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Abstract

We investigate limits of performance in reference-tracking and path-following and highlight an essential difference between
them. For a class of nonlinear systems, we show that in reference-tracking, the smallest achievable L2 norm of the tracking
error is equal to the least amount of control energy needed to stabilize the zero-dynamics of the error system. We then show
that this fundamental performance limitation does not exist when the control objective is to force the output to follow a
geometric path without a timing law assigned to it. This is true even when an additional desired speed assignment is required
to be satisfied asymptotically or in finite time.
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1 Introduction

Fundamental performance limitations in reference-
tracking for linear feedback systems have been quanti-
fied with classical Bode integrals and with cheap opti-
mal control (Kwakernaak and Sivan, 1972; Middleton,
1991; Qiu and Davison, 1993; Seron et al., 1999; Chen
et al., 2000). In the absence of unstable zero dynamics
(non-minimum phase or right-half plane (rhp) zeros)
and if the system is right invertible, perfect tracking of
any reference signal is possible, that is, the L2 norm
of the tracking error can be made arbitrarily small.
However, in the presence of unstable zero dynamics,
the tracking error increases as the signal frequencies
approach those of the unstable zeros (Qiu and Davi-
son, 1993), see also (Su et al., 2003).
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For step reference signals, Seron et al. (1999) general-
ized Qiu-Davison results for nonlinear systems of rela-
tive degree one. They showed that the best attainable
L2 norm of the tracking error eT (t), denoted by JT , is
equal to the lowest L2 norm of control effort needed to
stabilize the zero dynamics driven by eT (t). Extensions
to non-right-invertible systems are given in (Woodyatt
et al., 2002; Braslavsky et al., 2002).
For the problem of tracking any reference signal gener-
ated by a known exosystem, we show that the smallest
achievable L2 norm of the tracking error is equal to the
least amount of control energy needed to stabilize the
zero-dynamics of the error system.
Path-following problems are concerned with the design
of control laws that drive an object (robot arm, mobile
robot, ship, aircraft, etc.) to reach and follow a geomet-
ric path. A secondary goal is to satisfy some additional
dynamic specification such as to follow the path with
some desired velocity. A common approach to the path-
following problem is to parameterize the geometric
path yd by a path variable θ and then select a timing
law for θ, (Hauser and Hindman, 1995; Al-Hiddabi
and McClamroch, 2002; Skjetne et al., 2004; Aguiar
et al., 2005; Aguiar et al., 2004; Aguiar and Hes-
panha, 2004). Path-following as a method to avoid
some limitations in reference-tracking was described
in Aguiar et al. (2004). The key idea is to use θ as an
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additional control input to stabilize the unstable zero-
dynamics while the original control variables keep the
system on the path.
For a class of nonlinear systems we show that the funda-
mental performance limitations imposed on reference-
tracking by unstable zero dynamics do not apply to the
path-following problem. Furthermore, this is true even
when an additional desired speed assignment is required
to be satisfied asymptotically or in finite time.
In Section 2 we formulate the reference-tracking and
path-following problems and briefly review our recent
results for non-minimum phase linear systems, (Aguiar
et al., 2005). Section 3 presents the main results of the
paper. An example in Section 4 illustrates the results.
Concluding remarks are given in Section 5.

2 Reference-tracking versus path-following

2.1 Reference-tracking

For linear systems

ẋ = Ax + Bu, y = Cx + Du, (1)

x ∈ R
n, u ∈ R

m, y ∈ R
q, and reference signals r(t) ∈ R

q

generated by a known exosystem

ẇ = Sw, r = Qw, (2)

Davison (1976) and Francis (1977) show that it is possi-
ble to design a feedback controller such that the closed-
loop system is asymptotically stable and the output y(t)
converges to r(t), if and only if (A,B) is stabilizable,
(C,A) is detectable, the number of inputs is at least as
large as the number of outputs (m ≥ q), and the ze-
ros of (A,B,C,D) do not coincide with the eigenvalues
of S. The internal model approach, (Francis and Won-
ham, 1976; Francis, 1977), designs the reference-tracking
controller

u(t) = Kx(t) + (Γ − KΠ)w(t),

where A + BK is Hurwitz, and Π and Γ satisfy

ΠS = AΠ + BΓ,

0 = CΠ + DΓ − Q.

Then, the tracking error eT (t) := y(t) − r(t) converges
to zero, and the transients

x̃ := x − Πw, ũ := u − Γw (3)

are governed by ˙̃x = (A + BK)x̃, ũ = Kx̃.

Isidori and Byrnes (1990) show that the analogous non-
linear problem

ẋ = f(x, u), y = h(x, u), (4)
ẇ = s(w), r = q(w), (5)

where f(0, 0) = 0, s(0) = 0, h(0, 0) = 0, is solvable
if and only if there exist smooth maps Π(w) and c(w),
satisfying

∂Π
∂w

s(w) = f(Π(w), c(w)), Π(0) = 0,

h(Π(w), c(w)) − q(w) = 0, c(0) = 0.
(6)

Krener (1992) presents necessary and sufficient condi-
tions for local solvability of (6).

The non-minimum phase (rhp) zeros impose a funda-
mental limitation on the attainable tracking perfor-
mance. Kwakernaak and Sivan (1972) were the first to
demonstrate that the cheap control problem

Jε := min
ũ

∫ ∞

0

[‖eT (t)‖2 + ε2‖ũ(t)‖2
]
dt (7)

with ũ defined in (3), in the presence of rhp zeros the
limit Jε → JT as ε → 0 is strictly positive.

Qiu and Davison (1993) showed that for r(t) =
η1 sinωt + η2 cos ωt, η = col(η1, η2), the rhp zeros
z1, z2, . . . , zp determine the value of JT as follows:

JT = η′Mη, trace M =
p∑

i=1

(
1

zi − jω
+

1
zi + jω

)
.

For more general reference signals, Su et al. (2003) give
explicit formulas which show the dependence of JT on
the rhp zeros and their frequency-dependent directional
information.

2.2 Path-following

In path-following, the output y(t) is required to reach
and follow a geometric path yd(θ) generated by the ex-
osystem

d

dθ
w(θ) = s(w(θ)), w(θ0) = w0

yd(θ) = q(w(θ)),
(8)

where θ ∈ R is the path variable, w ∈ R
p, yd ∈ R

q,
and θ0 := θ(0). For a given timing law θ(t), the path-
following error is defined as

eP (t) := y(t) − yd(θ(t)). (9)
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We consider the following two path-following problems:

Geometric path-following: For a desired path yd(θ),
design a controller that achieves:

i) boundedness: the state x(t) is uniformly bounded
for all t ≥ 0 and for every (x(0), w(θ(0))) = (x0, w0),
in some neighborhood of (0, 0),

ii) error convergence: the path-following error eP (t)
converges to zero as t → ∞, and

iii) forward motion: θ̇(t) > c for all t ≥ 0, where c is a
positive constant.

Speed-assigned path-following: In addition to the
geometric path-following task, a constant speed vd > 0
is assigned and it is required that either θ̇(t) → vd as
t → ∞, or θ̇(t) = vd for all t ≥ T and some T ≥ 0.

Our main interest is to determine whether the freedom
to select a timing law θ(t) can be used to achieve an
arbitrarily small path-following error, that is, whether
δ� > 0 in ∫ ∞

0

‖eP (t)‖2 dt ≤ δ� (10)

can be made arbitrarily small.

In contrast to reference-tracking, the attainable perfor-
mance for path-following is not limited by non-minimum
phase zeros (Aguiar et al., 2005). For the desired path
generated by exosystem (8)

yd(θ) :=
nd∑

k=1

[
akejωkθ + a�

ke−jωkθ
]
, (11)

where the ωk > 0 are real numbers and the ak are non-
zero complex vectors, Aguiar et al. (2005) prove:

Theorem 1 (Aguiar et al. (2005)) Consider the ge-
ometric path-following problem for (1) where (A,B) is
stabilizable and x(0) = 0. Then for any given positive
constant δ� there exist constant matrices K and L, and
a timing law θ(t) such that the following feedback law
achieves (10):

u(t) = Kx(t) + Lw(θ(t)). (12)

Theorem 2 (Aguiar et al. (2005)) For the speed-
assigned path-following problem, let vd be specified so
that the eigenvalues of vdS do not coincide with the ze-
ros of (1), and assume that (A,B) is stabilizable and
x(0) = 0. Then, (10) can be satisfied for any δ� > 0 with
a timing law θ(t) and a controller of the form (12) but
with time-varying piecewise-constant matrices K and L.

Hence the stabilizability of (A,B) is both necessary
and sufficient for the solvability of the geometric path-
following problem. Furthermore, an arbitrarily small

L2 norm of the path-following error is attainable even
when the speed assignment vd is specified beforehand.

3 Performance limitations for nonlinear sys-
tems

In the first part of this section, we present an inter-
nal model analog of the results in (Seron et al., 1999;
Braslavsky et al., 2002) for the reference-tracking prob-
lem. In the second part, we present our main result for
the path-following problem. We show that, in contrast
to reference-tracking, the path-following problems can
be solved with arbitrarily small L2 norm of the path-
following error.

3.1 Reference-tracking

We consider the class of nonlinear systems which are
locally diffeomorphic to systems in strict-feedback form
(see for example Krstić et al. (1995, Appendix G)) 1 :

ż = f0(z) + g0(z)ξ1, (13a)

ξ̇1 = f1(z, ξ1) + g1(z, ξ1)ξ2,

...

ξ̇rd
= frd

(z, ξ1, . . . , ξrd
) + grd

(z, ξ1, . . . , ξrd
)u, (13b)

y = ξ1, (13c)

where z ∈ R
nz , ξ := col(ξ1, . . . , ξrd

), ξi ∈ R
m,

∀i ∈ {1, . . . , rd}, u ∈ R
m, and y ∈ R

m. fi(·) and gi(·)
are Ck functions of their arguments (for some large k),
fi(0, . . . , 0) = 0, and the matrices gi(·), ∀i ∈ {1, . . . , rd}
are always nonsingular. We assume that initially the
system is at rest, (z, ξ) = (0, 0).

When the reference-tracking problem is solvable, i.e.,
it is possible to design a continuous feedback law that
drives the tracking error to zero, then there exist maps
Π = col(Π0, . . . ,Πrd

), Π0 : R
p → R

nz , Πi : R
p → R

m,
∀i ∈ {1, . . . , rd}, and c : R

p → R
m that satisfy (6). The

following locally diffeomorphic change of coordinates

z̃ = z − Π0(w), (14)

ξ̃ := col(ξ̃1, . . . , ξ̃rd
), (15)

ξ̃i = ξi − Πi(w), i = 1, . . . , rd (16)
ũ = u − c(w), (17)

transforms the system (13) into the error system

˙̃z = f̃0(z̃, w) + g̃0(z̃, w)eT , (18a)

1 When convenient we use the compact form (4) for (13). In
that case, f(·) denotes the vector field described by the right-
hand-side of (13a)–(13b), h(·) the output map described by
(13c), and x = col(z, ξ1, . . . , ξrd).
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˙̃
ξ1 = f̃1(z̃, ξ̃1, w) + g̃1(z̃, ξ̃1, w)ξ̃2,

... (18b)
˙̃
ξrd

= f̃rd
(z̃, ξ̃1, . . . , ξ̃rd

, w) + g̃rd
(z̃, ξ̃1, . . . , ξ̃rd

, w)ũ,

eT = ξ̃1, (18c)

where

f̃0 := f0(z̃ + Π0(w)) − f0(Π0(w))

+
[
g0(z̃ + Π0(w)) − g0(Π0(w))

]
q(w),

g̃0 := g0(z̃ + Π0(w)),

f̃0(0, w) = 0, g̃0(z̃, 0) = g0(z̃), and f̃i(·), g̃i(·),
∀i ∈ {1, . . . , rd} are appropriately defined functions
that satisfy f̃i(0, . . . , 0, w) = 0 and g̃i(z̃, . . . , ξ̃i, 0) =
gi(z̃, . . . , ξ̃i).

Our analysis makes use of the following two optimal con-
trol problems.

Cheap control problem: For the system consisting of
the error system (18) and the exosystem (5) with initial
condition

(
z̃(0), ξ̃(0), w(0)

)
=

(
z̃0, ξ̃0, w0

)
, find the op-

timal feedback law ũ = αcc
δ,ε(z̃, ξ̃, w) that minimizes the

cost functional

1
2

∫ ∞

0

(‖eT (t)‖2 + δ‖z̃(t)‖2 + ε2rd‖ũ(t)‖2
)
dt (19)

for δ > 0, ε > 0. We denote by Jcc
δ,ε(z̃0, ξ̃0, w0) the corre-

sponding optimal value. The best-attainable cheap con-
trol performance for reference-tracking is then

JT := lim
(δ,ε)→0

Jcc
δ,ε(z̃0, ξ̃0, w0). (20)

As shown by Krener (2001), in some neighborhood of
(0, 0, 0) and for every δ > 0, ε > 0, the value Jcc

δ,ε(·, ·, ·)
is Ck−2 under the following assumption:

Assumption 1 The linearization around (z, ξ) = (0, 0)
of system (13) is stabilizable and detectable, and the lin-
earization around w = 0 of the exosystem (5) is stable.

Minimum-energy problem: For the system

˙̃z = f̃0(z̃, w) + g̃0(z̃, w)eT , z̃(0) = z0, (21a)
ẇ = s(w), w(0) = w0, (21b)

with eT viewed as the input, find the optimal feedback
law eT = αme

δ (z̃, w) that minimizes the cost

1
2

∫ ∞

0

(
δ‖z̃(t)‖2 + ‖eT (t)‖2

)
dt, (22)

for δ > 0. We denote by Jme
δ (z̃0, w0) the corresponding

optimal value. Under Assumption 1, Jme
δ (·, ·) is Ck−2 in

some neighborhood of (0, 0).

Our analysis reveals that the best-attainable cheap con-
trol performance JT is equal to the least control effort
(as δ → 0) needed to stabilize the corresponding zero
dynamics system (21) driven by the tracking error eT .

Theorem 3 Suppose that Assumption 1 holds and that
(6) has a solution in some neighborhood of w = 0. Then,
for any (z̃(0), ξ̃(0), w(0)) = (z̃0, ξ̃0, w0) in some neigh-
borhood of (0, 0, 0) there exists a solution to the cheap
control problem and

JT = lim
δ→0

Jme
δ (23)

Proof. Under Assumption 1 and from the formulations
of the cheap control and minimum-energy problems, we
conclude that for every δ > 0, ε > 0, and every initial
condition (z̃0, ξ̃0, w0) in some neighborhood of (0, 0, 0),
the values Jme

δ (z̃0, w0) and Jcc
δ,ε(z̃0, ξ̃0, w0) exist and sat-

isfy
Jme

δ (z̃0, w0) ≤ Jcc
δ,ε(z̃0, ξ̃0, w0). (24)

On the other hand, from Lemma 6 in Appendix we have

Jcc
δ,ε(z̃0, ξ̃0, w0) ≤ Jme

δ (z̃0, w0) + O(ε). (25)

Therefore, from (24)–(25) we conclude that

Jme
δ (z̃0, w0) ≤ Jcc

δ,ε(z̃0, ξ̃0, w0) ≤ Jme
δ (z̃0, w0) + O(ε).

The result (23) follows from this and (20) as one makes
(δ, ε) → 0.

�

3.2 Path-following

For path-following, we define the corresponding cheap
control problem by replacing eT with eP in (19). We then
show that, in contrast to reference-tracking, the path-
following problem can be solved with arbitrarily small
L2 norm of eP .

We let the vector field s(w) and the output map q(w)
of the exosystem (8) be linear, s(w) = Sw, q(w) = Qw,
such that all eigenvalues of S ∈ R

p×p are non-zero and
semisimple.

Theorem 4 Assume that (6) has a solution when
s(w) = vdSw, for vd almost everywhere on (0,∞). Then,
for every w(θ(0)) = w0 in a neighborhood around w = 0,
there exist a timing law for θ(t) and a feedback law

u = c(w) + αδ,ε(z, ξ, w) (26)
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which solve the geometric path-following and satisfy (10)
for every δ� > 0.

Proof. With the timing law

θ̇(t) = vd, θ(0) = 0, (27)

and vd > 0 a constant to be selected later, the path-
following problem becomes the tracking problem of r(t)
generated by

ẇ(t) = vdSw(t), r(t) = Qw(t), (28)

which, upon the substitution in (6), yields

∂Π
∂w

vdSw = f(Π(w), c(w)),

h(Π(w), c(w)) − Qw = 0.
(29)

The function c(w), used in the feedback law (26), solves
(29), while αδ,ε(z, ξ, w) minimizes (19) for the error sys-
tem (18) together with the exosystem (28) and some
small δ > 0, ε > 0. With the timing law (27), Theo-
rem 3 allows us to conclude that as (ε, δ) → 0 we have
JP = limδ→0 Jme

δ .

To prove that Jme
δ can be made arbitrarily small by se-

lecting a sufficiently large vd, we use Lemma 7 in Ap-
pendix. It shows that for the minimum-energy prob-
lem and every initial condition in some neighborhood
of (z̃, w) = (0, 0), there exist a sufficiently small δ > 0
in (22) and a feedback law eT = α̂me

δ (z̃, w) for which
Jme

δ (z̃0, w0) is bounded by

Jme
δ (z̃0, w0) ≤ 1

2
z̃′0P0z̃0,

where P0 > 0 does not depend on vd. Observing that
z̃0 = Π0(w0), since z(0) = 0, the proof is completed
using Lemma 8 in Appendix which establishes that
‖Π0(w0)‖ can be made arbitrarily small by choosing a
sufficiently large vd.

�

Next we show that an arbitrarily small L2 norm of the
path-following error is attainable even when the speed
vd is specified beforehand.

Theorem 5 Consider the speed-assigned path-following
problem with vd specified so that (29) has a solution in
some neighborhood of w = 0. Then, (10) can be satisfied
for any δ� > 0 with a suitable timing law θ(t) and a
controller of the form (26) with time-varying piecewise-
continuous maps c(w) and α(z, ξ, w).

Proof. To construct a path-following controller that
satisfies (10) we start with

u = cσ(w) + ασ(z, ξ, w), (30a)

θ̇ = vσ, (30b)

where for each positive constant v�, 	 ∈ I :=
{0, 1, 2, . . . N}, the maps Π� := col(Π�0 ,Π�ξ

), Π�ξ
:=

col(Π�ξ1
, . . . ,Π�ξrd

), Π�0 : R
p → Rnz , Π�i

: R
p → Rm,

∀i ∈ {1, . . . , rd}, and c� : R
p → R

m satisfy

∂Π�

∂w
v�Sw = f(Π�(w), c�(w)),

h(Π�(w), c�(w)) − Qw = 0,
(31)

and σ(t) : [t0 := 0,∞) → I, is the piecewise constant
switching signal

σ(t) =

{
i, ti ≤ t < ti+1, i = 0, . . . , N − 1

N, t ≥ tN

Each α�(z, ξ, w) is the optimal feedback-law that mini-
mizes∫ ∞

0

(‖eP ‖2 + δ‖z − Π�0(w)‖2 + ε2rd‖u − c�(w)‖2
)
dt,

for some small δ > 0, ε > 0. Note that (30) is a speed-
assignment path-following controller for which θ̇(t) con-
verges to vN = vd in finite time.

We now prove that for any δ� > 0, (10) can be satisfied
by appropriate selection of a finite sequence t0, t1, . . . , tN
together with (v0,Π0, α0, c0), (v1,Π1, α1, c1),
. . . , (vN ,ΠN , αN , cN ) used in the feedback controller
(30). To this end, we show in Lemma 9 in Appendix
that JP is bounded by

JP ≤ 1
2
z̃′0P0z̃0 + γ

λmax(P0)
2

N∑
�=1

(v�−1 − v�)2

+ λmax(P0)
N∑

�=1

z̃�−1(t�)′
[
z̄�−1(t�) − z̄�(t�)

]

+
λmax(P0)

2

N∑
�=1

‖z̃�−1(t�)‖2, (32)

where λmax(P0) denotes the maximum eigenvalue of
P0 > 0, γ is a positive constant, z̃0 := z̃(0), z̄� := Π�0(w),
and the transient z̃� := z − Π�0(w) converges to zero as
t → ∞.

We show that each term of (32) is upper-bounded by
δ�

4 so that JP ≤ δ�. Applying the same arguments as in
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Theorem 4, the first term in (32) is bounded by δ�

4 using
a sufficiently large v0. To prove that the second term
in (32) is smaller than δ�

4 , we select the parameters v�,
	 ∈ I to satisfy

v�−1 − v� = µ, vN = vd, 	 = 1, 2, . . . , N (33)

where µ := 2δ�

γλmax(P0)(v0−vN ) , and N := v0−vN

µ . Then

γ
λmax(P0)

2

N∑
�=1

(v�−1 − v�)2 ≤ γ
λmax(P0)

2
Nµ2

= γ
λmax(P0)

2
(v0 − vN )µ =

δ�

4
.

The above selection for the v�, 	 ∈ I, is made under the
constraint that the reference-tracking problem for the
signal r(t) generated by (28) with vd replaced by v� is
solvable. This can always be satisfied by appropriately
adjusting v0. Finally, for any given N , each of the last two
terms in (32) can be made smaller than δ

4 by choosing
t�, 	 = 1, 2, . . . , N sufficiently large.

�

4 Illustrative Example

To illustrate the results of the paper we consider the
system described in (Isidori, 1999, Example 8.3.5)

ẋ1 = x2

ẋ2 = u

η̇ = η + x1 + x2
2

y = x1

x := (x1, x2, η)′, which is already in normal form. This
system is not exactly linearizable via feedback and the
zero-dynamics are unstable. Suppose that the reference-
tracking task is to asymptotically track any reference
output of the form r(t) = M sin(at + φ), where a is a
fixed positive number, and M , φ arbitrary parameters.
In this case the exosystem (5) is s(ω) = (aω2,−aω1)′,
q(ω) = ω1. Following the procedure illustrated in Isidori
(1999, Example 8.3.5) we determine a feedback law of
the form u = c(ω)+K(x−Π(ω)), where K = (k1, k2, k3)′
is any matrix which places the eigenvalues of A + BK,

A :=
[

0 1 0
0 0 0
1 0 1

]
, B :=

[
0
1
0

]
in the left-half complex plane. Fig. 1 displays the simu-
lation results obtained with a = 0.1 rad/s and K com-
puted by solving the linear quadratic regulator problem
(minũ

∫ ∞
0

[e(t)′e(t) + ε2ũ(t)ũ(t)] dt) with ε = 0.001. The
initial conditions are x(0) = 0, ω(0) = (0.1, 0)′. The con-
vergence to the desired reference signal is achieved with
transient error JT � 28 × 10−3.
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Fig. 1. Reference-tracking: Time evolution of 1(a) the state
(x1, x2, η); and 1(b) the exogenous state (ω1, ω2) and the

transient tracking error
� t

0
‖eT (τ)‖2 dτ .

In contrast, Fig. 2 shows the simulation results obtained
with the path-following controller (30) with ασ = K(x−
Πσ(ω)) and K with the same value as the previous case.
Starting with v0 = 1, the values of vσ were selected to de-
crease by 0.1 successively until vN = a = 0.1(N = 10).
As it can be seen, the path-following controller manipu-
lates the evolution of the states of the exosystem in such
a way that the transient error is reduced by a factor of 5
to JP � 5.6 × 10−3. Different sequences of vσ could be
used to reduce it even further. This illustrates how the
tracking limit is removed by the path-following.
Other examples that use the freedom of manipulating
the path-variable can be found in, e.g., (Aguiar et al.,
2005; Aguiar et al., 2004; Aguiar and Hespanha, 2004;
Skjetne et al., 2004; Dačić and Kokotović, 2006).

5 Conclusions

This paper demonstrates that the task of following a geo-
metric path yd(θ) is less restrictive than the task of track-
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Fig. 2. Path-following: Time evolution of 2(a) the state
(x1, x2, η); and 2(b) the exogenous state (ω1(θ(t)), ω2(θ(t)))

and the transient path-following error
� t

0
‖eP (τ)‖2 dτ .

ing a reference signal r(t). The reference-tracking prob-
lem is subject to the limitations imposed by the unstable
zero-dynamics, a nonlinear analog of the Bode’s limita-
tions caused by non-minimum phase zeros. Our analysis
revealed that the limitation is due to the need to stabilize
the zero-dynamics by the tracking error, which therefore
prevents the output y(t) from achieving perfect tracking.
In path-following one has available an additional degree
of freedom to select a timing law θ(t) with which a pre-
scribed path yd(θ) will be followed. In Theorems 4 and 5,
we prove that with an appropriate choice of θ(t) the L2

norm of the path-following error can be made arbitrar-
ily small, that is, the path-following problem is not sub-
ject to the limitations of reference-tracking. The results
of this paper are structural in the sense that they hold
for all nonlinear systems which can be transformed into
(13a)–(13c) with a diffeomorphism and a feedback trans-
formation. They may also be of practical significance,
because the path-following formulation is convenient for
many applications. Design of path-following controllers
for non-minimum phase systems is a topic of current re-

search, (Dačić and Kokotović, 2006; Dačić et al., 2004).

A Appendix

Lemma 6 Suppose that Assumption 1 holds. For every
initial condition (z̃0, ξ̃0, w0) for the error system (18) and
the exosystem (5) in some neighborhood of (0, 0, 0), and
every δ > 0, there exist a sufficiently small ε > 0 and
feedback law ũ = α̂cc

δ,ε(z̃, ξ̃, w) for which the value of (19)
does not exceed

Jme
δ (z̃0, w0) + O(ε). (A.1)

Proof. The optimal control law for the minimum-
energy problem formulated in Section 3 is

αme
δ (z̃, w) = −g̃′0

∂′Jme
δ

∂z̃
. (A.2)

Its existence is ensured by Assumption 1. As in
(Braslavsky et al., 2002), consider the change of coordi-
nates

η1 = ξ̃1 − αme
δ , η2 = ˙̃

ξ1 − ˙αme
δ , . . .

ηrd
= ξ̃

(rd−1)
1 − α

(rd−1)
δ (A.3)

that takes (18) to the form

˙̃z = f̃0(z̃, w) + g̃0(z̃, w)αme
δ (z̃, w) + g̃0(z̃, w)Cη,

η̇ = Aη + Bf̃η(z̃, η, w) + Bv, (A.4)
η1 = Cη,

where η := col(η1, η2, . . . , ηrd
), v := g̃ũ, g̃ := Πrd

i=1g̃i,

A :=

[
0 I 0 ··· 0
0 0 I ··· 0··· ··· ··· ··· ···
0 0 0 ··· I
0 0 0 ··· 0

]
, B :=

[
0
0···
0
I

]
, C := [ I 0 0 ··· 0 ]

(A.5)

and f̃η(·) is a suitably defined function. We first
prove that for every δ > 0 and every initial condition
(z̃0, η0, w0) in some neighborhood of (0, 0, 0) for system
(A.4) together with the exosystem (5), there exist ε > 0
and v = α̂δ,ε(z̃, η, w) such that

Vδ,ε(z̃0, η0, w0) :=
1
2

∫ ∞

0

(‖η1 + αme
δ (z̃, w)‖2

+ δ‖z̃‖2 + ε2rd‖v‖2
)
dt (A.6)

does not exceed (A.1). Then, we derive a feedback law
for ũ which ensures that (19) does not exceed (A.1).
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Consider P ∈ R
mrd×mrd , the positive-definite solution

of
PA + A′P − PBB′P = −C ′C, (A.7)

and the feedback law

v = − 1
εrd

B′PEη, (A.8)

with A,B,C given by (A.5) and

E =
[

I 0 ··· 0
0 εI ··· 0··· ··· ··· ···
0 0 ··· εrd−1I

]
.

We now show that (A.8) achieves asymptotic stability
of the closed-loop system

˙̃z = f̃0(z̃, w) + g̃0(z̃, w)αme
δ (z̃, w) + g̃0(z̃, w)CEη,

εEη̇ = (A − BB′P )Eη + εrdBf̃η(z̃, η, w).
(A.9)

obtained by substituting (A.8) into (A.4). With Q ∈
R

mrd×mrd satisfying

Q(A − BB′P ) + (A′ − PBB′)Q = −C ′C − I,

where (A − BB′P ) is Hurwitz, we select

W = Jme
δ (z̃, w) +

ε

2
η′EQEη (A.10)

as a Lyapunov function. Computing Ẇ along (A.9), we
obtain

Ẇ =
∂Jme

δ

∂z̃
(f̃0 + g̃0α

me
δ + g̃0CEη) +

∂Jme
δ

∂w
s(w)

+
1
2
η′E[Q(A − BB′P ) + (A′ − PBB′)Q]Eη

+ εrdη′EQBf̃η

= −1
2
δ‖z̃‖2 − 1

2
‖αme

δ ‖2 − αme ′
δ Cη − 1

2
‖CEη‖2

− 1
2
‖Eη‖2 + εrdη′EQBf̃η,

where we have used the fact that Jme
δ (z̃, w) satisfies

∂Jme
δ

∂z̃
f̃0(z̃, w) +

∂Jme
δ

∂w
s(w) +

1
2
δ‖z̃‖2

− 1
2

∥∥∥∥g̃′0
∂′Jme

δ

∂z̃

∥∥∥∥
2

= 0. (A.11)

For any ρz̃, ρη, ρw such that ‖z̃‖ ≤ ρz̃, ‖η‖ ≤ ρη, ‖w‖ ≤
ρw, there exist γz̃, γη satisfying

‖f̃η(z̃, η, w)‖ ≤ γz̃‖z̃‖ + γη‖η‖,
and, hence,

Ẇ ≤ −1
2
δ‖z̃‖2 − 1

2
‖Cη + αme

δ ‖2 − 1
2
‖Eη‖2

+ εrd
(
γ1‖z̃‖ + γ2‖η‖

) ‖Eη‖
≤ −1

2
(δ − γ1ε

rd)‖z̃‖2 − 1
2
(1 − γ1ε

rd − 2γ2ε)‖Eη‖2,

where γ1 := γz̃‖QB‖, γ2 := γη‖QB‖, and εrd‖η‖ ≤
ε‖Eη‖ for ε < 1. Consequently, for any δ > 0, there
exists ε > 0 such that Ẇ ≤ 0. Asymptotic stability of
(z̃, η) = (0, 0) thus follows from LaSalle’s theorem. From
this and (A.10) we can also conclude that W converges
to zero as t → ∞ because Jme

δ (0, w) = 0.
To prove that

Vδ,ε(z̃0, η0, w0) ≤ Jme
δ (z̃0, w0) + O(ε), (A.12)

we define the positive-definite function

V̂ := Jme
δ (z̃, w) + εV̂ε(η), V̂ε :=

1
2
η′EPEη.

The time-derivatives of Jme
δ and V̂ε along (A.9) satisfy

J̇me
δ = −1

2
δ‖z̃‖2 − 1

2
‖αme

δ ‖2 − αme ′
δ Cη,

˙̂
Vε = − 1

2ε
‖CEη‖2 − 1

2ε
‖B′PEη‖2 + εrd−1η′EPBf̃η.

and

˙̂
V = −1

2
δ‖z̃‖2 − 1

2
‖Cη + αme

δ ‖2

− 1
2
‖B′PEη‖2 + εrdη′EPBf̃η. (A.13)

From the fact that W converges to zero as t → ∞, we
conclude the same for V̂ . Noticing that Vδ,ε defined in
(A.6) satisfies

Vδ,ε =
1
2

∫ ∞

0

(‖Cη + αme
δ ‖2 + δ‖z̃‖2 + ‖B′PEη‖2

)
dt,

and integrating (A.13) we get

Vδ,ε = V̂ (z̃0, η0, w0) +
∫ ∞

0

εrdη′EPBf̃η dt.

Now (A.12) follows from the fact that
∫ ∞
0

εrd−1η′EPBf̃η dt

is bounded by ‖ ∫ ∞
0

εrd−1η′EPBf̃η dt‖ ≤ V̂ε(η0).

We next prove that for every δ > 0 and every initial
condition in some neighborhood of (z, ξ, w) = (0, 0, 0),
there exists ε� > 0 for which the feedback law

ũ = g̃−1α̂δ,ε�(z̃, η, w) = − 1
ε�rd

g̃−1B′PEη

ensures that (19) does no exceed (A.1).
Let γ be the lowest value of the smallest singular value of
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g̃ in a compact set containing the trajectories generated
by ũ. Note that γ > 0 because g̃−1

i , ∀i ∈ {1, . . . , rd} are
nonsingular. Consider ε� = ε/γ

1
rd , then,

1
2

∫ ∞

0

(‖eT ‖2 + δ‖z̃‖2 + ε2rd‖ũ‖2
)
dt

≤ 1
2

∫ ∞

0

(‖eT ‖2 + δ‖z̃‖2 +
ε2rd

γ2
‖g̃ũ‖2

)
dt

= Vδ,ε� ≤ Jme
δ (z̃0, w0) + O(ε�).

�

Lemma 7 Consider the minimum-energy problem
formulated in Section 3. For every initial condition
(z̃(0), w(0)) = (z̃0, w0) for (21) in some neighborhood
of (0, 0), there exist δ > 0 in (22) and a feedback law
eT = α̂me

δ (z̃, w) for which (22) does not exceed

1
2
z̃′0P0z̃0,

where P0 > 0 does not depend on vd.

Proof. Let
ż = F0z + G0ξ1

be the linearization of (13a) around z = 0. Then (18a)
can be written as

˙̃z = F0z̃ + G0eT + hf̃0
(z̃, w) + hg̃0(z̃, w)eT , (A.14)

where for all ‖z̃‖ ≤ ρz̃, ‖w‖ ≤ ρw and some γi,
i = 1, . . . , 4, the maps hf̃0

(z̃, w) := f̃0(z̃, w) − F0z̃ and
hg̃0(z̃, w) := g̃0(z̃, w) − G0 satisfy

‖hf̃0
(z̃, w)‖ ≤ γ1‖z̃‖2 + γ2‖z̃‖ ‖Π0(w)‖,

‖hg̃0(z̃, w)‖ ≤ γ3‖z̃‖2 + γ4‖Π0(w)‖.

Consider (A.14) in closed-loop with the feedback law

eT = α̂me
δ (z̃, w) := −G′

0P0z̃, (A.15)

where P0 > 0 satisfies

F ′
0P0 + P0F0 + I − P0G0G

′
0P0 = 0. (A.16)

Computing the time-derivative of V̂ me
δ := 1

2 z̃′P0z̃ along
the trajectories of (A.14), (A.15), we get

˙̂
V me

δ =
1
2
z̃′[P0F0 + F ′

0P0 − 2P0G0G
′
0P0]z̃

+
1
2
z̃′[Phf̃0

+ h′
f̃0

P − 2P0hg̃0G
′
0P0]z̃

≤ −1
2
‖eT ‖2 − 1

2

[
1 − 2λmax(P0)

(
γ1‖z̃‖2

+ γ2‖z̃‖ ‖Π0(w)‖ − λmax(P0)(γ3‖z̃‖
+ γ4‖Π0(w)‖))]‖z̃‖2,

which proves that there exist ρz̃, ρw, δ > 0 such that for
all ‖z̃‖ ≤ ρz̃, ‖w‖ ≤ ρw, ˙̂

V me
δ satisfies

˙̂
V me

δ ≤ −1
2
‖eT ‖2 − δ

2
‖z̃‖2, (A.17)

and, hence, V̂ me
δ → 0 as t → ∞. Integrating (A.17), it

follows that

1
2

∫ ∞

0

(‖eT ‖2 + δ‖z̃‖2) dt ≤ V̂ me
δ (z̃0) =

1
2
z̃′0P0z̃0.

�

Lemma 8 In the reference-tracking problem for the
nonlinear system (13) let the vector field s(w) and the
output map q(w) of the exosystem (5) be s(w) = vdSw,
q(w) = Qw. Suppose that the eigenvalues of S ∈ R

p×p

are non-zero and semisimple, and that for some vd > 0,
(6) has a solution in some neighborhood of w = 0. Then,
for any ρ > 0, there exists v�

d > 0 such that the map
Π0 : R

p → R
nz satisfying

∂Π0(w)
∂w

Sw = µ
[
f0(Π0(w)) + g0(Π0(w))Qw

]
, (A.18)

µ := 1
v�

d
, is bounded by

‖Π0(w)‖ ≤ ρ. (A.19)

Proof. The proof is based on a term-by-term examina-
tion of the Taylor expansions for Π0(w), f0(z), and g0(z).
For this we adopt the methodology of Krener (1992).
We will carry out the proof in the complex field, which
allow us to assume without loss of generality that S is
a diagonal matrix. For a given neighborhood {w ∈ C

p :
‖w‖ ≤ ε} and ρ, we expand Π0(w) in Taylor series

Π0(w) = Π[1]
0 (w)+

1
2
Π[2]

0 (w)+· · ·+ 1
k!

Π[k]
0 (w)+O(w)k+1

(A.20)

where the superscript [k] denotes terms composed of ho-
mogeneous polynomials of degree k, i.e.,

Π[k]
0 (w) =

∑
1≤i1≤···≤ik≤p

Π0i1...ik
wi1 . . . wik

, (A.21)

Π0i1...ik
∈ C

nz . We pick a sufficiently large N such that

‖Π0(w) −
N∑

k=1

1
k!

Π[k]
0 (w)‖ ≤ ρ

2
, ∀‖w‖≤ε, (A.22)
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and note that

‖Π0(w)‖ ≤ ‖Π0(w) −
N∑

k=1

1
k!

Π[k]
0 (w)‖ + ‖

N∑
k=1

1
k!

Π[k]
0 (w)‖

≤ ρ

2
+

∞∑
k=1

1
k!
‖Π[k]

0 (w)‖.

If there exists µ > 0 such that every term Π0i1...ik
in

(A.21) can be bounded by

‖Π0i1...ik
‖ ≤ δ, δ :=

ρ

2(epε − 1)
, (A.23)

then every coefficient in the series (A.20) satisfies
‖Π[k]

0 (w)‖ ≤ δpk‖w‖k, and, hence,

‖Π0(w)‖ ≤ ρ

2
+ δ

∞∑
k=1

1
k!

(pε)k =
ρ

2
+ δ(epε − 1) = ρ.

To prove (A.23), we substitute

f0(z) = F0z +
1
2
f

[2]
0 (z) + · · · + 1

k!
f

[k]
0 (z) + O(z)k+1,

g0(z) = G0 + g
[1]
0 (z) + · · · + 1

k!
g
[k−1]
0 (z) + O(z)k,

together with the expansion of Π0(w) into (A.18).
Matching the first order terms, we get

∂Π[1]
0

∂w
(w)Sw = µ

[
F0Π

[1]
0 (w) + G0Qw

]
. (A.24)

Substituting Π[1]
0 (w) =

∑p
i=1 Πiwi in (A.24) and match-

ing the term in wi, we obtain for all i = 1, . . . , p

λiΠiwi = µ
[
F0Πi + G0Qei

]
wi, (A.25)

where λi denotes the ith eigenvalue of S, and ei :=
(0, . . . , 1, . . . 0)′. With f̄0 := ‖F0‖ and a1i

:= ‖G0Qei‖
we get

‖Πi‖ ≤ µ
f̄0‖Πi‖ + a1i

|λi| ,

and conclude that ‖Πi‖ ≤ δ if

µ ≤ min
1≤i≤p

δ|λi|
f̄0δ + a1i

and µ <
|λi|
f̄0

.

For (A.25) to have a solution for all Πi, as shown in
(Krener, 1992), it is also required that µzi 	= λj , i =
1, . . . , nz; j = 1, . . . , p where zi, the eigenvalues of F0,
are the zeros of the linearization of (13).
The degree two term of (A.18) satisfies

∂Π[2]
0

∂w
(w)Sw = µ

[
F0Π

[2]
0 (w)

+ f
[2]
0 (Π[1]

0 (w)) +
1
2
g
[1]
0 (Π[1]

0 (w))Qw
]
. (A.26)

We can expand Π[2]
0 , f

[2]
0 , and g

[1]
0 Qw as

Π[2]
0 (w) =

∑
Π0ij

wiwj ,

f
[2]
0 (Π[1]

0 (w)) =
∑

f0ij
wiwj ,

g
[1]
0 (Π[1]

0 (w))Qw =
∑

g0ij
wiwj ,

where Π0ij
∈ C

nz , f0ij
∈ C

nz , g0ij
∈ C

nz , and the sums
range over 1 ≤ i ≤ j ≤ p. Substituting these series into
(A.26), matching the terms wiwj and noticing that

∂Π[2]
0

∂w
(w)Sw =

∑
Π0ij

(λi + λj)wiwj , ∀i,j

we obtain

(λi + λj)Π0ij
wiwj = µ

[
F0Π0ij

+ f0ij
+

1
2
g0ij

]wiwj ,

which, using, a2ij
:= ‖f0ij

+ 1
2g0ij

‖, yields

‖Π0ij
‖ ≤ µ

f̄0‖Π0ij
‖ + a2ij

|λi + λj | .

Therefore, we conclude that ‖Π0ij
‖ ≤ δ provided that

µ ≤ min
1≤i≤j≤p

δ|λi + λj |
f̄0δ + a2ij

, µ <
|λi + λj |

f̄0
,

and µzi 	= λj1 + λj2 , 1 ≤ j1 ≤ j2 ≤ p.
For the degree k term, we have

∂Π[k]
0

∂w
(w)Sw = µ

[
F0Π

[k]
0 (w)

+ f
[k]
0 (w) +

1
k

g
[k−1]
0 (w)Qw

]
, (A.27)

where f
[k]
0 (w) and g

[k−1]
0 (w) are the degree k and k − 1

terms of the composition of f0(z) and g0(z) with the ex-
pansion of Π0(w) up to degree k− 1. As before, expand-
ing Π[k]

0 , f
[k]
0 , and g

[k−1]
0 Qw in terms of wi1wi2 . . . wik

with i1 ≤ i2 ≤ · · · ≤ ik ≤ p, and substituting these ex-
pansions in (A.27) yields

(λi1 + · · · + λik
)Π0i1...ik

wi1 . . . wik

= µ
[
F0Π0i1...ik

+ f0i1...ik
+

1
k

g0i1...ik

]
wi1 . . . wik

,

‖Π0i1...ik
‖ ≤ µ

f̄0‖Π0i1...ik
‖ + aki1...ik

|λi1 + · · · + λik
| ,
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where aki1...ik
:= ‖f0i1...ik

+ 1
kg0i1...ik

‖. Thus, it follows
that ‖Π0i1...ik

‖ ≤ δ provided that

µ ≤ min
1≤i1≤···≤ik≤p

δ|λi1 + · · · + λik
|

f̄0δ + aki1...ik

, µ <
|λi1 + · · · + λik

|
f̄0

,

and µzi 	= λj1 + · · ·+ λjk
, 1 ≤ j1 ≤ j2 ≤ · · · ≤ jk ≤ p.

This completes the proof. �

Lemma 9 Under the conditions of Theorem 5, the path-
following controller (30) ensures that there exists γ > 0
such that JP satisfies (32).

Proof. We first compute

J� :=
∫ ∞

t�

‖eP (t)‖2 dt, 	 ∈ I

with σ(t) = 	 for all t ≥ t� and note that

JP ≤
N∑

�=0

J�. (A.28)

As in the proof of Theorem 4, we get

J� ≤ 1
2
z̃�(t�)′P0z̃�(t�), (A.29)

where P0 > 0 satisfies (A.16), z̃� := z − z̄� and z̄� =
Π�0(w), that is, z̄� is the steady-state of z when σ(t) = 	
for all t ≥ t�. For 	 = 1, 2, . . . , N we substitute z(t�) =
z̃�−1(t�) + z̄�−1(t�) in (A.29) and get

J� ≤ 1
2
(
z̃�−1(t�) + z̄�−1(t�) − z̄�(t�)

)′
P0

(
z̃�−1(t�) + z̄�−1(t�) − z̄�(t�)

)
≤ λmax(P0)

2

(
‖z̄�−1(t�) − z̄�(t�)‖2 + ‖z̃�−1(t�)‖2

+ 2z̃′�−1(t�)
[
z̄�−1(t�) − z̄�(t�)

])
. (A.30)

We now prove that Π̃�0(w) := z̄�−1 − z̄� = Π�−10(w) −
Π�0(w) can be written as

Π̃�0(w) = α�(w)µ̃l, (A.31)

where µ̃� := µ�−1−µ� and α�(w) is a bounded continuous
function. Consider (A.18) for each Π�−10(w), Π�0(w),
that is,

∂Π�−10(w)
∂w

Sw = µ�−1

[
f0(Π�−10(w)) + g0(Π�−10(w))Qw

]
∂Π�0(w)

∂w
Sw = µ�

[
f0(Π�0(w)) + g0(Π�0(w))Qw

]

Subtracting the equations, yields

∂Π̃�0(w)
∂w

Sw = µ̃�

[
f0(Π�−10(w)) + g0(Π�−10(w))Qw

]
+ µ�

[
f0(Π�−10(w)) − f0(Π�0(w))

+
(
g0(Π�−10(w)) − g0(Π�0(w))

)
Qw

]
. (A.32)

By the mean value theorem there exist functions βf (·),
βg(·) such that

f0(Π�−10(w)) − f0(Π�0(w)) = βf (Π�−10(w),Π�0(w))Π̃�0(w),

g0(Π�−10(w)) − g0(Π�0(w)) = βg(Π�−10(w),Π�0(w))Π̃�0(w).

Substituting these expressions in (A.32), we verify
(A.31) with α� which satisfies

∂α�

∂w
(w)Sw = f0(Π�−10(w)) + g0(Π�−10(w))Qw

+ µ�

[
βf (Π�−10(w),Π�0(w))α�(w)

+ βg(Π�−10(w),Π�0(w))α�(w)Qw
]
. (A.33)

Assuming that Π�−10(w) and Π�0(w) exist, then α�(w) is
bounded and there exists γ > 0 such that ‖Π̃�0(w)‖2 ≤
γµ̃2

� . The bound (32) follows from this fact, together with
(A.28) and (A.30).

�
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