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Abstract— This paper addresses the state estimation of a
system with implicit outputs. We formulate the problem in the
so-called deterministic H∞ filtering setting by computing the
value of the state that minimizes the induced L2-gain from
disturbances to estimation error, while remaining compatible
with the past observations. To avoid weighting the distant past
as much as the present, a forgetting factor is also introduced.
We show that, under appropriate observability assumptions, the
optimal estimate converges globally asymptotically to the true
value of the state in the absence of noise and disturbance. In
the presence of noise, the estimate converges to a neighborhood
of the true value of the state. We apply these results to
the estimation of position and attitude of an autonomous
vehicle using measurements from an inertial measurement unit
(IMU) and a monocular charged-coupled-device (CCD) camera
attached to the vehicle.

I. INTRODUCTION

During the last few decades there has been an extensive
study on the design of observes for nonlinear systems. We
consider a new class of systems with nonlinear output equa-
tions, called systems with implicit outputs. These systems
arise when one needs to estimate the pose (position and at-
titude) of autonomous vehicles using measurements from an
inertial measurement unit (IMU) and a monocular charged-
coupled-device (CCD) camera attached to the vehicle.

Consider a continuous-time system described by

ẋ = A(x, u) + G(u)w, (1)
E(x, v)y = C(x, u) + v, (2)

where A(x, u), C(x, u), E(x, v) are affine functions in x,
x ∈ Rn denotes the state of the system, u ∈ Rm its
control input, y ∈ Rq its measured output, w ∈ Rnw an
input disturbance that cannot be measured, and v ∈ Rp

measurement noise. The initial condition x(0) of (1) and
the signals w and v are assumed deterministic but unknown.
The measured output y is only defined implicitly through (2)
and the map E(x, ·) is such that

ImageE(x, ·) =
{
E0(x) +

k∑

i=1

αiEi : αi ∈ R
}

(3)
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where Ei ∈ Rp×q and E0(x) is affine in x. We call (1)–
(3) a state-affine system with implicit outputs, or for short
simply a system with implicit outputs. These type of systems
are motivated by applications in dynamic vision such as the
estimation of the motion of the camera from a sequence
of images. System (1)–(3) can be seen as a generalization
of perspective systems introduced by Ghosh et al. [1]. The
reader is referred to [2], [3] for several other examples of
perspective systems in the context of motion and shape
estimation. See also [4], [5] that address the observability
problem of perspective linear systems. The system with
implicitly defined outputs described in [6] and the state-affine
systems with multiple perspective outputs considered in [7]
(see also [8]–[10]) are also special cases of (1)–(3).

In this paper we design a state-estimator for (1)–(3) using
a deterministic H∞ approach. Given an initial estimate and
the past controls and observations collected up to time t,
the optimal state estimate x̂ at time t is defined to be the
value that minimizes the induced L2-gain from disturbances
to estimation error. To avoid weighting the distant past as
much as the present, a forgetting factor λ is also introduced.

Over the last two decades the H∞ criterion has been
applied to filtering problems, cf., e.g., [11]–[15]. See also
[16], where H∞ filtering techniques are discussed and sim-
ilarities of the type error bounds with those obtained for the
stochastic risk-sensitive filter are pointed out. Closely related
to H∞ filtering are the minimum-energy estimators, which
were first proposed by Mortensen [17] and further refined
by Hijab [18]. Game theoretical versions of these estimators
were proposed by McEneaney [19]. In [7], minimum-energy
estimators were derived for systems with perspective outputs
and input-to-state stability like properties with respect to
disturbances were presented. These results were also ex-
tended to solve the estimation problem when the measured
outputs are transmitted through a network, that is, when
the measurements arrive at discrete-time instants, are time-
delayed, noisy, and may not be complete.

It is worth pointing out that in general, for nonlin-
ear systems, either minimum-energy, or H∞ state estima-
tors approaches lead to infinite dimensional observers with
state evolving according to a first-order nonlinear PDE of
Hamilton-Jacobi type driven by the observations. Due to
the particular structure of (1)–(3) in this paper we obtain
a closed-form solution that resembles a Kalman-Bucy filter.
Furthermore, under appropriate observability assumptions,
we show that the state-estimator proposed has the desirable
property that the state estimate converges asymptotically to
the true value of the state in the absence of noise and



disturbance. In the presence of noise, the estimate con-
verges to a neighborhood of the true value of the state.
We can therefore use this state-estimator to design output-
feedback controllers by using the estimated state to drive
state-feedback controllers.

A fundamental problem in autonomous vehicles is the
determination of position and attitude with respect to an
inertial coordinate system. A promising solution is to com-
bine the measurements provided by an inertial measurement
unit (IMU) and a monocular charged-coupled-device (CCD)
camera mounted on-board. The problem of estimating the
position and orientation of a camera mounted on a rigid
body from the apparent motion of point features has a long
tradition in the computer vision literature (cf., e.g., [20]–[25]
and references therein). Filtering-like or iterative algorithms
that continuously improve the estimates as more data (i.e.,
images) are acquired, and that are robust with respect to
measurement noise are especially desirable. Soatto et al. [22]
formulated the visual motion estimation problem in terms of
identification of nonlinear implicit systems with parameters
on a topological manifold, and propose a dynamic solution
either in the local coordinates, or in the embedding space of
the parameter manifold. In [25], rigid-body pose estimation
using inertial sensors and a monocular camera is considered.
A local convergent observer where the states evolve on
SO(3) is proposed (the rotation estimation is decoupled
from the position estimation). In the area of wheeled mobile
robots, Ma et al. [26] addressed the problem of tracking an
arbitrarily shaped continuous ground curve by formulating
it as controlling the shape of the curve in the image plane.
An application for landing an unmanned air vehicle using
vision in the control loop is described in [27]. In [23], the
autonomous aircraft landing problem based on measurements
provided by airborne vision and inertial sensors is addressed.
The authors cast the problem in a linear parametrically
varying framework and solve it using tools that borrows
from the theory of linear matrix inequalities. These results
are extended in [28] to deal with the so-called out-of-frame
events.

In Section V we formulate the problem of estimating the
pose of an autonomous vehicle using measurements from
an IMU and a monocular CCD camera attached to the
vehicle. The problem is then solved by using the H∞ state-
estimators derived in the previous sections. One of the main
contributions is that, contrary to what happens with most
previous algorithms, the ones proposed here are globally
convergent provided that suitable observability assumptions
are satisfied. Global convergence to the correct position and
orientation is achieved in the absence of noise. When there
is noise, the magnitude of the estimation error is essentially
proportional to the amount of noise.

Due to space limitations, only outlines of the proofs are
provided.

II. PROBLEM FORMULATION

This section formulates the state estimation problem using
a H∞ deterministic approach.

Consider the system with implicit outputs (1)–(3). Our
goal is to design an observer which estimates the state vector
x(t) given an initial estimate x̂0 and the past controls and
observations {(u(τ), y(τ)) : 0 ≤ τ ≤ t}, and minimize the
induced L2-gain from disturbances to estimation error. In
particular, for a given γ > 0, the estimate x̂ should satisfy

∫ t

0

‖x(τ)− x̂(τ)‖2 dτ ≤ γ2
(
(x(0)− x̂0)′P0(x(0)− x̂0)

+
∫ t

0

‖w(τ)‖2 + ‖v(τ)‖2 dτ
)

where P0 > 0, x̂0 encode a-priori information about the
state. To avoid the problem of weighting the distant past as
much as the present, we introduce a forgetting factor λ >
0. More specifically, we address the following deterministic
optimization problem:

Problem 1 (H∞ state estimation): Given an initial esti-
mate x̂0, an input u and a measured output y defined on
an interval [0, t), compute the estimate x̂(t) of the state at
time t defined by

x̂(t) := arg min
z∈Rn

J(z, t), (4)

where

J(z; t) := min
w,v

{
γ2e−2λt(x(0)− x̂0)′P0(x(0)− x̂0)

+ γ2

∫ t

0

e−2λ(t−τ)
(
‖w(τ)‖2 + ‖v(τ)‖2

)
dτ

−
∫ t

0

e−2λ(t−τ)‖x(τ)− x̂(τ)‖2 dτ :

x(t) = z, ẋ = A(x, u) + G(u)w,

E(x, v)y = C(x, u)x + v
}

. (5)

¤
The negative of J(z, t) is the information state introduced

in [29], [30] and can be interpret as a measure of the
likelihood of state x = z at time t.

III. THE OBSERVER EQUATIONS

We propose the following observer for (1)–(3):

Q̇ = (∇A(u) + λI)Q + Q(∇A(u) + λI)′

− γ2Q
(
Ψ− γ−2I

)
Q + γ−2GG′, Q(0) = P−1

0 (6)
˙̂x = A(x̂, u)− γ2QΨx̂− γ2Qψ, x̂(0) = x̂0 (7)

where

Ψ(t) :=
(
JE0(y)−∇C

)′(
I − Y Y ⊥)′×(

I − Y Y ⊥)(
JE0(y)−∇C

)
,

ψ(t) :=
(
JE0(y)−∇C

)′(
I − Y Y ⊥)×(

I − Y Y ⊥)
(E0(0)y − C(0, u)),

Y :=
[
E1y|E2y| · · · |Eky

]
, Y ⊥ is its pseudo-inverse, ∇A(u)

and JE0(y) are respectively the gradient of A(x, u) and the
Jacobian of E0(x)y both with respect to x. Since A(x, u)



and E0(x) are affine in x, it follows that ∇A(·) and JE0(·)
only depend on u and y, respectively.

The following result solves Problem 1.
Theorem 1 (H∞ state estimator): Assuming that (6)–(7)

has a solution on [0, T ), T ∈ [0,∞], then the H∞ state
estimate defined by (4)–(5) can be obtained from (6)–(7).
Furthermore, the cost function J(z; t) defined in (5) is
quadratic and can be written as

J(z; t) =
(
z − x̂(t)

)′
P (t)

(
z − x̂(t)

)
+ c(t), (8)

where c(t) satisfies an appropriate ODE (cf. (13) below).
Proof: The function J(z; t), z ∈ Rn, t ≥ 0 defined

in (5) can be viewed as a cost-to-go and computed using
dynamic programming. After some algebraic manipulation
and exploring the fact that E(z, v) satisfies (3), we conclude
that (see [31])

Jt(z; t) = − 1
4γ2

‖G′(u)J ′z(z; t)‖2 + γ2
(
E0(z)y − C(z, u)

)′
(
I − Y Y ⊥)′(

I − Y Y ⊥)(
E0(z)y − C(z, u)

)

− ‖z − x̂‖2 − Jz(z; t)A(z, u)− 2λJ(z; t), (9)

where Jt and Jz denote the partial derivatives of J with
respect to t and z, respectively. The value of J(z; t) can be
determined from the linear partial differential equation (9)
with initial condition

J(z; 0) = (z − x̂0)′P0(z − x̂0), z ∈ Rn. (10)

It turns out that there exists a solution to (9)–(10) which
is differentiable with respect to z and can be written as (8)
for appropriately defined signals x̂(t) and c(t). The signal
x̂ is then precisely the estimate for the state x of (1)–(3).
Moreover, matching (10) with (8) we conclude that P (0) =
P0, x̂(0) = x̂0, and c(0) = 0. To verify that the solution to
(9)–(10) can indeed be written as (8), we substitute it into
(9) and using the fact that A(z, u) = ∇A(u)z +A(0, u) and
E0(z)y = JE0(y)z + E0(0)y, we get

z′
[
Ṗ +

1
γ2

PGG′P + P∇A +∇A′P + 2λP − γ2Ψ + I
)
z

+ 2z′
[− P ˙̂x− Ṗ x̂− 1

γ2
PGG′Px̂−∇A′Px̂ + PA(0, u)

− 2λP x̂− γ2ψ− x̂
]
+ ċ + 2x̂′P ˙̂x + x̂′Ṗ x̂ +

1
γ2

x̂′PGG′Px̂

− x̂′PA(0, u) + 2λx̂′Px̂ + 2λc− γ2
(
E0(0)y −C(0, u)

)′×(
I−Y Y ⊥)′(

I−Y Y ⊥)(
E0(0)y−C(0, u)

)
+‖x̂‖2 = 0.

Since this equation must hold for all z ∈ Rn we conclude
that

Ṗ +
1
γ2

PGG′P + P∇A +∇A′P + 2λP

−γ2Ψ + I = 0 (11)

−P ˙̂x− Ṗ x̂− 1
γ2

PGG′Px̂−∇A′Px̂

+PA(0, u)− 2λP x̂− γ2ψ − x̂ = 0 (12)

ċ + 2x̂′P ˙̂x + x̂′Ṗ x̂ +
1
γ2

x̂′PGG′Px̂

−x̂′PA(0, u) + 2λx̂′Px̂ + 2λc− γ2
(
E0(0)y

−C(0, u)
)′(

I − Y Y ⊥)′(
I − Y Y ⊥)×(

E0(0)y − C(0, u)
)

+ ‖x̂‖2 = 0 (13)

Substituting (11) in (12), we obtain

−Ṗ = P (∇A + λI) + (∇A + λI)′P

+ γ−2PGG′P − γ2Ψ + I (14)

P ˙̂x = PA(x̂, u)− γ2Ψx̂− γ2ψ (15)

Since the solution Q to (6) is positive definite (cf. Lemma
2 in Appendix), then Q−1 is defined on [0, T ). Using the
fact that Q̇−1 = −Q−1Q̇Q−1, it is straightforward to show
that both Q−1 and P satisfy (14). Since Q(0) = P−1

0 , by
unicity of solution Q(t) = P−1(t), ∀t ∈ [0, T ), and therefore
(14)–(15) and (6)–(7) are equivalent.

To guarantee that the H∞ state estimate has a global
solution (T = ∞), the value of γ should be sufficiently
large. In particular, a sufficient condition for this is given by
the following result.

Lemma 1 (Observability condition): The H∞ estimator
(6)–(7) has a global solution and

P (t) ≥ δI > 0, ∀t ≥ 0, (16)

for some δ > 0, if there exists a sufficiently large γ > 0
such that the following condition

γ2W0(t) ≥
∫ t

0

Φ(τ, t)′Φ(τ, t)dτ + δI ∀t ≥ 0 (17)

holds, where

W0(t) :=
∫ t

0

Φ(τ, t)′Ψ(τ)Φ(τ, t)dτ, (18)

and Φ(t, τ) denotes the state transition matrix of ż = (∇A+
γ−2GG′P + λI)z.

Proof: Due to space limitations, the proof is omitted.
It can be found in [31].

IV. ESTIMATOR CONVERGENCE

We are now interesting in determining under what con-
ditions does the state estimate x̂ converges to the true state
x.

Theorem 2 (Convergence): Assuming that the solutions to
the system with implicit outputs (1)–(3) and to state estimator
(6)–(7) exist on [0, T ), T ∈ [0,∞], and P (t) ≥ δI , then there
exist positive constants c, κ, γw, γv such that

‖x̃(t)‖ ≤ ce−κt‖x̃(0)‖+ γw sup
τ∈[0,t)

‖w(τ)‖

+ γv sup
τ∈[0,t)

‖v(τ)‖, ∀t ∈ [0, T ) (19)

where x̃(t) := x̂(t)−x(t) denotes the state estimation error.

Proof: From (1) and (7) we conclude that

˙̃x = (∇− γ2QΨ)x̃− γ2Q
[
(JE0(y)−∇C)′(I − Y Y ⊥)′×

(I − Y Y ⊥)v −Gw (20)



Defining V (x̃) := x̃′Px̃, P := Q−1, computing its time-
derivative, and using (14), we get

V̇ = −x̃′
( 1

γ2
PGG′P + 2λP + γ2Ψ + I

)
x̃− 2x̃′PGw

− 2γ2(JE0(y)−∇C)′(I − Y Y ⊥)′(I − Y Y ⊥)v

By completing the squares, we further conclude that

V̇ ≤ −2(λ− θ)V − 1
λmax(P )

V, V ≥ γ2

2θ
‖w‖2 +

γ2

2θ
‖v‖2,

where θ ∈ (0, λ). It is now straightforward to conclude
that the input-to-state stability bound (19) holds with c =√

λmax(P0)
δ , κ = λ − θ + 1

2λM
, γw = γv = γ√

2δθ
, where

λM = supτ∈[0,T ) λmax(P (τ)).

V. AUTONOMOUS VEHICLES MOTION ESTIMATION USING
CCD CAMERAS AND INERTIAL SENSORS

In this section we show how one can estimate the position
and attitude of an autonomous vehicle with respect to an
inertial coordinate frame defined by visual landmarks using
both measurements from an inertial measurement unit (IMU)
and a monocular charged-coupled-device (CCD) camera
mounted on-board. We do this by reducing the problem to
the estimation of the state of a system with implicit outputs
of the form (1)–(3).

A. Kinematic equations of motion

Let {V} be an inertial coordinate frame defined by visual
landmarks and {B} a body-fixed coordinate frame whose
origin is located e.g. at the center of mass of the vehicle. The
configuration of the vehicle

(
V
B R, VPB

)
or for simplicity of

notation (R, p), is an element of the Special Euclidean group
SE(3) := SO(3) × R3, where R ∈ SO(3) := {R ∈ R3×3 :
RR′ = I3, det(R) = +1} is a rotation matrix that describes
the orientation of the vehicle by mapping body coordinates
into inertial coordinates, and p ∈ R3 is the position of the
origin of {B} in {V}. Denoting by v ∈ R3 and ω ∈ R3

the linear and angular velocities of the vehicle relative to
{V} expressed in {B}, respectively, the following kinematic
relations apply:

ṗ = Rv, (21)

Ṙ = RS(ω), (22)

where

S(x) :=
[ 0 −x3 x2

x3 0 −x1
−x2 x1 0

]
, ∀x := (x1, x2, x3) ∈ R3.

The objective is to determine the position p and orientation
R with respect to the visual coordinate system {V}.

B. Sensor Measurements

We consider that the IMU provides the vehicle’s linear
velocity v, angular velocity ω, and pose (position and at-
titude) with respect to some inertial coordinate frame {I}.
It is assumed that the position and orientation of {I} with

respect to the visual coordinate frame {V} are unknown. The
measurements are denoted by

ζ1 = v,

ζ2 = ω,

ζ3 = IPB , (23)

ζ4 = I
BR, (24)

where ζ1 ∈ R3, ζ2 ∈ R3, ζ3 ∈ R3, ζ4 ∈ SO(3), and(
I
BR, IPB

)
denotes the configuration of the frame {B} with

respect to frame {I}.
We also suppose that there is a camera attached to the

vehicle that sees N points Qi = (xi, yi, zi)′, i = 1, 2, . . . , N
whose coordinates are known for the visual coordinate
system. Denoting by ζi+4 ∈ R3 the homogeneous image
coordinates provided by the camera of the point Qi, the
following relationships apply:

µi+4ζi+4 = F CQi, (25)
[ 0 0 1 ] ζi+4 = 1, ∀i ∈ {1, 2, . . . , N} (26)

where CQi is the position of Qi expressed in the camera’s
frame, µi+4 ∈ R captures the depth of the point CQi (which
is unknown), and F is an upper triangular matrix with the
camera’s intrinsic parameters, of the form

[ f11 f12 f13
0 f22 f23
0 0 1

]
,

where each fij denotes a scalar [32, Chapter 3].
Given the measurements ζi, i = 1, . . . , N + 4, we now

proceed with the formulation of a system with implicit
outputs.

C. System with implicit outputs

Let VQ1 and BQ1 be the coordinates of a point Q1 in the
frames {V} and {B}, respectively. Then, we have that

VQ1 = VPB + V
B RBQ1. (27)

From this and (21)–(22), we obtain the state equations
BQ̇1 = V

B R′ VQ̇1 − S(ω) BQ1 − v, (28)
V
BṘ = −S(ω) V

B R′. (29)

To obtain the output equations for the vision system, we
first note that if VQj and BQj denote the coordinates of
another point Qj in the frames {V} and {B}, respectively,
we conclude that

BQj = V
B R′ VQj − V

B R′ VPB

= V
B R′

(
VQj − VQ1

)
+ BQ1.

Using now (25) and the fact that CQi = CPB + C
BRBQi, we

obtain the output equations

µi+4ζi+4 = F
(

CPB + C
BR V

B R′
(

VQi − VQ1

)

+ C
BR BQ1

)
, ∀i ∈ {1, 2, . . . , N} (30)

where
(

C
BR, CPB

) ∈ SE(3) denotes the configuration of the
frame {B} with respect to the camera’s frame {C}.



We will regard ζ1 and ζ2 as inputs to the implicit output
system. The dynamics of (23)–(24) can be written as

ṖI = −S(ω)PI , (31)
V
IṘ

′ = 0, (32)

with the output equations

ζ3 = V
B R′ VQ1 − BQ1 − PI , (33)

ζ4
V
I R′ = V

B R′, (34)

where PI := V
B R′ VPI . Thus, our implicit output system is

composed by (31)–(32), (28)–(29), (33)–(34) and (30). We
now need to rewrite it in the form (1)–(3).

To proceed we use the following notation: Given an m×n-
matrix M , we denote by stack(M) the mn-vector obtained
from stacking the columns of M one on top of each other,
with the first column on top. Given two matrices Mi ∈
Rmi×ni , i ∈ {1, 2} we denote by M1 ⊗M2 ∈ Rm1m2×n1n2

the Kronecker product of M1 by M2. Using the fact that
given three matrices A, B, X with appropriate dimensions,
stack(AX B) = (B′ ⊗ A) stack(X) [33], we can rewrite
(31)–(32), (28)–(29), (30), (33)–(34) as follows:

ṖI = −S(ω)PI , (35)

stack( V
I Ṙ′) = 09×1 (36)
BQ̇1 = −S(ω) BQ1 − v

+
� VQ̇′1 ⊗ I3×3

�
stack( V

B R′), (37)

stack( V
BṘ′) =

�
I3×3 ⊗−S(ω)

�
stack( V

B R′), (38)

ζ3 =
�V

Q′1 ⊗ I3×3

�
stack( V

B R′)

− BQ1 − PI , (39)� V
I R⊗ I3×3

�
stack(ζ4) = stack( V

B R′), (40)

µi+4ζi+4 = F CPB +
�� VQi − VQ1

�′⊗
F C

BR
�
stack( V

B R′) + F C
BR BQ1 (41)

Thus, defining the vectors x ∈ R24, y ∈ R12+N , and u ∈ R6

as

x :=




PI

stack( V
I R′)

BQ1

stack( V
B R′)


 , y :=




ζ3
stack(ζ4)

ζ5

...
ζ4+N


 , u :=

[
ζ1
ζ2

]
,

it follows that system (35)–(41) can be expressed in the form
(1)–(3) with

A(x, u) :=

[−S(ω) 0 0 0
0 0 0 0
0 0 −S(ω) VQ̇′1⊗I3×3

0 0 0 I3×3⊗−S(ω)

]
x +

[
0
0

−v
0

]
,

C(x, u) :=




−I 0 −I VQ′1⊗I3×3
0 0 0 I
0 0 F C

BR 0

0 0 F C
BR ( VQ2− VQ1)

′⊗F C
BR

0 0 F C
BR ( VQ3− VQ1)

′⊗F C
BR

··· ··· ··· ···
0 0 F C

BR ( VQ2+N− VQ1)
′⊗F C

BR




x +




0
0

F CPB
.
...
.

F CPB




To determine E(x, v) we introduce additive noise to (25),
i.e.,

µi+4ζi+4 = F CQi + vi. (42)

Note that noise does not destroy the constraint (26).
From (42), (26) and (30) we conclude that

µi+4 = [ 0 0 1 ]F
[

CPB + C
BR V

B R′
(

VQi − VQ1

)

+ C
BR BQ1

]
+ vi, ∀i ∈ {1, 2, . . . , N}

which leads to

E(x, v) :=




I 0 ··· ··· ··· 0
0 V

I R⊗I3×3 0 ··· ··· 0
0 0 µ3 0 ··· 0
0 ··· 0 µ4 ··· 0

0 ··· ··· ···
. . . 0

0 ··· ··· ··· 0 µ2+N


 .

The image of E(x, v) satisfies (3) with

E0(x) :=




I 0 ··· ··· ··· 0
0 V

I R⊗I3×3 0 ··· ··· 0
0 0 0 0 ··· 0
0 ··· 0 0 ··· 0

0 ··· ··· ···
. . . 0

0 ··· ··· ··· 0 0




E1 = diag{03×3, 09×9, 1, 0, . . . , 0},
Ei = diag{03×3, 09×9, 0..., 1, .., 0},

EN = diag{03×3, 09×9, 0, . . . , 0, 1}.
We can now use the results given in the previous sections
to compute estimates P̂I , V

I R̂′, BQ̂1 and V
BR̂′ for PI , V

I R′,
BQ1 and V

B R′, respectively. From BQ̂1 and V
BR̂′, p can also

be estimated using

p̂ = VQ1 −V
B R̂ BQ̂1.

VI. CONCLUSIONS

We considered the problem of estimating the state of a
system with implicit outputs. We designed estimators using
a deterministic H∞ approach that are globally convergent
under appropriate observability assumptions and can there-
fore, be used to design output-feedback controllers. We apply
these results to the estimation of position and attitude of
an autonomous vehicle using measurements from an inertial
measurement unit and a monocular charged-coupled-device
camera attached to the vehicle. Future work will address
experimental validation of these results. The estimation prob-
lem in the presence of latency and intermittency of the
observations is a topic of current research.

APPENDIX

Lemma 2: Assuming that (6) has a solution on [0, T ), T ∈
[0,∞], then Q(t) is positive definite for all t ∈ [0, T ).

Proof: Due to space limitations, the proof is omitted.
It can be found in [31].
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