorithm 1∗ improves Algorithm’s 1 performance. Finally,
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since the proposed MPF algorithm behaves similarly to a mis-
sile guidance algorithm (considering multiple targets tracking
applications), it is possible to arguably infer that the vehicle
using the proposed method for multiple targets tracking ap-
plications will intercept the current target with a performance
similar to the classical missile guidance algorithms described
in [25].
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