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Abstract—This paper addresses the state estimation of
continuous-time systems with perspective outputs, whose mea-
surements arrive at discrete-time instants, are time-delayed,
noisy, and may not be complete. Resorting to dynamic
programming, we derive a minimum-energy estimator which
produces an estimate of the state that is “most compatible”
with the dynamics, in the sense that it requires the least
amount of noise energy to explain the measured outputs.
The state-estimator has the desired property that, under
suitable observability assumptions, the estimate converges
asymptotically to the true value of the state in the absence of
noise and disturbance. In the presence of noise, the estimate
remains bounded away from the true value of the state.
We apply these results to the estimation of position and
orientation for a mobile robot that uses a monocular charged-
coupled-device (CCD) camera mounted on-board to observe
the apparent motion of stationary points. In the context of
our application, the estimator can deal directly with the usual
problems associated with vision systems such as noise, latency
and intermittency of observations. Experimental results are
presented and discussed.
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I. INTRODUCTION

Consider a continuous-time system described by

ẋ = A(u)x + b(u) + G(u)d, (1)

αjyj = Cj(u)x + dj(u) + nj , (2)

j ∈ I := {1, 2, . . . , N}, where x ∈ R
n denotes the

state of the system, u ∈ R
nu its input, yj ∈ R

mj its
jth perspective output, d ∈ R

nd an input disturbance that
cannot be measured, and nj ∈ R

mj measurement noise
affecting the jth output. Each αj ∈ R, j ∈ I denotes a
scalar that is determined by a normalization constraint such
as ‖yj‖ = 1 or v′

jyj = 1, (3)

where the vj ∈ R
mj denote constant vectors. We call (1)–

(2) a state-affine system with multiple perspective outputs,
or for short simply a system with perspective outputs.
These type of systems are inspired by the (single output)
perspective systems introduced by Ghosh et al. [1].
Systems with perspective outputs typically arise when

charged-coupled-device (CCD) cameras are used to acquire
information about the position and orientation of moving
rigid bodies. In Section V we address the pose estimation
problem for mobile robots using measurements from a CCD
camera mounted on-board that observes the apparent motion
of stationary points. The dynamics of this system can be
written as (1)–(2). The reader is referred to [1]–[3] for
several other examples of perspective systems in the context
of motion and shape estimation.
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The problem of estimating the position and orientation of
a camera mounted on a rigid body from the apparent motion
of point features has a long tradition in the computer vision
literature (cf., e.g., [4]–[9] and references therein). Filtering-
like or iterative algorithms that continuously improve the
estimates as more data (i.e., images) are acquired and that
are robust with respect to measurement noise are especially
desirable. Soatto et al. [6] formulates the visual motion
estimation problem in terms of identification of nonlinear
implicit systems with parameters on a topological manifold
and propose a dynamic solution either in the local coordi-
nates or in the embedding space of the parameter manifold.
In [9], rigid-body pose estimation using inertial sensors
and a monocular camera is considered. A local convergent
observer where the states evolve on SO(3) is proposed
(the rotation estimation is decoupled from the position
estimation). In the area of wheeled mobile robots, Ma et al.
[10] address the problem of tracking an arbitrarily shaped
continuous ground curve by formulating it as controlling the
shape of the curve in the image plane. Observability of the
curve dynamics is studied and an extended Kalman filter
is proposed to dynamically estimate the image quantities
needed for feedback control from the actual noisy images.
An application for landing an unmanned air vehicle using
vision in the control loop is described in [11]. In [7], the
problem of navigation system design for autonomous air-
craft landing based on measurements provided by airborne
vision and inertial sensors is addressed. The authors cast the
problem in a linear parametrically varying framework and
solve it using tools that borrows from the theory of linear
matrix inequalities. These results are extended in [12] to
deal with the so-called out-of-frame events.
Returning to the system with perspective outputs (1)–(2),

suppose that we acquire the measurements only at discrete
times t′i, i = 0, 1, . . . , k, with t′0 < t′1 < . . . < t′k, and
that we only have access to them after a time-delay τi. Our
sequence of measurements is therefore given by

yj(ti) := yj(t′i) = yj(ti − τi),

where y denotes the time-delay observed variable, and ti =
t′i + τi. Furthermore, suppose that the measurements may
not be complete, that is, at time t′i only the outputs yj with
j ∈ Ii were measured, where Ii ⊆ I is an index set that is
only the same as I if we acquire all the N measurements
at the time t′i.
The problem under consideration is to design an ob-

server which estimates the continuous-time state vector x(t)
governed by equation (1), given the discrete time-delay
measurements y(ti) expressed by the output equation

αjiyj(ti) = Cj(u(ti − τi))x(ti − τi) + dj(u(ti − τi))
+ nj(ti − τi), j ∈ Ii, (4)
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where αji is a normalization constraint such that (3) holds
for yj(ti).
We propose a minimum-energy estimator that produces

an estimate for the state of the perspective system that is
“most compatible” with the system’s dynamics and mea-
sured outputs. In particular, the optimal state estimate x̂ at
time t is defined to be the value for the state that is com-
patible with the observations collected up to time t and the
dynamics of the system for the “smallest” possible measure-
ment noise and disturbances, with “smallest” understood in
an integral-square sense. Minimum-energy estimators were
first proposed by Mortensen [13] and further refined by
Hijab [14]. Game theoretical versions of these estimators
were proposed by McEneaney [15]. It was recently shown
by Krener [16] that this type of estimators is globally
convergent when the system is observable for every input. In
[17], it was shown that for projective systems with multiple
inputs, convergence can be obtained under less restrictive
observability assumptions. In [18], we improve upon the
results in [17] by incorporating quadratic state-constraints
in the minimum-energy formulation. State constraints allow
one to take into account that some elements of the state
must lie in given manifolds. In the context of rigid body
motion, typically part of the state is a rotation matrix that is
known to lie in SO(3), which can be expressed by quadratic
constraints. In [18], the state estimates were used to close
the loop and control a mobile robot to a desired position,
defined with respect to visual landmarks. State-constraints
for systems with perspective outputs also appeared in [3] in
the context of motion estimation using a CCD camera and
a laser range finder, where the measurements from camera
and range finder were related by an algebraic constraint.
One of the main novelties of this paper is that we ex-

plicitly address the fact that the noisy measurements arrive
at discrete-time instants, are time-delayed, and may not be
complete. In this way, we can deal with usual problems
associated to vision systems such as noise, latency, and in-
termittency. Resorting to dynamic programming, in Section
III we derive a minimum-energy estimator. It has the desired
property that, under suitable observability assumptions, the
state-estimate converges asymptotically to the true value
of the state in the absence of noise and disturbance. In
the presence of noise, the estimate remains bounded away
from the true value of the state (cf. Section IV). We can
therefore use this state-estimator to design output-feedback
controllers by using the estimated state to drive state-
feedback controllers.
The theoretical results were experimentally validated by

applying them to estimate the position and orientation of a
mobile robot using measurements from an on-board CCD
camera. The results obtained are discussed in Section V.

II. PROBLEM STATEMENT

Before we formulate the optimization problem, observe
first from (1) that x(ti) satisfies

x(ti) = Φ(ti, ti − τi)x(ti − τi)

+
∫ ti

ti−τi

Φ(ti, σ)
[
b(u(σ)) + G(u(σ))d(σ)

]
dσ,

where Φ(t, t0) is the transition matrix of system (1) satis-
fying the differential equation Φ̇ = A(u)Φ. Therefore,

x(ti − τi) = Φ−1(ti, ti − τi)x(ti) − Φ−1(ti, ti − τi)∫ ti

ti−τi

Φ(ti, σ)
[
b(u(σ)) + G(u(σ))d(σ)

]
dσ.

Replacing this equation in (4) we get

αjiyj(ti) = C̄j(u)x(ti) + d̄j(u) + n̄j(ti), j ∈ Ii, (5)

where

C̄j(u) := Cj(u(ti − τi))Φ(ti − τi, ti),

d̄j(u) := −C̄j(u)

∫ ti

ti−τi

Φ(ti, σ)b(u(σ)) dσ + dj(u(ti − τi)),

n̄j(ti) := −C̄j(u)

∫ ti

ti−τi

Φ(ti, σ)G(u(σ))d(σ) dσ + nj(ti − τi).

The estimation problem can now be stated as follows:
Problem 1: Consider the continuous-time state equation

(1) together with the discrete-time perspective output equa-
tion (5). Given an input u defined on an interval [0, t),
and measured outputs yj(ti), j ∈ Ii with i = 0, 1, . . . k,
t0 := 0 ≤ t1 ≤ · · · ≤ tk ≤ t, compute the estimate x̂(t) of
the state at time t defined as

x̂(t) := arg min
z∈Rn

J(z, t), (6)

where

J(z; t) := min
d:[0,t),n̄j(ti),αji

i=0,1,...k

{
(x(0) − x̂0)′P0(x(0) − x̂0)

+
∫ t

0

‖d(σ)‖2 dσ +
k∑

i=0

∑
j∈Ii

‖n̄j(ti)‖2 :

x(t) = z, ẋ = A(u)x + b(u) + G(u)d,

αjiyj(ti) = C̄j(u)x(ti) + d̄j(u) + n̄j(ti)
}

, (7)

P0 > 0 and x̂0 encodes a-priori information about the state.

The estimate x̂(t) can be interpreted as the value for
which the measured outputs can be made compatible with
the system dynamics (1) and (5) for the “smallest” possible
noise n̄j and disturbance d. This formulation considers the
case when we do not have all the measurements at each
time ti since Ii can be a strict subset of I.

III. THE OBSERVER EQUATIONS

In this section we present the observer equations that are
derived by using dynamic programming. In that framework,
the function J(z; t), z ∈ R

n, t ≥ 0 is viewed as a cost-
to-go. In what follows, given a signal x with a jump at
time t, we denote by x(t−) the limit of x(τ) as τ ↑ t from
below, i.e., x(t−) := limτ↑t x(τ). Without loss of generality
we take all signals to be continuous from above at every
point, i.e., x(t) = limτ↓t x(τ). The following result solves
Problem 1.

Theorem 1: The estimate x̂(t) of the state at time t ≥ 0
defined by (6) and (7) can be computed as a solution to the
impulse system defined by the initial conditions

t0 = 0, P (t0) = P0, x̂(t0) = x̂0, (8)
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the dynamic equations for ti ≤ t < ti+1, i = 0, 1, . . . , k

Ṗ (t) = −P (t)A(u) − A(u)′P (t)
− P (t)G(u)G(u)′P (t), P (ti) = Pi (9)

˙̂x(t) = A(u)x̂(t) + b(u), x̂(ti) = x̂i (10)

and the impulse equations at t = ti+1, i = 0, 1, . . . , k − 1

P (ti+1) = P (t−i+1) + W (ti+1), (11)

x̂(ti+1) = x̂(t−i+1) (12)

− P (ti+1)−1
[
W (ti+1)x̂(t−i+1) + w(ti+1)

]
where

W (ti+1) :=
∑

j∈Ii+1

C̄
′
j(u)

(
I − yj(ti+1)yj(ti+1)

′

‖yj(ti+1)‖2

)
C̄j(u), (13)

w(ti+1) :=
∑

j∈Ii+1

C̄
′
j(u)

(
I − yj(ti+1)yj(ti+1)

′

‖yj(ti+1)‖2

)
d̄j(u). (14)

Furthermore, the cost function J(z; t) defined in (7) is
quadratic and can be written as

J(z; t) =
(
z − x̂(t)

)′
P (t)

(
z − x̂(t)

)
+ c(t), (15)

where c(0) = 0 and, for all i = 0, 1, . . . k − 1,
c(t) = c(ti), ti ≤ t < ti+1 (16)

c(t) = −(P (t
−

)x̂(t
−

) + x̂(t
−

)
′
P (t

−
)x(t

−
) + c(t

−
)

− w(t))
′[

P (t
−

) + W (t)
]−T

(P (t
−

)x̂(t
−

) − w(t))

+
∑

j∈Ii+1

d̄j

(
I − yjy

′
j

‖yj‖2

)
d̄j , t = ti+1 (17)

Proof: We start by proving (15). Take some t ∈
(ti, ti+1). Since J(z; t) is a cost-to-go it must satisfy the
dynamic programming equation

Jt(z; t) = −1
4
‖G′Jz(z; t)′‖2 − Jz(z; t)(Az + b), (18)

where Jt and Jz denote the partial derivatives of J with
respect to t and z, respectively. For k = 0, the value
of J(z; t) can the be determined from the linear partial
differential equation (18) with initial condition

J(z; 0) = (z − x̂0)′P0(z − x̂0), z ∈ R
n (19)

It turns out that the solution to (18)-(19) can be written as

J(z; t) =
(
z − x̂(t)

)′
P (t)

(
z − x̂(t)

)
+ c(t), (20)

for appropriately defined signals x̂(t) and c(t). The signal
x̂ is then precisely the estimate for the state x of the
perspective system (1), (5). Moreover, matching (19) with
(20) we conclude that P (0) = P0, x̂(0) = x̂0, c(0) = 0. To
verify that the solution to (18)-(19) can be written as (20),
we replace this equation in (18), and obtain

z′(Ṗ + PA + A′P + PGG′P )z

+ 2z′(−P ˙̂x − Ṗ x̂ − PGG′P x̂ − A′P x̂ + Pb)

+ ċ + 2x̂′P ˙̂x + x̂′Ṗ x̂ + x̂′PGG′x̂ − 2x̂′Pb = 0.

This equation holds provided that

Ṗ + PA + A′P + PGG′P = 0, (21)

−P ˙̂x − Ṗ x̂ − PGG′P x̂ − A′P x̂ + Pb = 0, (22)

ċ + 2x̂′P ˙̂x + x̂′Ṗ x̂ + x̂′PGG′x̂ − 2x̂′Pb = 0. (23)

Replacing (21) in (22) and these two equations in (23),
we conclude that (9)–(10) and (15) hold for 0 ≤ t < t1.
Observe also that P (t) remains positive definite for all 0 ≤
t < t1. This can be verified by noting that the solution to
(9) can be written as

P = Ψ(0, t)′P0Ψ(0, t) +
∫ t

0

Ψ(τ, t)′PGG′PΨ(τ, t) dτ

(24)
t ≥ 0, where Ψ(t, τ) denotes the state transition matrix
of ż = (A + GG′P )z. Since Ψ(t, 0)P0Ψ(t, 0)′ > 0 and
PGG′P ≥ 0, it follows that P (t) > 0 for all 0 ≤ t < t1.
Consider now the case t = tk, k > 0. From (7), we notice

that J(z; tk) can be written as

J(z; tk) = min
αjk

{
min

d:[0,tk),αji
i=0,1,...k−1

{
(x(0) − x̂0)

′P0(x(0) − x̂0)

+

∫ tk

0

‖d(σ)‖2 dσ +
∑
j∈Ik

‖αjkyj(tk) − C̄jx(tk) − d̄j‖2

+

k−1∑
i=0

∑
j∈Ii

‖αjiyj(ti) − C̄jx(ti) − d̄j‖2 :

x(t−k ) = x(tk) = z, ẋ = Ax + b + Gd
}}

= min
αjk

{
J(z; t−k ) +

∑
j∈Ik

‖αjkyj(tk) − C̄jx(tk) − d̄j‖2
}

(25)

For k = 1 we already saw that J(z, t−1 ) is given by (20).
Assuming that it has the same form at time t1, replacing it
in the left and right-hand-side of (25), after some algebraic
manipulation, we obtain

z′
[
P (tk) − P (t−k ) − W (tk)

]
z

+ 2z′
[− P (tk)x̂(tk) + P (t−k )x̂(t−k ) − w(tk)

]
+ c(tk) + x̂(tk)′P (tk)x(tk) − x̂(t−k )′P (t−k )x(t−k )

− c(t−k ) −
∑
j∈Ik

d̄j

(
I − yjy′

j

‖yj‖2

)
d̄j = 0,

where the definitions (13) and (14) were used. This equation
for k = 1 holds provided that

P (tk) − P (t−k ) − W (tk) = 0, (26)

− P (tk)x̂(tk) + P (t−k )x̂(t−k ) − w(tk) = 0, (27)

c(tk) + x̂(tk)′P (tk)x(tk) − x̂(t−k )′P (t−k )x(t−k ) − c(t−k )

−
∑
j∈Ik

d̄j

(
I − yjy

′
j

‖yj‖2

)
d̄j = 0. (28)

Replacing (26) in (27) and these two equations in (28), we
conclude that (11)–(12), and (17) hold.
Notice that for P1 := P (t1) = P (t−1 ) + W (t1) > 0

because P (t−1 ) > 0 as it was proved above, and W (ti) ≥ 0,
i = 1, . . . , k. Therefore, replacing the initial condition (19)
by

J(z; t1) = (z − x̂1)′P1(z − x̂1), z ∈ R
n

with x̂1 = x̂(t1), and solving the linear partial differential
equation (18), we conclude that (9)-(11) hold for 0 ≤ t <
t2. Applying this line of reasoning successively until i = k
we conclude that (15) holds and from this that x̂(t) given
by (8)–(12) is indeed the solution to Problem 1.
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IV. ESTIMATOR CONVERGENCE

In this section we investigate under what conditions the
estimate x̂ provided by Theorem 1 converges to the true
state x of the perspective system. The following technical
assumptions are needed:

Assumption 1: There exist positive constants δ, ∆ ∈
(0,∞) such that δI ≤ G(u)G(u)′ ≤ ∆I , ∀u ∈ R

nu

Assumption 2: Let Num(t, σ), 0 ≤ σ < t denote the
number of time instants at which measurement arrive in the
open interval (σ, t). There exist finite positive constants τD

and N0, for which the following condition holds:

Num(t, σ) ≤ N0 +
t − σ

τD
.

The constant τD is called the average dwell-time and N0

the chatter bound.
Assumption 1 is a mild assumption and essentially guar-

antees that G(u) is bounded and full-row rank, “uniformly”
over all possible inputs. Assumption 2 roughly speaking
guarantees that the average interval between consecutive
arrival of measurements is no less than τD. This type
of condition typically arises in the context of logic-based
switching control (cf., e.g., [19] and references therein). In
our context it guarantees that the summation in (7) will not
grow unbounded due to “too frequent” measurements. This
assumption is purely technical and is need to simplify the
analysis. In practice it always holds.
The following result establishes the convergence of the

state estimate.
Theorem 2: Assuming that the solution to the process

(1), (5) exists globally, the solution to the impulse state
estimator (8)–(12) also exists globally. Moreover, when
Assumptions 1-2 hold and P−1 remains uniformly bounded,
there exist positive constants c, r < 1, γd, γ1, . . . , γN such
that

‖x̃(tk)‖ ≤ c rk‖x̃(0)‖ + γd sup
τ∈(0,tk)

‖d(τ)‖

+
N∑

j=1

γj sup
τ∈(0,tk)

‖n̄j(τ)‖, tk > 0 (29)

where x̃(t) := x̂(t)−x(t) denotes the state estimation error.

Proof: From (1) and (10) we conclude that for all
ti ≤ t < ti+1, the state estimation error evolves according
to

˙̃x = A(u)x̃ − G(u)d.

Defining,
V := x̃P x̃, (30)

and computing its time derivative, it follows that

V̇ = x̃′(Ṗ + PA + A′P )x̃ − 2x̃PGd
= −x̃′(PGG′P )x̃ − 2x̃′PGd, ti ≤ t < ti+1

By completing the squares and using Assumption 1, we
conclude that

V̇ = −1
2
x̃′(PGG′P )x̃ − 1

2
‖G′P x̃ + 2d‖2 + 2‖d‖2

≤ −1
2
δλmin(P )V + 2‖d‖2, ti ≤ t < ti+1

where λmin(P ) denotes the smallest eigenvalue of P . Using
the assumption that P is lower bounded by a positive value,
and defining γ := 1

2δ infτ∈[ti,ti+1) λmin(P (τ)), we further
conclude that for all ti ≤ t < ti+1,

V (t) ≤ V (ti)e−γ(t−ti) +
2
γ

sup
τ∈[ti,t)

‖d(τ)‖2. (31)

Consider now t = ti+1. From (11)-(12), the estimation
error x̃ at time t = ti+1 can be written as

x̃(ti+1) =
[
I − P (ti+1)−1W (ti+1)

]
x̃(t−i+1)

+ P (ti+1)−1η, (32)

where η :=
∑

j∈Ii+1
C̄ ′

jY
′
j Yjn̄j , and each Yj is a matrix

for which I − yjy
′
j

‖yj‖2 = Y ′
j Yj . Such matrices always exist

because I− yjy
′
j

‖yj‖2 ≥ 0. Thus, replacing (32) in (30), we get

V (ti+1) = x̃(t−i+1)
′
[
P (ti+1) − 2W (ti+1)

+ W (ti+1)P (ti+1)
−1W (ti+1)

]
x̃(t−i+1)

+ η′P (ti+1)
−1η + 2x̃(t−i+1)

′ [I − W (ti+1)P (ti+1)
−1] η. (33)

Observe that using (11) and resorting to the matrix inversion
lemma1, and simplifying the notation by dropping the time
dependence, P (ti+1) can be written as
P (ti+1) − 2W + WP (ti+1)

−1W = P − W + W [P + W ]−1W

= P − W
1
2

[
I − W

1
2

[
P + W

1
2 IW

1
2

]−1

W
1
2

]
W

1
2

= P − W
1
2 FW

1
2

where F :=
[
I + W

1
2 P−1W

1
2

]−1

and P = P (t−i+1). In
this setting, given a positive semidefinite matrix M , we
denote by M

1
2 any matrix such that (M

1
2 )′M

1
2 = M . The

others terms in (33) can be written as

P (ti+1)
−1 = (P + W )−1 = P−1 − P−1W

1
2 FW

1
2 P−1,

I − W (ti+1)P (ti+1)
−1 = I − W

1
2 IW

1
2

[
P + W

1
2 IW

1
2

]−1

= I − W
1
2 FW

1
2 P−1.

Thus,

V (ti+1) = x̃′P x̃ − x̃′W
1
2 FW

1
2 x̃

+ η′(P−1 − P−1W
1
2 FW

1
2 P−1)η

+ 2x̃′(I − W
1
2 FW

1
2 P−1)η.

By completing the squares, we further conclude that

V (ti+1) ≤ (1 + ε)V (t−i+1) +
(
1 +

1
ε

)
η′P−1η,

where ε is an arbitrary small positive constant. Therefore,
resorting to (31), V (ti+1) satisfies

V (ti+1) ≤ (1 + ε)V (ti)e−γ(ti+1−ti) +
1
ε
ai+1 + bi+1,

1Let A, C, and A−1+B′C−1B be non-singular matrices, then (A−1+
B′C−1B)−1 = A − AB′(BAB′ + C)−1BA. Another useful matrix
identity is the following (A−1 +B′C−1B)−1B′C−1 = AB′(BAB′ +
C)−1.
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where

ai+1 := λmax(P−1)‖η‖2,

bi+1 := (1 + ε)
2

γ
sup

τ∈[ti,ti+1)

‖d(τ)‖2 + ai+1.

Furthermore, solving this inequality recursively, we get

V (tk) ≤ (1 + ε)ke−γ(tk−t0)V (t0)

+
k−1∑
j=0

(1 + ε)je−γ(tk−tk−j)
(1

ε
ak−j + bk−j

)
.

Applying Assumption 2, we first notice that tk − tk−j ≥
[j − N0]τD, j = 0, 1, . . . , k − 1. Consequently

V (tk) ≤ [(1 + ε)e−γτD
]k

eγN0τDV (t0)

+
k−1∑
j=0

[
(1 + ε)e−γτD

]j (1
ε
ak−j + bk−j

)
eγN0τD (34)

From this inequality, we further conclude that by picking
ε > 0 such that r := (1 + ε)e−γ maxj τD < 1, it
follows that V is bounded and V (tk) → 1

1−r ( 1
ε maxj aj +

maxj bj)eγ maxj{N0τD} as k → ∞. Since for every finite
time P is positive definite, V must be finite on any finite
interval and therefore so must be x̃ and x̂. Global existence
of solution follows. It is also straightforward to conclude
from (34) that the ISS-like bound (29) holds.
Some condition on the observability of (1), (5) would be

expected to achieve convergence of the estimated state x̂
to the process state x. In Theorem 2 this condition appear
in the form of the requirement that P−1 remains bounded.
The following result provides a condition under which this
happens.

Lemma 1: The matrix P−1 remains uniformly bounded
along trajectories of the system (1), (5), and the state-
estimator (8)-(12), provided that there exist positive con-
stants N, ε such that the following persistence of excitation
condition

1
N

N∑
j=0

Φ(ti+j , ti)′W (ti+j)Φ(ti+j , ti)) ≥ εI > 0, (35)

i = 0, 1, . . . , k, holds, where Φ(t, τ) denotes the state
transition matrix of ż = A(u)z.

Proof: Due to space limitations, the proof is omitted.
It can be found in [20]

Combining Theorem 2 and Lemma 1 we obtain the
following:

Corollary 1: When Assumptions 1 and 2 hold, and there
exist constants N, ε such that the persistence of excitation
condition (35) holds, the state-estimate x̂ converges to the
state x in the absence of disturbance input and measurement
noise. When the disturbance and noise are bounded but
nonzero, x̂ may not converge to x but remains bounded
away from it.

V. EXPERIMENTAL RESULTS

The theoretical results presented in the previous sections
were experimentally validated by applying them to esti-
mate the position and orientation of a mobile robot using
measurements from an on-board CCD camera. This section
describes the experimental setup and presents the results
obtained.

Fig. 1. Experimental setup: Pionner 2-DXE mobile robot with CCD
camera mounted on top and visual landmark.

The experiments were carried out on a Pionner 2-DXE
mobile robot from ActivMedia [21]. The vehicle, shown
in Fig. 1, has two rear wheels which are powered by two
independent high torque, reversible-DC motors, and one
passive rear caster to balance the robot. The vehicle is
equipped with a Sony EVI D30 pan-tilt-zoom (PTZ) color
video camera mounted on the top of the robot with its
optical axis oriented towards the forward direction (when
pan and tilt angles are zero).
To simplify the image processing, in these experiments

we used the corners of a black square as visual landmarks
(see Fig. 1). The location of these points were obtained
by detecting the edges of the square and then computing
their intersections. A pan controller was also implemented
to keep as much as possible the visual landmark in the
center of the image. As it is shown in [20], [22], system
(1)–(2) describes the kinematic model of the mobile robot
whose outputs are the homogeneous image coordinates of
N (in this case N = 4) fixed points provided by an on-
board camera.
To validate the minimum-energy state estimator, several

tests were carried out. Due to space limitations we present
here results for a single test in which the vehicle follows a
circular path with linear velocity v = 0.06m/s and angular
velocity ω = 0.09 rad/s. Since the robot is describing a
circular trajectory and the pan angle is limited to [−π

2 , π
2 ],

the visual landmarks periodically left the camera’s field of
view. While this happened, the estimator did not receive any
visual measurements. Fig. 2–4 show the experimental re-
sults. We can see that the output of the estimator converges
to the values correspondent to a circular trajectory. Observe
also the time evolution of the minimum and maximum
singular values of P when the estimator is receiving (γ = 0)
or not receiving (γ = 1) measurements from the camera.
Another interesting observation is the behavior of the pan
controller that is always trying to compensate the motion
of the robot in order to keep the features in the image.
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Fig. 2. Time evolution of the estimated position (x̂, ŷ, ẑ), and orientation
θ̂.
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Fig. 3. Time evolution of the minimum and maximum singular values of
P , respectively; the pan angle; and the variable γ which indicates when
the estimator is receiving (γ = 0) or not (γ = 1) measurements from the
camera.

VI. CONCLUSIONS

We considered the problem of estimating the state of
continuous-time systems with perspective outputs, whose
measurements arrive at discrete-time instants, are time-
delayed, noisy, and may not be complete. We designed a
dynamical impulsive system that produces an estimate of
the state that is “most compatible” with the dynamics, in
the sense that it requires the least amount of noise energy to
explain the measured output. Under suitable observability
assumptions, the state-estimate converges asymptotically to
the true value of the state in the absence of noise and
disturbance. In the presence of noise, the estimate remains
bounded away from the true value of the state. We apply
these results to the estimation of position and orientation
for a mobile robot that use a monocular charged-coupled-
device (CCD) camera mounted on-board that observes the
apparent motion of stationary points. Future work will
address the application of these results to design output
feedback controllers for autonomous vehicles.
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