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Abstract— This paper addresses the stabilization of a class
of nonlinear systems in the presence of disturbances, using
hybrid control. To this effect we introduce two new classes
of switched systems and provide conditions under which they
are input-to-state practically stable (ISpS). These results lead
to a control design methodology called switched seesaw control
design that allows for the development of nonlinear control
laws yielding input-to-state stability, using switching. The range
of applicability and the efficacy of the methodology proposed
are illustrated via two non-trivial design examples. Namely,
stabilization of the extended nonholonomic double integrator
(ENDI) and stabilization of an underactuated autonomous
underwater vehicle (AUV) in the presence of input disturbances
and measurement noise.

I. INTRODUCTION

There has been increasing interest in hybrid control in
recent years, in part due to its potential to overcome the
basic limitations to nonlinear system stabilization introduced
by Brockett’s celebrated result in the area of nonholonomic
systems control [1]. Hybrid controllers that combine time-
driven with event-driven dynamics have been developed by
a number of authors and their design is by now firmly rooted
in a solid theoretical background [2], [3].

Inspired by the progress in the area, the first part of this
paper offers a new design methodology for the stabilization
of nonlinear systems in the presence of external disturbances
by resorting to hybrid control. To this effect, two classes of
switched systems are introduced: unstable/stable switched
systems and switched seesaw systems. The first have the
property of alternating between an unstable and a stable
mode during consecutive periods of time. The latter can be
viewed as the interconnection of two unstable/stable systems
such that when one is stable the other is unstable, and vice-
versa. Conditions are given under which these systems are
input-to-state practically stable (ISpS). The results are then
used to develop a control design framework called switched
seesaw control design that allows for the solution of robust
control problems using switching.

To illustrate the scope of the new design methodology
proposed, the second part of the paper solves the challenging
problems of stabilizing the so-called extended nonholonomic
double integrator (ENDI) and an underactuated autonomous
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underwater vehicle (AUV) in the presence of input dis-
turbances and measurement noise. These examples were
motivated by the problem of point stabilization, that is,
the problem of steering an autonomous vehicle to a point
with a desired orientation. For underactuated vehicles, i.e.,
systems with fewer actuators than degrees-of-freedom, point-
stabilization is particularly challenging because most of the
vehicles exhibit second-order (acceleration) nonholonomic
constraints. As pointed out in a famous paper of Brockett [1],
nonholonomic systems cannot be stabilized by continuously
differentiable time invariant static state feedback control
laws. To overcome this basic limitation, a variety of ap-
proaches have been proposed in the literature [2], [4]–[15].

From a practical point of view, the above problem has
been the subject of much debate within the ground robotics
community. However, it was only recently that the problem
of point stabilization of underactuated AUVs received special
consideration in the literature [16]–[19]. Point stabilization
of AUVs poses considerable challenges to control system
designers because the dynamics of these vehicles are com-
plicated due to the presence of complex, uncertain hydrody-
namic terms. These, in turn, require that model uncertainty
be taken into account explicitly at the control design level.
Furthermore, the models of the vehicles are normally second-
order nonholonomic and include a drift vector field that is not
in the span of the input vector fields, thus precluding the use
of input transformations to bring them to driftless form. In
this paper, the problem of stabilizing an underactuated AUV
in the horizontal plane is solved by resorting to the seesaw
control design technique referred to before. For reasons of
clarity, the technique is first applied to stabilize, in the
presence of input disturbances and measurement noise, the
so-called extended nonholonomic double integrator (ENDI),
which captures the kinematic and dynamic equations of a
wheeled robot. The methodology adopted is then extended
to deal with an AUV by showing that its dynamics can be
cast in a form similar to (but more complex than) that of
the ENDI. One of the key contributions of the paper is
the fact that the solution proposed for point stabilization
of an AUV addresses explicitly the existence of external
disturbances and measurement errors. In a general setting this
topic has only been partially addressed in the literature and
in many aspects it still remains an open problem. Noteworthy
exceptions are e.g., [9], [14], [15].

Due to space limitations, all the proofs are omitted. These
can be found in [20].
Notation and definitions: |·| denotes the standard Euclidean
norm of a vector in Rn and ‖u‖I is the (essential) supremum
norm of a signal u : I → Rn on an interval I ⊂ [0,∞). Let
a⊕b := max{a, b} and denote by MW the set of measurable,
essentially bounded signals w : [t0,∞) → W , where W ⊂
Rm. A function γ : [0,∞) → [0,∞) is of class K (γ ∈ K)



if it is continuous, strictly increasing, and γ(0) = 0 and
of class K∞ if in addition it is unbounded. A function β :
[0,∞)×R→ [0,∞) is of class1 KL if it is continuous, for
each fixed t ∈ R the function β(·, t) is of class K, and for
each fixed r ≥ 0 the function β(r, t) decreases with respect
to t and β(r, t) → 0 as t → ∞. We denote the identity
function from R to R by id, and the composition of two
functions γi : R→ R; i = 1, 2 in this order by γ2 ◦ γ1. The
acronym w.r.t. stands for “with respect to”.

II. DWELL-TIME SWITCHING THEOREMS AND HYBRID
CONTROL

This section introduces and analyzes stability related re-
sults for two classes of systems that will be henceforth called
unstable/stable and seesaw switched systems.

A. Unstable/stable switched system
Consider the switched system

ẋ = fσ(x,w), x(t0) = x0 (1)

where x ∈ X ⊂ Rn is the state, w ∈ MW is a disturbance,
and σ : [t0,∞) → {1, 2} is a piecewise constant switching
signal that is continuous from the right and evolves according
to

σ(t) =

{
1, t ∈ [tk−1, tk), k odd
2, t ∈ [tk−1, tk), k even

(2)

In (2), {tk} := {t1, t2, t3, . . .} is a sequence of strictly
increasing infinity switching times in [t0,∞) and t0 is the
initial time. We assume that both fi; i = 1, 2 are locally
Lipschitz w.r.t. (x, w) and that the solutions of (1) lie in X
and are defined for all t ≥ t0.

Let ω : Rn → [t0,∞) be a continuous nonnegative real
function called a measuring function. For a given switching
signal σ, system (1) is said to be input-to-state practically
stable2 (ISpS) on X w.r.t. ω if there exist functions β ∈ KL,
γ ∈ K, and a nonnegative constant c such that for every
initial condition x(t0) and every input w ∈ MW such that
the solution x(t) of (1) lies entirely in X , x(t) satisfies

ω(x(t)) ≤ β(ω(x(t0)), t− t0)⊕ γw(‖w‖[t0,t])⊕ c. (3)

for all t ≥ t0. When X = Rn, W = Rm, ω(x) = |x| and
c = 0, ISpS is equivalent to the by now classical definition of
input-to-state stability (ISS) [21]. With respect to (1), assume
the following conditions hold:
1. Unstability (σ = 1). For ẋ = f1(x, w), there exist
functions β1 ∈ KL, γw

1 ∈ K, and a nonnegative constant
c1 such that for every initial condition x(t0) and every input
w ∈ MW for which the solution x(t) of (1) lies entirely in
X , x(t) satisfies3

ω(x(t)) ≤ β1

(
ω(x(t0))⊕γw

1 (‖w‖[t0,t])⊕c1,−(t−t0)
)

(4)

1Our definition of KL functions is slightly different from the standard
one because the domain of the second argument has been extended from
[0,∞) to R. This will allow us to consider the case β(r,−t) which may
grow unbounded as t →∞.

2On a first reading, one can consider that X = Rn. In this case, the
reference to the set X is omitted. We will need the more general setting
when we consider applications to the stabilization of underactuated vehicles.

3Another alternative is to consider that x(t) satisfies ω(x(t)) ≤
βx
1

�
ω(x(t0)),−(t−t0)

�⊕βw
1

�‖w‖[t0,t],−(t−t0)
�⊕βc

1

�
c1,−(t−t0)

�
with βx

1 , βw
1 , βc

1 ∈ KL. There is no loss of generality in considering
(4), because one can always take β1(r,−t) = βx

1 (r,−t) ⊕ βw
1 (r,−t) ⊕

βc
1(r,−t) with the advantage of introducing a less complicated notation.

However, this may lead to more conservative estimates.

t ≥ t0. Notice how the term −(t−t0) in the second argument
of β1 captures the unstable characteristics of the system.

2. Stability (σ = 2). System ẋ = f2(x, w) is ISpS on X
w.r.t. ω, that is, for every initial condition x(t0) and every
input w ∈ MW such that the solution x(t) of system (1) lies
entirely in X , x(t) satisfies

ω(x(t)) ≤ β2(ω(x(t0)), t− t0)⊕ γw
2 (‖w‖[t0,t])⊕ c2, (5)

t ≥ t0, where β2 ∈ KL, γw
2 ∈ K, c2 ≥ 0.

If conditions 1–2 above are met, we call (1)–(2) an
unstable/stable switched system on X w.r.t. ω. The definition
of a stable/unstable switched is done in the obvious manner.

The following result provides conditions under which an
unstable/stable switched system is ISpS.

Lemma 1: Consider an unstable/stable switched system
on X w.r.t. ω. Let ti; i ∈ N be a sequence of strictly
increasing switching times {ti} such that the differences
between consecutive instants of times ∆i := ti−ti−1 satisfy

β2

(
β1(r,−∆k+1), ∆k+2

) ≤ (id− α)(r), ∀r ≥ r0 (6)

for k = 0, 2, 4, ..., and for some choice of class K∞ function
α(·) and r0 ≥ 0. Then, system (1)–(2) is ISpS at t = tk, that
is, x(t) satisfies the ISpS condition (3) at t = tk. Similarly,
if

β1

(
β2(r,∆k),−∆k+1

) ≤ (id− α)(r), ∀r ≥ r0 (7)

for k = 2, 4, 6, . . ., and for some choice of class K∞ function
α(·) and r0 ≥ 0, then system (1)–(2) is ISpS at t = tk+1. If
either (6) or (7) hold and the differences between consecutive
switching times ∆i are uniformly bounded, then system (1)–
(2) is ISpS. ¤

Remark 1: If c1 = c2 = r0 = 0, ω(x) = |x|, X = Rn,
and W = Rm and all the conditions of Lemma 1 above are
met, then system (1)–(2) is ISS. ¤

Remark 2: If (4)–(5) hold with exponential class KL
functions, i.e., βi(r, t) = β̂ire

−λit, i = 1, 2, and α can be
taken as α(r) = α̂r; α̂ > 0, with id − α ∈ K, then (6)–(7)
become independent of r. In particular, (6)–(7) degenerate
into

∆k+2 ≥ λ1

λ2
∆k+1 +

1
λ2

ln
β̂1β̂2

1− α̂
; k = 0, 2, 4, ...

∆k+1 ≤ λ2

λ1
∆k +

1
λ1

ln
1− α̂

β̂1β̂2

; k = 2, 4, 6, ...

B. Switched seesaw system

This section introduces the key concept of switched see-
saw system. To this effect, consider the switched system
(1)–(2). Given two measuring functions ωsu, ωus and a set
X ⊂ Rn we call (1) a switched seesaw system on X w.r.t.
(ωsu, ωus) if it is a stable/unstable system w.r.t. ωsu when
ωus(x) and w are regarded as inputs, and an unstable/stable
w.r.t. ωus when ωsu(x) and w are regarded as inputs, see
Table I. More precisely, the following conditions must hold:
C1. For ẋ = f1(x, w), that is, σ = 1, there exist β11, β12 ∈
KL, γωus

11 , γωsu
12 , γw

11, γ
w
12 ∈ K, c11, c12 ≥ 0 such that for



TABLE I
TEMPORAL REPRESENTATION OF THE SWITCHED SEESAW SYSTEM

∆1 ∆2 ∆3 ∆4 · · ·
σ 1 2 1 2 · · ·

ωsu ↘ ↗ ↘ ↗ · · ·
ωus ↗ ↘ ↗ ↘ · · ·

↘ Stable
↗ Unstable

every solution x(·) ∈ X
ωsu(x(t)) ≤ β11(ωsu(x(t0)), t− t0))⊕ γωus

11 (‖ωus(x)‖[t0,t])
⊕ γw

11(‖w‖[t0,t])⊕ c11, (8)
ωus(x(t)) ≤ β12

(
ωus(x(t0))⊕ γωsu

12 (‖ωsu(x)‖[t0,t])
⊕ γw

12(‖w‖[t0,t])⊕ c12,−(t− t0)
)
. (9)

C2. For ẋ = f2(x, w), that is, σ = 2, there exist β21, β22 ∈
KL, γωus

21 , γωsu
22 , γw

21, γ
w
22 ∈ K, c21, c22 ≥ 0 such that for

every solution x(·) ∈ X
ωsu(x(t)) ≤ β21

(
ωsu(x(t0))⊕ γωus

21 (‖ωus(x)‖[t0,t])
⊕ γw

21(‖w‖[t0,t])⊕ c21,−(t− t0)
)
, (10)

ωus(x(t)) ≤ β22(ωus(x(t0)), t− t0)⊕ γωsu
22 (‖ωsu(x)‖[t0,t])

⊕ γw
22(‖w‖[t0,t])⊕ c22. (11)

The following theorem gives conditions under which a
switched seesaw system is ISpS.

Theorem 1: Let τ1, τ2 be two positive constants called
dwell times, {tk}; k ∈ N a sequence of strictly increasing
switching times, and ∆k = tk− tk−1 a sequence of intervals
satisfying

∆1 = ∆3 = ∆5 = · · · = τ1,

∆2 = ∆4 = ∆6 = · · · = τ2.

Assume there exist αi ∈ K∞; i = 1, 2 such that

β21

(
β11(r, τ1),−τ2

) ≤ (id− α1)(r), ∀r ≥ r0, (12)
β22

(
β12(r,−τ1), τ2

) ≤ (id− α2)(r), ∀r ≥ r0, (13)

for some r0 ≥ 0 and

γ̄ωsu
2 ◦ γ̄ωus

1 (r) < r, ∀r > r̂0, (14)
γ̄ωus
1 ◦ γ̄ωsu

2 (r) < r, ∀r > r̂0, (15)

for some r̂0 ≥ 0, where

γ̄ωus
1 (r) := α−1

1 ◦ ρ−1
1 ◦ β21

(
γωus
11 (r)⊕ γωus

21 (r),−τ2

)
,

γ̄ωsu
2 (r) := α−1

2 ◦ ρ−1
2 ◦ [

(id− α2) ◦ γωsu
12 (r)⊕ γωsu

22 (r)
]

and ρi ∈ K∞; i = 1, 2 are arbitrary functions such that id−
ρi ∈ K. Then, the seesaw switched system (1) is ISpS on X
w.r.t. to ωsu ⊕ ωus. ¤

Remark 3: If the KL functions βij are exponential, that
is, if βij(r, t) = β̂ijre

−λijt, with β̂ij > 1, and αi can be
taken as αi(r) = α̂ir; α̂i > 0, with id − αi ∈ K, then
conditions (12)–(13) imply the necessary condition

λ12

λ11

λ21

λ22
< 1.

The above expression sets an upper bound on the ratio of
λ12λ21 (product of the rates of explosion) versus λ11λ22

(product of the rates of implosion). ¤
Remark 4: If r̂0 = 0, (14) and (15) are equivalent. If r̂0 >

0, the same is also true but possibly with a larger value of
r̂0. ¤

C. Seesaw control systems design

Equipped with the mathematical results derived, this sec-
tion proposes a new methodology for the design of stabilizing
feedback control laws for nonlinear systems of the form

ẋ = f(x, u, w), (16)

where x ∈ X ⊂ Rn is the state, u ∈ U ⊂ Rm is the control
input, and w ∈ MW , W ⊂ Rnw is a disturbance signal.

The first step consist of finding two measuring functions
ωsu(x), ωus(x) such that (16) is measure-to-state practically
stable (MSpS) w.r.t. ωsu(x) ⊕ ωus(x), that is, there exist a
class KL function β, a class K function γ, and a nonnegative
constant c such that

|x(t)| ≤ β(|x(t0)|, t− t0)⊕ γ(‖ωsu(x)⊕ ωus(x)‖[t0,t]

⊕ ‖w‖[t0,t])⊕ c. (17)

The choice of ωsu(x), ωus(x) is strongly motivated by the
physics of the problem at hand, as the examples in Section 3
reveal. In fact, given the original state x, ωsu(x) and ωus(x)
will in general be functions of disjoint, yet complementary
partitions of x.

The next step involves the design of two feedback laws
α1(x), α2(x), such that (16) together with the switching
controller

u = ασ(x), σ ∈ {1, 2}
is a switched seesaw system w.r.t. ωsu⊕ωus. It is now easy
to show that if σ(t) is chosen such that the conditions of
Theorem 1 hold and if the MSpS condition applies, then the
closed-loop system

ẋ = f(x, ασ(x), w),

is ISpS w.r.t. ω(x) = |x|.

III. STABILIZATION OF UNDERACTUATED VEHICLES

A. The Extended nonholonomic double integrator

In [1], the equations of the nonholonomic integrator sys-
tem were introduced. The nonholonomic integrator displays
all basic properties of nonholonomic systems and is often
quoted in the literature as a benchmark for control system
design. Under suitable state and control transformations,
it captures the kinematics of a wheeled robot. However,
to tackle the realistic case where both the kinematics and
dynamics of a wheeled robot must be taken into account, the
nonholonomic integrator model must be extended. In [11], it
is shown that the dynamic equations of motion of a mobile
robot of the unicycle type can be transformed into the system

ẍ1 = u1, ẍ2 = u2, ẋ3 = x1ẋ2 − x2ẋ1, (18)

where x := (x1, x2, x3, ẋ1, ẋ2)′ ∈ R5 is the state vector and
u := (u1, u2)′ ∈ R2 is a two-dimensional control vector.
System (18) will be referred to as the extended nonholonomic
double integrator (ENDI). The ENDI falls into the class of
control affine nonlinear systems with drift and cannot be
stabilizable via a time-invariant continuously differentiable
feedback law (cf., e.g., [22]).



1) Seesaw control design: We now solve the problem of
practical stabilization of the ENDI system (18) subject to
input disturbances v ∈ MV , V := {v ∈ R2 : ‖v‖∞ ≤ v̄} and
measurement noise n ∈ MN , N := {n ∈ R5 : ‖n‖ ≤ ε},
where v̄ and ε are finite but otherwise arbitrary. To this effect,
the dynamics of (18) are first extended to

ẍ1 = u1 + v1, ẍ2 = u2 + v2, ẋ3 = x1ẋ2 − x2ẋ1, (19)
y = x + n (20)

where y ∈ R5 is the vector of state measurements corrupted
by noise n. Following the procedure described in Section
II-C we first introduce the measuring functions

ωsu := z2, z := ẋ3 + λ1x3, λ1 > 0 (21)
ωus := x2

1 + ẋ2
1 + x2

2 + ẋ2
2. (22)

and the feedback laws

α1(x) :=
[ −k2ẋ1

−k2ẋ2− k3
x1

z

]
, α2(x) :=

[
−k2ẋ1−k1(x1−κ)
−k2ẋ2−k1x2

]
(23)

where κ, k1, k2, k3 > 0. To provide some insight into the
choice of the relevant functions note that ωsu and ωus can
be viewed as positive semi-definite Lyapunov functions of
z and (x1, ẋ1, x2, ẋ2)′, respectively, the time-derivatives of
which are given by

ω̇su = 2z
[
x1(u2 + v2 + λ1ẋ2)− x2(u1 + v1 + λ1ẋ1)

]
(24)

ω̇us = 2ẋ1(x1 + u1 + v1) + 2ẋ2(x2 + u2 + v2) (25)

In the absence of input disturbances and measurement noise,
it is straightforward to conclude that with the control law u =
α1(x), the measuring function ωsu satisfies ω̇su = −2k3ωsu

as long as x1 6= 0. This in turn implies that ωsu converges
exponentially fast to zero during the intervals of time in
which u = α1(x) is applied. In a similar vein, consider
the evolution of ωus under the influence of the control law
u = α2(x). Simple computations show that

ẍ1 = −k2ẋ1 − k1(x1 − κ), ẍ2 = −k2ẋ2 − k1x2

and therefore ωus converges exponentially fast to κ2 during
the intervals of time in which u = α2(x) is applied.

We now proceed with the seesaw control design as ex-
plained in Section II-C

Proposition 1: The ENDI system together with the mea-
suring functions ωsu(x) and ωus(x) is measure-to-state
stable4 (MSS) w.r.t. ωsu(x)⊕ ωus(x). ¤

Proposition 2: The ENDI system (19)–(20) in closed-loop
with

u = ασ(y) (26)

defined in (23) verifies conditions C1 and C2 of a switched
seesaw system w.r.t. ωsu⊕ωus on X ⊂ {x ∈ R5 : |x1| ≥ δ}
for some δ > 0.

Proof: [Outline] We start by showing that C1 is ob-
served when σ = 1. In the presence of input disturbances and
measurement noise, the control input u = α1(x+n) is given
by u1 = −k2(ẋ1+n4), u2 = −k2(ẋ2+n5)− k3

x1+n1
(z+nz),

nz := x1n5 + n1ẋ2 + n1n5 − x2n4 − n2ẋ1 − n2n4 + k2n3

which, from the fact that ‖n‖∞ ≤ ε, satisfies |nz| ≤
4A system is MSS w.r.t. ωsu(x)⊕ωus(x) if it is MSpS w.r.t. ωsu(x)⊕

ωus(x) and c = 0 (see (17)).

4ε
√

ωus + 2ε2 + λε. For |x1| > δ > ε, a bound for ωsu

is determined as

ω̇su ≤ −λ11ωsu +
λ11

3
γ̂ωus
11 ωus +

λ11

3
c11, θ1, θ2 > 0

where λ11 = 2
[

k3
1+ ε

δ
− k3

1− ε
δ

θ1
2 − εk2 − θ2v̄

]
, λ11

3 γ̂ωus
11 =

2 k3
1− ε

δ

16
θ1

ε2 + εk2 + 1
θ2

v̄, and λ11
3 c11 = 2 k3

1− ε
δ

1
θ1

ε2(2ε + λ)2.
Therefore,

ωsu(t) ≤ 3ωsu(t0)e−λ11(t−t0) ⊕ γ̂ωus
11 ‖ωus‖[t0,t] ⊕ c11 (27)

Notice the absence of the term γw
11 due to the fact that the

disturbances and noise are assumed to be bounded and their
bounds are known in advance5. We now establish a bound
for ωus. Computing its time-derivative yields

ω̇us ≤ λ12ωus + λ12γ̂
ωsu
12 ωsu + λ12γ

v
12(|v|) + λ12c12,

where λ12 = 2 + k3
δ−ε + 4ε + θ3

2 , θ3 > 0, λ12γ̂
ωsu
12 = k3

δ−ε ,

λ12γ
v
12(r) = 2r2, and λ12c12 = 4k2

2ε
2 + k3ε2

δ−ε
(2ε+k2)

2

2θ3
.

Therefore, ωus satisfies

ωus(t) ≤ 4
(
ωus(t0)⊕ γ̂ωsu

12 ‖ωsu‖[t0,t]

⊕ γv
12(‖v‖[t0,t])⊕ c12

)
eλ12(t−t0). (28)

Similarly, we check that condition C2 is satisfied when
σ = 2. In this case, the control input u = α2(x + n) is
given by u1 = −k2(ẋ1 + n4) − k1(x1 + n1 − κ), u2 =
−k2(ẋ2+n5)−k1(x2+n2). Substituting the above equations
into (24) yields

ω̇su ≤ λ21ωsu + λ21γ̂
ωus
21 ωus, θ4, θ5 > 0

where λ21 = 2(k2+k1)+k1κ
θ4

+ 2 v̄
θ5

and λ21γ̂
ωus
21 = θ4[(k2 +

k1)ε + k1κ] + θ5v̄. Therefore,

ωsu ≤ 2
(
ωsu(t0)⊕ γ̂ωus

21 ‖ωus‖[t0,t]

)
eλ21(t−t0). (29)

To compute a bound for ωus(t), we first observe that ωus =
|χ1|2 + |χ2|2, where χ1 := (x1, ẋ1)′, χ2 := (x2, ẋ2)′, and
χ1, χ2 satisfy

χ̇i = Aχi + Bdi, i = 1, 2

with A :=
[

0 1
−k1 −k2

]
, B = [0, 1]′, d1 = −k2n4 − k1n1 +

κ + v1, and d2 = −k2n5 − k1n2 + v2. Let λ > 0 be an
arbitrary constant such that (A+ λ

2 I) is Hurwitz. Further, let
P > 0 satisfy

(
A+ λ

2 I
)
P +P

(
A+ λ

2 I
)′+BB′ ≤ 0. Define

Vi := χ′iP
−1χi and compute V̇i to obtain

V̇i = χ′i(P
−1A + A′P−1)χi + 2χ′P−1Bdi

≤ −(λ− θ6)Vi, Vi ≥ |di|2
θ6

, θ6 ∈ (0, λ)

From the above, it follows that Vi(t) ≤
Vi(t0)e−(λ−θ6)(t−t0) ⊕ |di|2

θ6
, and therefore

ωus ≤ β̂22ωus(t0)e−λ22(t−t0) ⊕ γv
22(‖v‖[t0,t])⊕ c22,

where β̂22 = 3λmax(P )
λmin(P ) , λ22 = (λ− θ6), γv

22(r) = 6r2, and
c22 = 6

[
((k2 + k1)ε + k1κ)2 + (k2 + k1)2ε2

]
.

5It is possible to avoid this at the cost of introducing the K function
γv
11(r) and making γωsu

12 (r) a quadratic function.



It is now easy to conclude that if the switched seesaw
controller (26) is applied to the ENDI system and a suitable
selection of the dwell times τ1, τ2 is made such that condi-
tions (12)–(15) hold, then the resulting closed-loop system
is ISpS as long as |x1(t)| ≥ δ. It remains to state conditions
under which |x1| is indeed bounded away from 0.

Proposition 3: Consider the closed-loop system (19)–
(20), (23) and (26). Let S0 := {x ∈ R5 : |(x1(t0) −
κ, ẋ1(t0))| ≤ µ}, for some µ > 0. Then, under a suitable
choice of the controller gains, for every initial condition
x(t0) ∈ S0, the resulting solution x(·) lies in X ⊂ {x ∈
R5 : |x1| ≥ δ; δ > 0}. ¤
From Propositions 1–3 and Theorem 1 we finally conclude

Theorem 2: Consider the ENDI system (19)–(20) subject
to input disturbances and measurement noise, together with
the switching control law (23), (26). Assume the conditions
of Theorem 1 hold and let the initial conditions of the
closed-loop system be in S0, defined in Proposition 3.
Then, the switching controller stabilizes the state around a
neighborhood of the origin, that is, it achieves ISpS of the
closed-loop system on X w.r.t. ω(x) = |x|. ¤

Remark 5: It is always possible to make sure that x starts
in S0 because (x1, ẋ1) can initially be brought as close as
required to (κ, 0) by applying u = α2(x) during a finite
amount of time before the normal switching takes over. In
fact, from (23) it is clear that with u = α2(x), (x1, ẋ1)
converges to (κ, 0). ¤
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Fig. 1. Time evolution of state variables x1(t), x2(t), and x3(t).
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Fig. 2. Time evolution of measuring functions ωsu(t), ωus(t), and the
switching signal σ(t).

2) Simulation results: Figures 1–2 show simulations re-
sults. The measurement noise is a zero mean uniform random

noise with amplitude 0.1, and the input disturbances are v1 =
0.1 sin(t) and v2 = 0.1 sin(t + π/2).With the dwell-time
constants set to τ1 = 1.0 s and τ2 = 5.0 s, the assumptions
of Theorem 2 were verified to hold. Notice how the state
variables converge to a small neighborhood of the origin.
Fig. 2 shows clearly, during the first switching intervals,
how the behavior of ωsu and ωus capture the successive
“stable/unstable” and “unstable/stable” cycles, respectively.

B. The underactuated autonomous underwater vehicle
Based on the results derived, this section addresses the

problem of stabilizing an underactuated AUV in the hori-
zontal plane to a point, with a desired orientation. The AUV
has no side thruster, and its control inputs are the thruster
surge force τu and the thruster yaw torque τr. The AUV
model is a second-order nonholonomic system, falls into the
class of control affine nonlinear systems with drift, and there
is no time-invariant continuously differentiable feedback law
that asymptotically stabilizes the closed-loop system to an
equilibrium point [22].

1) Vehicle Modeling: In the horizontal plane, the kine-
matic equations of motion of the vehicle can be written as

ẋ = u cos ψ − v sin ψ,

ẏ = u sin ψ + v cosψ,

ψ̇ = r,
where, following standard notation, u (surge speed) and v
(sway speed) are the body fixed frame components of the
vehicle’s velocity, x and y are the cartesian coordinates of
its center of mass, ψ defines its orientation, and r is the
vehicle’s angular speed. Neglecting the motions in heave,
roll, and pitch the simplified dynamic equations of motion
for surge, sway and heading yield [22]

muu̇−mvvr + duu = τu, (30)
mvv̇ + muur + dvv = 0, (31)
mr ṙ−muvuv + drr = τr, (32)

where the positive constants mu = m−Xu̇, mv = m− Yv̇ ,
mr = Iz −Nṙ, and muv = mu −mv capture the effect of
mass and hydrodynamic added mass terms, and du = −Xu−
X|u|u|u|, dv = −Yv − Y|v|v|v|, and dr = −Nr − N|r|r|r|
capture hydrodynamic damping effects.

2) Coordinate Transformation: Consider the global dif-
feomorphism given by the state and control coordinate
transformation [22]

x1 = ψ

x2 = x cos ψ + y sin ψ

x3 = −2
�
x sin ψ − y cos ψ

�
+ ψ

�
x cos ψ + y sin ψ

�

u1 =
1

mr
τr +

muv

mr
uv − dr

mr
r

u2 =
mv

mu
vr− du

mu
u +

1

mu
τu − u1

x1x2 − x3

2
+ vr− r2z2

that yields

ẍ1 = u1, ẍ2 = u2, ẋ3 = x1ẋ2 − x2ẋ1 + 2v, (33)

mvv̇ + mu

(
ẋ2 + ẋ1

x1x2 − x3

2

)
ẋ1 + dvv = 0. (34)

Throughout the paper, q := col(x,v), x :=
(x1, x2, x3, ẋ1, ẋ2)′ and u = (u1, u2)′ denote the state
vector and the input vector of (33)–(34), respectively.



3) Seesaw control design: We now design a switching
feedback control law for system (33)–(34) so as to stabilize
(in an ISpS sense) the state q around a small neighborhood
of the origin. A comparison of (33)–(34) with the ENDI
system (18) shows the presence of an extra state variable v
that is not in the span of the input vector field but enters
as an input perturbation in the x3 dynamics. We also note
that since dv

mv
> 0, (34) is ISS when x is regarded as input.

Motivated by these observations, we select for measuring
functions ωsu(·), ωus(·) the ones given in (21)–(22). Using
Proposition 1 and the fact that v satisfies

|v(t)| ≤ β̂v|v(t0)|e−λv(t−t0) ⊕ γv(‖ωsu‖[t0,t] ⊕ ‖ωus‖[t0,t])

for some β̂v, λv > 0, and γv(r) ∈ K we conclude that system
(33)–(34) is MSS w.r.t. ωsu ⊕ ωus.

Before we define the feedback laws α1(·), α2(·) we
compute the time-derivatives of ωsu and ωus to obtain

ω̇su = 2z
[
x1(u2 + v2 + k2ẋ2)− x2(u1 + v1 + k2ẋ1 + 2ν)

]

ω̇us = 2ẋ1(x1 + u1 + v1) + 2ẋ2(x2 + u2 + v2),

where ν := v̇ + k2v satisfies the linear bound |ν| ≤ γ̂v|v|+
γ̂ωus

|ωus|+ γ̂z|z| provided that ‖(x1 − κ, ẋ1)‖∞ ≤ µ, for a
given µ > 0. Comparing ω̇su, ω̇us with (24)–(25) and using
the bound on |ν| together with the previous results for the
ENDI case, it is straightforward to conclude that if α1(·),
α2(·) are selected as in (23), then the following result holds:

Theorem 3: For every initial condition in S0 := {q ∈ R6 :
|(x1, ẋ1)| ≤ µ0}, for some µ0 > 0, and selecting σ such that
the assumptions of Theorem 1 hold, system (33)–(34) subject
to input disturbances and measurement noise in closed-loop
with the seesaw controller u = α(q + n) is ISpS on X w.r.t.
ω(q) = |q|. ¤

4) Simulation results: Simulations were done using
a dynamic model of the Sirene AUV [22]. Figure 3
shows the simulation results for a sample initial condition
given by (x,y, ψ,u,v, r) = (−4 m,−4 m,π/4, 0, 0, 0).
The amplitudes of the noise signals were set to
(0.5 m, 0.5 m, 5π/180, 0.1, 0.1, 0.1). There is also a small
input disturbance: v1 = 10 sin(t), v2 = 10 sin(t+π/2). The
dwell-time constants were set to τ1 = 15 s and τ2 = 20 s.

IV. CONCLUSIONS

A new class of switched systems was introduced and
mathematical tools were developed to analyze their stability
and disturbance/noise attenuation properties. A so-called
seesaw control design methodology was also proposed. To
illustrate the potential of this control design methodology,
applications were made to the stabilization of the ENDI
and to the dynamic model of an underactuated AUV in
the presence of input disturbances and measurement noise.
Future research will address the generalization of the seesaw
control design methodology to tackle a wider range of control
problems.
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