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Abstract

This paper addresses the problem of position tracking for
underactuated autonomous vehicles moving in either two or
three-dimensional space. A nonlinear tracking controller is
proposed for a general class of vehicles that yields global
stability and exponential convergence of the position track-
ing error to a neighborhood of the origin that can be made
arbitrarily small. The desired trajectory does not need to be
of a particular type (e.g., trimming trajectories) and in fact
can be any sufficiently smooth bounded curve parameter-
ized by time. The control algorithm proposed builds upon
Lyapunov techniques. To illustrate its potential, we describe
two vehicle control applications: an hovercraft (moving on a
planar surface) and an underwater vehicle (moving in three-
dimensional space). Simulation results are presented and
discussed.

1 Introduction

Over the past two decades, there has been a considerable
research effort in the area of trajectory tracking for nonlin-
ear autonomous vehicles. Trajectory tracking problems are
concerned with the design of control laws that force a vehi-
cle to reach and follow a time parameterized reference (i.e.,
a geometric path with an associated timing law). The de-
gree of difficulty involved in solving this problem is highly
dependent on the configuration of the vehicle. For fully ac-
tuated systems, the trajectory tracking problem is now rea-
sonably well understood [17, 13, 22].

For underactuated vehicles,i.e., systems with a smaller
number of control inputs than the number of independent
generalized coordinates [12, 27], trajectory tracking is still
an active research topic. The study of these systems is mo-
tivated by the fact that it is usually costly and often not even
practical (due to weight, reliability, complexity, and effi-
ciency considerations) to fully actuate autonomous vehicles.
Typical examples of underactuated systems include robotic
manipulators, wheeled robots, walking robots, spacecraft,
aircraft, helicopters, missiles, surface vessels, and underwa-
ter vehicles. The tracking problem for underactuated vehi-
cles is especially challenging because most of these systems
are not fully feedback linearizable and exhibit nonholo-
nomic constraints, therefore standard tools used to control
nonlinear systems—such as feedback linearization and inte-
grator backstepping—are not directly applicable. See [20]
for a survey of these concepts and [6] for a framework
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to study the controllability and the design of motion algo-
rithms for underactuated Lagrangian systems on Lie groups.

The classical approach for trajectory tracking of underac-
tuated vehicles utilizes local linearization and decoupling
of the multi-variable model to steer the same number of
degrees of freedom as the number of available control in-
puts, which can be done using standard linear (or nonlinear)
control methods. Canudas de Wit et al. [7] and Fossen [9]
contain surveys of various trajectory tracking control design
methods for mobile robots and ocean vehicles, respectively.
Alternative approaches include the linearization of the ve-
hicle error dynamics about trajectories that lead to a time-
invariant linear system (also known as trimming trajecto-
ries) combined with gain scheduling and/or Linear Parame-
ter Varying (LPV) design methodologies [24, 14, 25, 21].
The basic limitation of these approaches is that stability
is only guaranteed in a neighborhood of the selected op-
erating points. Moreover, performance can suffer signifi-
cantly when the vehicle executes maneuvers that emphasize
its nonlinearity and cross-couplings.

Nonlinear Lyapunov-based designs can overcome some of
the limitations mentioned above. Several examples of non-
linear trajectory tracking controllers for marine underactu-
ated vehicles have been reported in the literature [11, 18,
26, 19, 3, 4]. Godhavn [11] proposed a backstepping-based
continuous time-invariant state-feedback control law for an
underactuated surface vessel. The control law provides ex-
ponential position tracking, as long as saturation of the in-
puts is avoided and the vehicle surge velocity is nonzero.
However, Godhavn’s approach requires the ship to move
along straight lines or arcs of circles to guarantee stable
zero dynamics for the nonlinear system. Toussaint et al. [26]
extended this approach to design a trajectory tracking con-
troller for a nonminimum phase underactuated surface ves-
sel. As in [11], the desired trajectory is restricted to straight
lines and circles and it is assumed that the ship is always in
motion. Pettersen and Nijmeijer [18] consider the kinemat-
ics of a surface vehicle and design a time-varying control
law for the surge and yaw inputs. Under this controller, the
errors in position and orientation with respect to a reference
trajectory of constant curvature is practically globally expo-
nentially stabilized to zero. The control law in [18] does not
require nonzero desired linear velocity.

Typically, tracking problems for autonomous vehicles are
solved by designing control laws that make the vehicles
track pre-specified feasible “state-space” trajectories,i.e.,
trajectories that specify the time evolution of linear and an-
gular positions and velocities that are consistent with the
vehicles’ dynamics (e.g. [18, 15, 10, 19, 4]). This ap-
proach suffers from the drawback that usually the vehicles’

1



dynamics exhibit complex nonlinear terms and significant
uncertainty that make the task of computing a feasible tra-
jectory hard. Fortunately, in practical applications one often
only needs to track the desired position making it possible
to bypass the computation of feasible state-space trajecto-
ries. This is the approach followed here. This type of ap-
proach was also considered by Alonge et al. [3] in the con-
text of underactuated underwater vehicles, where conditions
for asymptotic tracking are provided and an observer of the
marine current is also proposed.

Motivated by the above considerations, this paper addresses
the problem of position tracking of underactuated vehicles
in both two and three-dimensional spaces. The main con-
tribution is a design methodology to construct a nonlinear
tracking controller that yields global stability and exponen-
tial convergence of the position tracking error to a neigh-
borhood of the origin that can be made arbitrarily small.
Furthermore, the desired trajectory does not need to be
a trimming trajectory and can be any sufficiently smooth
time-varying bounded curve, including the degenerate case
of a constant trajectory (set-point). The control algorithm
proposed builds on iterative Lyapunov-based techniques, in
particular, integrator backstepping [16, 23]. The class of ve-
hicles for which the design procedure is applicable is quite
general and includes any vehicle modeled as a rigid-body
moving in an ideal fluid, subject to a controlled force and
two or three independent control torques.

Contrary to most of the approaches described above, the
controller proposed does not suffer from geometric singu-
larities due to the parameterization of its rotation matrix.
This is possible because the attitude control problem is for-
mulated directly in the group of rotationsSO(3). The liter-
ature on designing tracking control laws for underactuated
vehicles directly in the configuration manifold (avoiding in
this way geometric singularities) is relatively scarce. Note-
worthy examples include [5, 10]. Bullo [5] describes a pro-
cedure to exponentially stabilize relative equilibria of me-
chanical systems. Relative equilibria for systems in three
dimensional Euclidean space include straight lines, circles,
and generic helices. Frazzoli et al. [10] propose a trajectory
tracking control design for an autonomous helicopter using
a backstepping algorithm.

2 Problem Statement

Consider an underactuated vehicle modeled as a rigid body
subject to external forces and torques. Let{I} be an in-
ertial coordinate frame and{B} a body-fixed coordinate
frame whose origin is located at the center of mass of the
vehicle. The configuration(R, p) of the vehicle is an ele-
ment of the Special Euclidean groupSE(3) := SO(3)×R3,
whereR∈ SO(3) := {R∈ R3×3 : RR′ = I3,det(R) = +1} is
a rotation matrix that describes the orientation of the vehi-
cle by mapping body coordinates into inertial coordinates,
and p ∈ R3 is the position of the origin of{B} expressed
in {I}. Let S : R3 → so(3) := {M ∈ R3×3 : M′ = −M} be
the map that assigns to a vectorx = (x1,x2,x3)′ ∈ R3, the

3×3 skew-symmetric matrixS(x) =
[

0 −x3 x2
x3 0 −x1
−x2 x1 0

]
. Denot-

ing the linear and angular velocities of the vehicle relative
to {I} expressed in{B} by v∈R3 andω∈R3, respectively,

the following kinematic relations apply

ṗ = Rv, (1a)

Ṙ= RS(ω). (1b)

We consider here the class of underactuated vehicle models
with dynamic equations of motion of the following form:

M v̇ =−S(ω)Mv+ fv(v,ω,R)+g1u1, (2a)

Jω̇ =−S(v)Mv−S(ω)Jω+ fω(v,ω,R)+G2u2, (2b)

whereM ∈ R3×3 andJ ∈ R3×3 denote constant symmetric
positive definite mass and inertia matrices;u1 ∈ R andu2 ∈
R3 denote the control inputs, which act upon the system
through a constant nonzero vectorg1 ∈ R3 and a constant
nonsingular matrixG2∈R3×3, respectively; andfv(v,ω,R),
fω(v,ω,R) represents all the remaining forces and torques
acting on the body. For the special case of an underwater
vehicle,M andJ also includes the so-called hydrodynamic
added-massMA and added-inertiaJA matrices, respectively,
i.e., M = MRB+MA, J = JRB+JA, whereMRB andJRB are
the rigid-body mass and inertia matrices, respectively.

The problem considered in this paper can be stated as fol-
lows:

Consider the class of underactuated vehicles represented by
equations(1)-(2) and letpd : [0,∞)→ R3 be a given three-
times continuously differentiable bounded time-varying de-
sired trajectory. Design a controller such that all the closed-
loop signals are globally bounded and the tracking error
‖p− pd‖ converges exponentially fast to a neighborhood of
the origin that can be made arbitrarily small.

The following assumptions are assumed to hold:

Assumption 1 The functionfv(v,ω,R) is affine inω, i.e.,

fv(v,ω,R)= fv1(v,R)+ fv2(v,R)ω, ∀v,ω∈R3, R∈SO(3).

Assumption 2 There exists a vectorδ ∈ R3 such that for
everyt ≥ 0,v∈ R3,R∈ SO(3), the following matrix is full-
rank

B(R,v, ṗd,δ) := [g1 S(Mδ)+Γ(R,v, ṗd)] ∈ R3×4 (3)

where
Γ(R,v, ṗd) := S(MR′ ṗd)−MS(R′ ṗd)+ fv2(v,R). (4)

These assumptions seem to hold for a large class of vehicle
models, which includes the Hovercraft and the underwater
vehicles discussed in Section 5.

3 Controller Design

This section proposes a nonlinear control law to solve the
tracking problem. For the sake of clarity, control-Lyapunov
functions are introduced recursively borrowing from the
techniques of backstepping [16].

Step 1.Coordinate transformation

Consider the global diffeomorphic coordinate transforma-
tion

e := R′(p− pd),

which expresses the tracking errorp− pd in the body-fixed
frame. The dynamic equation for the tracking errore is
given byė=−S(ω)e+v−R′ ṗd.
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Step 2.Convergence ofe

We start by defining the control-Lyapunov function

V1 :=
1
2

e′e

and computing its time derivative to obtain

V̇1 = e′[v−R′ ṗd]. (5)

We can regardv as a virtual control that one would like to
use to makeV̇1 negative. This could be achieved,e.g., if
we could setv equal toR′ ṗd− keM−1e, for some positive
constantke. To achieve this we introduce the error variable

z1 := v−R′ ṗd +keM−1e, (6)

that we would like to set to zero, and re-write (5) asV̇1 =
−kee′M−1e+e′z1.

Step 3.Backstepping forz1

After straightforward algebraic manipulations, we conclude
that the dynamic equation for the errorz1 can be written as

M ż1 = S(Mz1)ω+Γ(R,v, ṗd)ω+g1u1 +h(e,R,v,z1, p̈d),

whereΓ is defined in (4) and

h(e,R,v,z1, p̈d) := fv1(v,R)−MR′ p̈d +kez1−k2
eM−1e.

It turns out that it will not always be possible to drivez1
to zero. Instead, we will drivez1 to the constantδ in As-
sumption 2. To achieve this we defineϕ := z1−δ as a new
error variable that we will drive to zero and consider the
augmented control-Lyapunov function

V2 :=
1
2

e′e+
1
2

ϕ′M2ϕ = V1 +
1
2

ϕ′M2ϕ

The time derivative ofV2 can be written as

V̇2 =−kee′M−1e+e′δ+ϕ′(MB(R,v, ṗd,δ)µ (7)

+Mh(e,R,v,z1, p̈d)+e),

whereB is defined in (3) andµ := [u1 ω′]′ ∈ R4. One can
now regardµ as a virtual control (actually its first compo-
nent is already a “real” control) that one would like to use to
makeV̇2 negative. This could be achieved,e.g., if one could
setµ equal to1

α := B ′(BB ′)−1(−h(e,R,v,z1, p̈d)−M−1e−M−1Kϕϕ
)
,

whereKϕ ∈ R3×3 is a symmetric positive definite matrix.
To achieve this we setu1 to be equal to the first entry ofα,
i.e.,

u1 = [1 01×3 ]α, (8)

introduce the error variablez2 := ω− [03×1 I3×3 ]α that one
would like to set to zero, and re-write (7), withu1 given by
(8), as

V̇2 =−kee′M−1e+e′δ−ϕ′Kϕϕ+ϕ′MBb(R,v, ṗd,δ)z2

1We recall thatBB ′ is nonsingular because of Assumption 2.

whereBb ∈R3×3 denotes the sub-matrix formed by the last
three columns ofB, i.e.,

Bb(R,v, ṗd,δ) := S(Mδ)+Γ(R,v, ṗd) ∈ R3×4

Step 4.Backstepping forz2

Consider now a third control-Lyapunov function given by

V3 :=
1
2

e′e+
1
2

ϕ′M2ϕ+
1
2

z′2Jz2 = V2 +
1
2

z′2Jz2. (9)

Computing its time derivative one obtains

V̇3 =−kee′M−1e+e′δ−ϕ′Kϕϕ+

+z′2
(
G2u2−S(v)Mv−S(ω)Jω+ fω(v,ω,R)

− [03×1 J ] α̇+Bb(R,v, ṗd,δ)′Mϕ
)
.

For simplicity we did not expand the derivative ofα. If we
then choose

u2 = G−1
2

(
S(v)Mv+S(ω)Jω− fω(v,ω,R)

+ [03×1 J ] α̇−Bb(R,v, ṗd,δ)′Mϕ−Kz2z2

)
,

(10)

the time derivative ofV3 becomes

V̇3 =−kee′M−1e+e′δ−ϕ′Kϕϕ−z′2Kz2z2. (11)

Note that althougḣV3 is not necessarily always negative,
this will be sufficient to achieve practical stability.

4 Stability analysis

In this section, we prove that the control signals defined
above are well defined, bounded, and that the tracking error
converges exponential to an arbitrarily small neighborhood
of the origin. The following is the key result of this paper.

Theorem 1 Given a three-times continuously differentiable
bounded time-varying desired trajectorypd : [0,∞) → R3,
consider the closed-loop systemΣ consisting of the under-
actuated vehicle model(1)-(2) and the feedback controller
(8), (10).

i) For any initial condition the solution toΣ exists glob-
ally, all closed-loop signals are bounded, and the
tracking error‖p(t)− pd(t)‖ satisfies

‖p(t)− pd(t)‖ ≤ e−λtc0 + ε, (12)

whereλ,c0,ε are positive constants. From these, only
c0 depends on initial conditions.

ii) By appropriate choice of the controller parameters
ke,Kϕ,Kz2, any desired values forε andλ in (12) are
possible.

Proof: To prove (i) we use Young’s inequality to conclude
that for anyγ > 0,

V̇3 ≤−e′
(

keM−1− γ
2

I
)

e−ϕ′Kϕϕ−z′2Kz2z2 +
1
2γ
‖δ‖2. (13)
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Suppose now that we chooseγ sufficiently small so that the
matrixkeM−1− γ

2I is positive definite. In this case, we con-
clude that there is a sufficiently small positive constantλ
such that

V̇3 ≤−λV3 +
1
2γ
‖δ‖2, (14)

and therefore it is straightforward to conclude from the
Comparison Lemma that

V3(t)≤ e−λtV3(0)+
1

2λγ
‖δ‖2, (15)

along solutions toΣ. From here we conclude that all signals
remain bounded and therefore the solution exists globally.
Moreover,V3 converges to 1

2λγ‖δ‖2 and therefore‖e‖ con-

verges to a ball of radius‖δ‖√
λγ

, because of (9).

To prove (ii), we show next that it is actually possible to
make the radius‖δ‖√

λγ
as small as we want by appropriately

choosing the controller parameters. To this effect, suppose
we pick a desired radiusε and a convergence rateλ > 0. We

can then defineγ := ‖δ‖2

ε2λ , provided that we chooseke suffi-

ciently large so thatkeM−1− γ
2I = keM−1− ‖δ‖2

2ε2λ I ≥ λ
2 I > 0.

If we then selectKϕ := λ
2M2, Kz2 := λ

2J, we conclude from
(13) that (14) indeed holds for the pre-specifiedλ, from
which (15) follows. However, now the above choices for
the parameters lead to the desired radius‖δ‖√

λγ
= ε.

Remark 1 We did not impose any constraints on the de-
sired trajectory (besides being sufficiently smooth and its
derivative being bounded) and we also did not require that
the linear velocity of the vehicle to be always non-null. Con-
sequently,pd(t) can be an arbitrary trajectory (which does
not need to satisfy the dynamic model of the vehicle) and
in particular can be constant for allt ≥ t0. In that case, the
controller solves the position regulation problem.

5 Illustrative examples

This section illustrates the designs techniques and the stabil-
ity results presented so far. We describe two vehicle control
applications: an hovercraft (moving on a planar surface) and
an underwater vehicle (moving in three-dimensional space).
Simulation results are presented and discussed.

5.1 Example 1. Position tracking of an underactuated
Hovercraft
Consider the vehicle described in [8] consisting of a plat-
form mounted on three low-friction, omni-directional cast-
ers, over which are attached two high-performance ducted
fans. Letp = (x,y)′ ∈R2 be the Cartesian coordinate of the
vehicle’s center of mass andθ ∈ S1 its orientation. Assum-
ing that the friction forces and moments can be modeled by
viscous friction, the equations of motion are [8]:

mẍ =−dvẋ+(Fs+Fp)cosθ
mÿ =−dvẏ+(Fs+Fp)sinθ
Jθ̈ =−dωθ̇+ l(Fs−Fp)

where m = 5.5kg is the mass of the vehicle andJ =
0.047Kgm2 is the rotational inertia. The starboard and port-
board fan forces are denotedFs and Fp, respectively, and
l = 0.123m denotes the moment arm of the forces where
the geometry and mass centers of the vehicle are assumed
to coincide. See [8] for details. The coefficient of viscous
friction, dv, is 4.5 and the coefficient of rotational friction,
dω, is 0.41.

Expressing the equations of motion in the body fixed frame,
yields

ṗ = R(θ)ν
θ̇ = ω

Mν̇ =−S(ω)Mν−Dνν+g1u1

Jω̇ =−dωω+u2

whereν = (u,v)′ denotes the body-fixed linear velocities in
surge and sway,S(ω) =

(
0 −ω
ω 0

)
, R(θ) =

(
cosθ −sinθ
sinθ cosθ

)
, M =

diag{m,m}, Dν = diag{dv,dv}, g1 = (1,0)′, u1 = Fs + Fp,
andu2 = l(Fs−Fp).

SinceM = mI, it follows thatΓ(·) given by equation (4) is
zero. Notice also thatDν > 0. This will be exploited shortly.
Following the general procedure presented in Section 3, the
time derivative ofV2 is given by

V̇2 =−ke

m
‖e‖2 +e′δ−ϕ′MDνϕ+ϕ′[MBµ+e+Mh(·)],

whereδ = (δ1,δ2)′ ∈R2, ϕ = z1−δ, z1 = ν−R′(θ)ṗd + ke
me,

B =
(

1 −mδ2
0 mδ1

)
, µ = (u1,ω)′, andh(·) = −Dν[δ + R′ ṗd −

ke
me]−MR′ p̈d + kez1− k2

e
me. Clearly, the matrixB is non-

singular for anyδ1 non zero. Therefore, choosingα =
−B−1[M−1e+ h(·) + M−1Kϕϕ], u1 = [1,0]α, z2 = ω −
[0,1]α, u2 =−B ′

bMϕ+dωα2+Jα̇2−kz2z2, where the2×2
symmetric matrixKϕ is positive definite, andBb denotes the
second column ofB, we get

V̇3 =−ke

m
‖e‖2 +e′δ−ϕ′DνMϕ−ϕ′Kϕϕ−dωz2

2−kz2z2
2

which suffices to achieve practical stability.

Simulation results: We now illustrate the performance of
the proposed control scheme through computer simulation.
The objective is to force the hovercraft to track the “virtual”
kinematic unicycle vehicle

ẋd = ud cosθd, ẏd = ud sinθd, θ̇d = ωd,

which starts with the posexd(t0) = yd(t0) = θd(t0) = 0
and moves with velocitiesud(t) = 0.2m/s and ωd(t) =
0.1rad/s. The initial conditions for the hovercraft are
(x,y,θ,u,v,ω) = (−0.2m,−1m,0,0,0,0). The control pa-
rameters were selected as follows:ke = 0.4, Kϕ = 2I ,
kz2 = 2, andδ = (−0.05,0)′. Figure 1 depicts the reference
and hovercraft trajectories in thexy-plane. As expected, the
hovercraft converges to a neighborhood of the ”virtual” uni-
cycle vehicle. Figure 2 shows the time evolution of some
relevant variables. Notice that the desired trajectorypd can
be any arbitrary sufficiently smooth bounded trajectory and
that we are not imposing any other constraints such as,e.g.,
that the desired trajectory must satisfy the dynamic model
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of the vehicle. Consequently, the vehicle generally will not
be aligned (in steady-state) with the direction of the tangent
velocity of pd as it can be seen in Figure 1 together with
Figure 2. Therefore, contrary to what happen in the field of
wheeled mobile robots (where it is assumed that the lateral
drag coefficientdv = +∞) we can not forceθ to converge to
the direction of the tangent velocitypd.
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Figure 1: Trajectories of the hovercraft and reference for
a ”virtual” unicycle vehicle in thexy-plane. Ini-
tial conditions for the hovercraft:(x,y,θ,u,v,ω) =
(−0.2m,−1m,0,0,0,0); and initial pose for the ”vir-
tual” unicycle vehicle:xd = yd = θd = 0.
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Figure 2: Time evolution of (a) linear velocity inx-direction, in

y-direction, and angular velocityω(t); and (b) tracking
error inx-direction, iny-direction, and̃θ = θ−θd.

5.2 Example 2. Position tracking of an underwater ve-
hicle in 3-D space
Consider an ellipsoid shape underactuated autonomous un-
derwater vehicle (AUV) not necessarily neutrally buoyant.
Let {B} be a body-fixed coordinate frame whose origin is
located at the center of mass of the vehicle. Suppose that
we have available a pure body-fixed control forceτu in the
xB direction, and two independent control torquesτq andτr
about theyB andzB axes of the vehicle, respectively. The
following notation is used [9]:

p = [x,y,z]′ - position of the origin of{B} measured in
{I}.

R ∈ SO(3) - rotation matrix that describes the orienta-
tion of {B} with respect to{I}.

ν1 = [u,v,w]′ - linear velocity of the origin of{B} rela-
tive to {I}, expressed in{B} (i.e., body-fixed linear
velocity).

ν2 = [p,q, r]′ - angular velocity of{B} relative to{I},
expressed in{B} (i.e., body-fixed angular velocity).

rB = [rxB, ryB, rzB]′ - position of the center of buoyancy
measured in{I}.

The kinematics and dynamics equations of motion of the
vehicle can be written as

ṗ = Rν1,

Ṙ= RS(ν2),
M ν̇1 =−S(ν2)Mν1−Dν1(ν1)ν1−g1(R)+B1u1,

Jν̇2 =−S(ν1)Mν1−S(ν2)Jν2−Dν2(ν2)ν2−g2(R)+B2u2,

where M = diag{m11,m22,m33}, J = diag{J11,J22,J33},
u1 = τu, u2 = (τq,τr)′, Dν1(ν1) = diag{Xu + X|u|u|u|,Yv +
Y|v|v|v|,Zw +Z|w|w|w|}, Dν2(ν2) = diag{Kp +K|p|p|p|,Mq +

M|q|q|q|,Nr + N|r|r |r|}, B1 =
(

1
0
0

)
, B2 =

(
0 0
1 0
0 1

)
, g1(R) =

R′
(

0
0

W−B

)
, g2(R) = S(rB)R′

(
0
0
B

)
. The gravitational and

buoyant forces are given byW = mgandB = ρg∇, respec-
tively, wherem is the constant mass,ρ is the mass density
of the water and∇ is the volume of the displaced water.
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Figure 3: Vehicle trajectory in 3-D space. The desired trajec-
tory is a helix and the initial conditions of the AUV are
(x,y,z) = (15m,5m,0), R= I , andν1 = ν2 = 0.

In this example the time derivative ofV2 yields

V̇2 =−kee
′M−1e+e′δ−ϕ′Dν1M(ν1)ϕ

+ϕ′[MBµ+M(Γa−Sa(δ))p+e+Mh(·)],
whereΓa andSa(δ) denote the first columns of the matrices
Γ andS(δ), respectively,µ = [u1,q, r]′, δ = (δ1,δ2,δ3)′ ∈
R3, and h(·) = −Dν1(ν1)[δ + R′ ṗd − keM−1e]− g1(R)−
MR′ p̈d +kez1−k2

eM−1e. The terms associated with the an-
gular velocityp were moved out of the matrixB since the
vehicle is not directly actuated in roll. Thus,

B =

(
1 −(m33−m11)a3 +δ3 (m22−m11)a2−δ2
0 0 −(m11−m22)a1 +δ1
0 (m11−m33)a1−δ1 0

)
,

where a = (a1,a2,a3)′ := R′ ṗd. It is straightforward to
show thatB is nonsingular for anyδ1 ≥ |a1|max(|m11−
m22|, |m11−m33|). Notice that|a1| ≤ ‖ṗd‖, which it is as-
sumed to be bounded.

Simulation results: To illustrate the performance of the
tracking control algorithm, computer simulations were car-
ried out with a model of theSireneAUV assuming that the
vehicle is directly actuated in force in thexB direction (con-
trol variableτu), and in torque about theyB and zB axes,
(controls τq and τr ), respectively. The vehicle dynamic
model can be found in [2]. See also [1], for complete de-
tails.

Figure 3 displays the resulting vehicle trajectory in the 3D-
space for the helix desired trajectorypd(t) = [v1cos(2π

T (t−
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t0)),v1sin(2π
T (t−t0)),v2(t−t0)]′, with v1 = 20, v2 = 0.1and

T = 100. The initial conditions of the AUV are(x,y,z) =
(15m,5m,0), R= I , andν1 = ν2 = 0. The control param-
eters were selected as follows:ke = m0.1, Kϕ = I , Kz2 = I ,
ε = 0.5, andδ = (−2max(|m11−m22|, |m11−m33|),0,0)′.
Figure 4 shows the time evolution of the tracking errore,
the Euler angles (computed fromR∈ SO(3)), and the time
evolution of the linear and angular velocities. The damped
oscillatory behavior of pitch and roll are due to the gravita-
tional and buoyancy forces.
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Figure 4: Time evolution of (a) tracking errore = (ex,ey,ez)′;

(b) roll φ, pitch θ, yaw ψ Euler angles; (c) body-fixed
linear velocitiesu(t), v(t), andw(t); and (d) body-fixed
angular velocitiesp(t), q(t), andr(t).

6 Conclusions

We proposed a solution to the position tracking problem for
underactuated autonomous vehicles moving in either two
or three-dimensional spaces. The control algorithm derived
builds upon Lyapunov techniques and it was shown to yield
global stability and exponential convergence of the position
tracking error to a neighborhood of the origin that can be
made arbitrarily small. The desired trajectory does not need
to be of a particular type (e.g., trimming trajectories) and in
fact can be any sufficiently smooth bounded curve parame-
terized by time. To illustrate the results presented, we de-
scribe two vehicle control applications: an hovercraft (mov-
ing on a planar surface) and an underwater vehicle (moving
in three-dimensional space). Simulation results show that
the control objectives are accomplished.

Future research will address the extension of these results
to a larger class of models by relaxing the requirements im-
posed by Assumptions 1 and 2. Another open problem that
warrants further research is the control of underactuated ve-
hicles with noise and model uncertainties that arise from
parameter variations or neglected dynamics.
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[23] R. Sepulchre, M. Janković, and P. Kokotovíc. Constructive Nonlin-
ear Control. Springer-Verlag, New York, USA, 1997.

[24] J. S. Shamma and J. R. Cloutier. Gain-scheduled missile autopilot
design using linear parameter varying transformations.Journal of
Guidance, Control, and Dynamics, 16(2):256–263, 1993.

[25] C. Silvestre.Multi-objective optimization theory with applications
to the integrated design of controllers/plants for autonomous vehi-
cles. PhD thesis, Inst. Superior Técnico, Lisbon, Portugal, 2000.
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