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Abstract— This paper addresses the problem of steering a
group of underactuated autonomous vehicles along given spatial
paths, while holding a desired inter-vehicle formation pattern.
For a general class of vehicles moving in either two or three-
dimensional space, we show how Lyapunov-based techniques
and graph theory can be brought together to yield a decentral-
ized control structure where the dynamics of the cooperating
vehicles and the constraints imposed by the topology of the
inter-vehicle communications network are explicitly taken into
account. Path-following for each vehicle amounts to reducing an
appropriately defined geometric error to a small neighborhood
of the origin. Vehicle coordination is achieved by adjusting the
speed of each vehicle along its path according to information on
the positions of a subset of the other vehicles, as determined by
the communications topology adopted. The system obtained by
putting together the path-following and vehicle coordination
strategies adopted takes a cascade form, where the former
subsystem is input-to-state stable (ISS) with the error variables
of the latter as inputs. Convergence and stability of the overall
system are proved formally. The results are also extended to
solve the problem of temporary communication failures. Using
the concept of “brief instabilities” we show that for a given
maximum failure rate, the coordinated path following system
is stable and the errors converge to a small neighborhood of
the origin. We illustrate our design procedure for underwater
vehicles moving in three-dimensional space. Simulations results
are presented and discussed.

I. INTRODUCTION

Increasingly challenging mission scenarios and the advent

of powerful embedded systems and communication networks

have spawned widespread interest in the problem of coordi-

nated motion control of multiple autonomous vehicles. The

types of applications envisioned are numerous and include

aircraft and spacecraft formation flying control [5], [13],

[19], coordinated control of land robots [7], [18], and control

of multiple surface and underwater vehicles [8], [17], [21].

In spite of significant progress in the area, however, much

work remains to be done to develop strategies capable of
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yielding robust performance of a fleet of vehicles in the

presence of complex vehicle dynamics, severe communica-

tion constraints, and partial vehicle failures. These difficulties

are specially challenging in the field of marine robotics for

two main reasons: i) the dynamics of marine vehicles are

often complex and cannot be simply ignored or drastically

simplified for control design purposes, and ii) underwater

communications and positioning rely heavily on acoustic sys-

tems, which are plagued with intermittent failures, latency,

and multipath effects.

Inspired by the developments in the field, we consider the

problem of coordinated path-following (CPF) where multiple

vehicles are required to follow pre-specified spatial paths

while keeping a desired inter-vehicle formation pattern in

time. This problem arises, for example, in the operation of

multiple autonomous underwater vehicles (AUV) for fast

acoustic coverage of the seabed. In this application, two or

more vehicles are required to fly above the seabed at the

same or different depths, along geometrically similar spatial

paths, and map the seabed using identical suites of acoustic

sensors. Larger areas can be covered in a short period of time,

by requiring that the vehicles traverse identical paths so that

the projections of the acoustic beams on the seabed exhibit

some overlapping. These objectives impose constraints on the

inter-vehicle formation pattern. A number of other scenarios

can also be envisioned that require coordinated motion

control of marine vehicles.

We solve the coordinated path-following problem for a

general class of underactuated vehicles moving in either two

or three-dimensional space. The solution adopted is rooted in

Lyapunov-based theory and addresses explicitly the vehicle

dynamics as well as the constraints imposed by the topology

of the inter-vehicle communications network. The latter are

tackled in the framework of graph theory [14], which seems

especially suitable to study the impact of communication

topologies on the performance that can be achieved with

coordination [9]. The class of vehicles to which the design

procedure is applicable is quite general. In fact, it includes

any vehicle modeled as a rigid-body subject to a controlled

force and either one controlled torque if it is only moving

on a planar surface, or two to three independent control

torques for a vehicle moving in three-dimensional space.

Furthermore, contrary to most of the approaches described

in the literature, the controller proposed does not suffer from

geometric singularities due to the parametrization of the

vehicle’s rotation matrix.

With the framework adopted, path-following (in space)

and inter-vehicle coordination (in time) become essentially



decoupled. Each vehicle is equipped with a controller that

makes the vehicle follow a predefined path. The speed of

each vehicle is then adapted so that the whole group of

vehicles keeps the desired formation pattern. A supporting

communications network provides the fleet of vehicles with

the medium over which to exchange the information that

is required to synchronize the so-called coordination states.

Because of network faults, the problems brought about by

temporary communication losses must be addressed explic-

itly. To this effect, this paper proposes a framework to

study the effect of communication failures on the stability

of the overall vehicle formation. Under this framework, the

system that is obtained by putting together the path-following

and vehicle coordination strategies adopted takes a cascade

form, where the output of the latter enters to the former

subsystem. Convergence and stability of the combined path-

following / coordination system are proved formally. In the

course of doing this, the concept of “brief instabilities” is

exploited to model network failures and to show that, given a

maximum failure rate, one can find control design parameters

that ensure the stability of the formation. See for example

[6] and [23], where coordination problems with switching

communications are addressed.

To the best of our knowledge, previous work on coordi-

nated path following control has mostly been restricted to

the area of marine robotics. See for example [8], [17] , [20],

and [21] and the references therein. However, the solutions

developed so far for underactuated vehicles are restricted

to two vehicles in a leader-follower type of formation and

lead to complex control laws. Even in the case of fully

actuated vehicles, the solutions presented do not address

communication constraints explicitly. This paper builds upon

and combines previous results on Path-Following (PF) con-

trol [2], [4], Coordination Control (CC) [11], [12] and brief

instabilities [15].

The paper is organized as follows. Section II describes

the model for a class of underactuated autonomous vehicles

and formulates the path-following and vehicle coordination

problems. Section III summarizes the solution to the single-

vehicle path-following problem first introduced in [4]. A

solution to the problem of multiple vehicle coordinated path-

following is developed in Section IV when the commu-

nications topology is subjected to communication losses.

Section V describes the results of simulation results. Finally,

Section VI contains the main conclusions and describes

problems that warrant further research.

II. PROBLEM STATEMENT

Consider an underactuated vehicle modeled as a rigid body

subject to external forces and torques. Let {I} be an inertial

coordinate frame and {B} a body-fixed coordinate frame

whose origin is located at the center of mass of the vehicle.

The configuration (R,p) of the vehicle is an element of

the Special Euclidean group SE(3) := SO(3) ×R
3, where

R ∈ SO(3) := {R ∈ R
3×3 : RRT = I3,det(R) = +1} is a

rotation matrix that describes the orientation of the vehicle

and maps body coordinates into inertial coordinates, and

p ∈ R
3 is the position of the origin of {B} in {I}. Denoting

by v ∈ R
3 and ω ∈ R

3 the linear and angular velocities of

the vehicle relative to {I} expressed in {B}, respectively,

the following kinematic relations apply:

ṗ = Rv, (1a)

Ṙ = RS(ω), (1b)

where S(x) :=
“ 0 −x3 x2

x3 0 −x1

−x2 x1 0

”

, ∀x := (x1, x2, x3)
T ∈ R

3.

We consider here underactuated vehicles with dynamic
equations of motion of the following form:

Mv̇ = −S(ω)Mv + fv(v,p, R) + g1u1, (2a)

Jω̇ = −S(v)Mv − S(ω)Jω + fω(v, ω,p, R) + G2u2, (2b)

where M ∈ R
3×3 and J ∈ R

3×3 denote constant symmetric

positive definite mass and inertia matrices; u1 ∈ R and

u2 ∈ R
3 denote the control inputs, which act upon the

system through a constant nonzero vector g1 ∈ R
3 and a

constant nonsingular matrix1 G2 ∈ R
3×3, respectively; and

fv(·), fω(·) represent all the remaining forces and torques

acting on the body. For the special case of an underwater

vehicle, M and J also include the so-called hydrodynamic

added-mass MA and added-inertia JA matrices, respectively,

i.e., M = MRB+MA, J = JRB+JA, where MRB and JRB

are the rigid-body mass and inertia matrices, respectively. See

[10] for details. For each vehicle, the problem of following

a predefined desired path is stated as follows:

Path-following problem: Let pdi
(γi) ∈ R

3 be a desired

path parameterized by a continuous variable γi ∈ R and

vri
(t) ∈ R a desired speed assignment for vehicle i with

dynamics (1) and (2). Design feedback controller laws for u1,

u2 (of vehicle i) and γ̇i such that all the closed-loop signals

are bounded, and the position of the vehicle i converges to

and remains inside a tube centered around the desired path

that can be made arbitrarily thin, i.e., ‖pi(t) − pdi
(γi(t))‖

converges to a neighborhood of the origin that can be made

arbitrarily small, and ii) satisfies a desired speed assignment

vri
along the path, i.e., the speed error |γ̇i(t)−vri

(t)| tends

to zero.

We now consider the problem of coordinated path-

following (CPF) control. In the most general set-up, one is

given a set of n ≥ 2 autonomous underactuated vehicles

and a set of n spatial paths pdi
(γi); i = 1, 2, ..., n and

one requires that vehicle i follow path pdi
. As will become

clear, the coordination problem will be solved by adjusting

the speeds of the vehicles as functions of the “along-path”

distances among them. Formally, the along-path distance

between vehicle i and j at time t is defined as γij(t) :=
γi(t) − γj(t), that is coordination is achieved when γij = 0
for all i, j ∈ {1, ..., n} [12]. This will result in an in-line

formation if, for example, the paths pdi
are obtained as

simple parallel translations of a “template” path. Next, we

recall some properties from algebraic graph theory. See [14]

for details.

Let Ni be the index set of the vehicles that vehicle i
communicates with (the so called neighboring set of vehicle

1See [4] for the special case of u2 ∈ R2 and G2 ∈ R3×2.



i). We assume that the communication links are bidirectional,

that is, i ∈ Nj ⇔ j ∈ Ni. Let G be the undirected

graph induced by the underlying communication network and

L ∈ R
n×n its symmetric Laplacian matrix. The matrix L

can be decomposed as L = MMT , where M ∈ R
n×n−1

and MT1 = 0. If the graph is connected, RankMT =
RankL = n − 1 and consequently MT M > 0; otherwise,

RankMT < n − 1 and MT M ≥ 0.

Consider now the situation where the communication net-

work changes in time so as to make the underlying communi-

cation graph G alternatively connected and disconnected. To

study the impact of these temporary communication failures

we explore the concept of “brief instabilities” developed

in [15]. This concept will be instrumental in capturing the

percentage of time that G may remain disconnected.

Consider the complete graph G defined on n vertices, with

edges numbered 1, ...,m. Moreover, let pi be a piecewise-

continuous time-varying binary function which indicates the

existence of edge i in the graph. Stack all pi as p =
[pi]m×1. Denote by Lp, Mp, and Ni,p the explicit dependence

of the matrices L and M and neighboring set Ni on p,

respectively. Further let Pc and Pdc denote the partitions

of the set of parameters p, indicating connected graphs and

disconnected graphs, respectively. That is, if p ∈ Pc, then the

graph G(Lp) is connected, otherwise disconnected. Define

the characteristic function of p as

χ(p) :=

{

0 p ∈ Pc

1 p ∈ Pdc.
(3)

For a given time-varying p(t), let the connectivity loss

time Tp(τ, t) over [τ, t] be defined as

Tp(τ, t) :=

∫ t

τ

χ(p(s))ds. (4)

We will say that the communication network has brief

connectivity losses if

Tp(τ, t) ≤ α(t − τ) + (1 − α)T0, ∀t ≥ τ ≥ 0 (5)

for some T0 ≥ 0 and 0 ≤ α ≤ 1. According to this

definition, α provides an asymptotic upper bound on the ratio

Tp(τ, t)/(t − τ), as t − τ → ∞ and is therefore called the

asymptotic connectivity loss rate. When p ∈ Pdc throughout

an interval [τ, t], we have Tp(τ, t) = t − τ and the above

inequality requires that t − τ ≤ T0. This justifies calling T0

the connectivity loss bound.

The following lemma plays a key role in deriving the

vehicle coordination dynamics with switching topologies.

Lemma 1: Let M̄ ∈ R
n×n−1 such that Rank M̄T = n−1

and M̄T1 = 0, and M̄T M̄ = In−1. Define Up := MT

p M̄
with Mp ∈ R

n×n−1 and MpM
T

p = Lp, where the latter is

the graph Laplacian. Then

1) MT

p = UpM̄
T ,

2) σ(UT
p Up) = σ(Lp) \ {0}, where σ(.) denotes the

spectrum of the matrix in the argument.
Proof: We first show that M̄M̄T Mp = Mp. Since

M̄T M̄ = I , then M̄M̄T has n − 1 eigenvalues at 1 and
one eigenvalue at 0. Thus, Rank(I − M̄M̄T ) = 1 and using

the fact that (I − M̄M̄T )1 = 1, then (I − M̄M̄T )ν = 0
if ν ∈ 1⊥ (the orthogonal space). On the other hand,
MT

p 1 = 0, that is, Mp has n − 1 columns orthogonal to

1. Therefore (I − M̄M̄T )Mp = 0, or M̄M̄T Mp = Mp.
Thus MT

p = MT

p M̄M̄T = UpM̄
T . To prove the second part

of the Lemma, notice that

σ(UT
p Up) = σ(UpUT

p ) = σ(MT
p M̄M̄T Mp)

= σ(MT
p Mp) = σ(MpMT

p ) \ {0}.

Coordination problem: For vehicle i = 1, ..., n derive

a control law for γ̇i as a function of local states and the

variables γj , j ∈ Ni such that γi − γj ,∀i, j approach a

small neighborhood of zero as t → ∞ and the formation

travels at the speed vL(t), that is, γ̇i → vL ∀i.

III. PATH-FOLLOWING

This section provides a brief summary of the techniques

derived in [2], [4] to solve the single vehicle Path-Following

(PF) problem stated in Section II.

Let ei := RT

i

[

pi(t)−pdi
(γi(t))

]

be the PF error of vehicle

i expressed in its body-fixed frame. Borrowing from the

techniques of backstepping, in [2], [4] a feedback law for

u1i
, u2i

was derived that makes the time-derivative of the

Lyapunov function

Vi :=
1

2
eT

i ei +
1

2
ϕT

i M2
i ϕi +

1

2
zT

2i
Jiz2i

(6)

along the solutions of (1) and (2) take the form

V̇i = −kei
e

T

i M
−1
i ei + e

T

i δi − ϕ
T

i Kϕi
ϕi − z

T

2i
Kz2iz2i

+ µiηi

(7)

where ϕi and z2i
are linear and angular velocity errors, kei

is a positive scalar, Kϕi
, Kz2i are positive definite matrices,

and δi is a small constant vector to be chosen. Further, ηi

denotes the speed tracking error defined as ηi := γ̇i−vri
and

µi is a known function of the states that admits the bound

|µi| ≤ β1i||ei|| + (β2ikei
+ β3i)||ϕi|| (8)

where β1i, β2i and β3i are some positive values that depend

on Mi and on the first and second derivatives of pdi
(γi) and

vri
(t) with respect to γi and t, respectively.

In sequel, we show that the PF subsystems are input-to-

state stable (ISS) from inputs ηi. See [16] and [22] for the

definition of ISS.

Lemma 2: The path-following subsystem of vehicle i with

inputs ηi and δi and states xpi
= [ei, ϕi, z2i

] is ISS.

Proof: We use (7) and (8) and Young’s inequality, to

compute

V̇i ≤ −(kei
mi −

1
4λ1

− β1i

4λ2

)||ei||
2

−(kϕi
−

β2ikei
+β3i

4λ3

)||ϕi||
2 − kz2i||z2i

||2

+λ1||δi||
2 + ((β2ikei

+ β3i)λ3 + β1iλ2)|ηi|
2

for some λ1, λ2, λ3 > 0, where mi = ||M−1
i ||, kϕi

=
||Kϕi

|| and kz2i = ||Kz2i||. Choose

λ1 = γ1

2β2

1i

, λ2 = γ1

2β1i
, λ3 = γ1

2(β2ikei
+β3i)

,

kei
=

2β2

1i

γ1mi
, kϕi

=
(β2ikei

+β3i)
2

γ1



for some γ1 > 0 to get

V̇i ≤ − 1
2mikei

||ei||
2 − 1

2kϕi
||ϕi||

2 − kz2i||z2i
||2

+λ1||δi||
2 + γ1|ηi|

2.

Therefore there exists λp > 0 such that

V̇i ≤ −λpVi + λ1||δi||
2 + γ1|ηi|

2 (9)

which completes the proof. Notice that one can make the

ISS-gains small at will by making γ1 small enough. This

makes the control gains kei
and kϕi

increase.

IV. COORDINATED PATH-FOLLOWING WITH A

SWITCHING COMMUNICATION TOPOLOGY

Consider the multiple vehicle coordination problem with

a switching communication topology parameterized by p as

defined in Section II. Define the “graph-induced coordination

error” as θ := M̄T γ ∈ R
n−1, where γ := [γi]n×1 is the

vector of coordination states and M̄ defined in Lemma 1.

Because of the properties of M̄ , γi = γj ,∀i, j is equivalent

to θ = 0. Consequently, if θ is driven to zero asymptotically,

so are the coordination errors γi − γj and the problem of

coordinated path-following (defined in Section II) is solved.

Define the coordination control law with an auxiliary state

z as
γ̇ = vL1 + z − A−1

1 Lpγ
ż = −(A1 + A2)z + Lpγ

(10)

where A1 = diag[a1i
] and A2 = diag[a2i

] are positive

definite matrices. In decentralized form, (10) yields

γ̇i = vL + zi −
1

a1i

∑

j∈Ni,p
(γi − γj)

żi = −(a1i
+ a2i

)zi +
∑

j∈Ni,p
(γi − γj).

Let xc := (θ, z) be the state of the coordination control

(CC) subsystem and define

Ac(p) :=

(

−M̄T A−1
1 M̄UT

p Up M̄T

M̄UT

p Up −A1 − A2

)

,

Cc(p) :=
(

−A−1
1 M̄UT

p Up I
)

.
(11)

With this notation, the dynamics of xc are governed by the

the Linear Parametrically Varying (LPV) system

ẋc = Ac(p)xc

η = Cc(p)xc.
(12)

where η := [ηi]n×1 is the vector of speed error variables.

We now present the main result of the paper.

Theorem 1: For any brief connectivity losses satisfying

α < 1 and bounded T0, there exist control gains such that

the interconnected system consisting of the n PF subsystems

and the CC subsystem with input δ = [δi]n×1 and states

xp = [xpi]n×1 and xc is ISS.

To prove the theorem, we need the following lemmas.

Lemma 3: Consider the LPV system (12) with A1 =
a1I,A2 = a2I . Then there exist X > 0, λc > 0 and λd > 0
such that

Ac(p)X + XAc(p)T ≤ −λcX, ∀p ∈ Pc

Ac(p)X + XAc(p)T ≤ +λdX ∀p ∈ Pdc.
(13)

and λd/λc can be made arbitrarily small by proper choice

of gains a1 and a2.

Proof: Let λi ∈ σ(UT

p Up) and define λ̄c :=
maxp∈Pc

λi, and λc := minp∈Pc
λi.

Now, choose X = ( I 0
0 xI ) for some x > 0. By substituting

X in (13) and using Schur’s decomposition, it is straightfor-

ward to check that the inequalities in (13) are satisfied for

λd =
√

(a1 + a2)2 + x − (a1 + a2)
λc = λp(a1 + 2a2)/(2a1a2)
x = a2

1a2(λ̄c + λc)/[(a1 + 2a2)(2a1a2 − λp)]
(14)

where λp := λ̄cλc/(λ̄c +λc). It is clear when a2 → ∞, then

λd → 0 and λc → λp/a1.

Remark 1: λc and λd computed by (14) are generally con-

servative. For specific communication graphs, better bounds

can be obtained numerically by finding feasible solutions to

the LMIs in (13).

Lemma 4: Consider the coordination control subsystem

(12) with brief connectivity losses in the communication

network, as defined in (5). If the asymptotic connectivity loss

rate α < λc/(λc + λd), the states xp and output η remain

bounded and tend exponentially to zero.

Proof: Consider the control parameters as defined in

Lemma 3 and define the Lyapunov function V := xT

c X−1xc.

The derivative of V along the solutions of (12) yields

V̇ ≤ −λcV, p ∈ Pc

V̇ ≤ +λdV, p ∈ Pdc.

Integrating the above differential inequalities and doing com-

putations similar to the ones in [15], it is possible to show

that

V (t) ≤ V (τ)e−λc(t−τ−Tp(τ,t))+λdTp(τ,t), ∀t ≥ τ ≥ 0

which yields

V (t) ≤ e
−[(1−α)λc−αλd](t−t0)

V (t0)e
(1−α)(λc+λd)T0 , ∀t ≥ t0 ≥ 0

if the system has brief connectivity losses defined in (5).

From the assumptions, λ := [(1 − α)λc − αλd] > 0.

Therefore, V (t) remains bounded and tends to zero, so does

xc. Moreover, by choosing r = min(x−1, a2
1/(λ̄2

c + xa2
1)),

then rCc(p)T Cc(p) ≤ X−1, ∀p and ηT (t)η(t) ≤ 1
r
V (t),

thus completing the proof.

We are now ready to prove Theorem 1.

Proof: [Theorem 1] From Lemma 2, it follows that each

path following subsystem with inputs ηi and δi is ISS with

the gains as defined in (9). In Lemma 3, we have showed

that λd

λc
can be made arbitrarily small by increasing the gain

a2. As a consequence α < 1/(1 + λd

λc
) and therefore, from

Lemma 4, it follows that the CC subsystem is exponentially

stable. Close examination of (9) and (12) shows that the CC

and PF subsystems form an interconnected cascade system.

Since the cascade interconnection of two ISS system is ISS,

it follows that the resulting cascade system with input δ
and states xp and xc is ISS. See [16] for details about ISS

systems.



V. AN ILLUSTRATIVE EXAMPLE

This section illustrates the application of the previous

results to underwater vehicles moving in three-dimensional

space.

A. Path-following and coordination of underwater vehicles

in 3-D space

Consider an ellipsoidal shaped underactuated AUV not

necessarily neutrally buoyant. Let {B} be a body-fixed

coordinate frame whose origin is located at the center of

mass of the vehicle and suppose that we have available a

pure body-fixed control force τu in the xB direction and

two independent control torques τq and τr about the yB
and zB axes of the vehicle, respectively. The kinematics and

dynamics equations of motion of the vehicle can be written

as (1)–(2), where

Dv(v) = diag{Xv1
+ X|v1|v1

|v1|, Yv2
+ Y|v2|v2

|v2|,
Zv3

+ Z|v3|v3
|v3|},

Dω(ω) = diag{Kω1
+ K|ω1|ω1

|ω1|, Mω2
+ M|ω2|ω2

|ω2|,
Nω3

+ N|ω3|ω3
|ω3|},

M = diag{m11, m22, m33},J = diag{J11, J22, J33},

u1 = τu, u2 = (τq, τr)
T , g1 =

“

1
0
0

”

, G2 =
“

0 0
1 0
0 1

”

,

ḡ1(R) = RT

“

0
0

W−B

”

, ḡ2(R) = S(rB)RT

“

0
0
B

”

,

fv = −Dv(v)v − ḡ1(R), fω = −Dω(ω)ω − ḡ2(R).

The gravitational and buoyant forces are given by W =
mg and B = ρg∇, respectively, where m is the mass of

the vehicle, ρ is the mass density of the water, and ∇ is

the volume of displaced water. In the simulations presented

here, the physical parameters match those of the Sirene AUV

described in [3], [1].

B. Gain selection

Consider the problem of coordinated CPF of a group of 3

vehicles, that is n = 3. Vehicle 2 is allowed to communicate

with vehicles 1 and 3, but the latter two do not communicate

between themselves directly. We considered the loss of

communications, in this case failure of both links, to be 75%
of the time, with the failures occurring periodically with a

period of 10[sec], that is, α = 0.75 and T0 = 7.5[sec]. The

corresponding eigenvalues defined in the proof of Lemma 3

are given by λ̄c = 3, λc = 1 and λ̄d = 2. For a1 = 1 and

a2 = 1.6, we have λc = 0.98 and λd = 0.12. Increasing

a2 to 5 results in λc = 0.85 and λd = 0.01. However, for

a1 = 1 and a2 ≤ 1.5, there are no λc and λd that satisfy the

conditions of Lemma 3.

C. Simulation results

This section contains the results of simulations that illus-

trate the performance obtained with the CPF control laws

developed in the paper. In the simulations three underactu-

ated AUVs are required to follow paths of the form

pdi
(γi) =

[

c1 cos(
2π

T
γi+φd), c1 sin(

2π

T
γi+φd), c2γi+z0i

]

,

with c1 = 20m, c2 = 0.05m, T = 400, φd = − 3π
4 , and

z01
= −10m, z02

= −5m, z03
= 0m. The initial conditions

of the AUVs are p1 = (x1, y1, z1) = (5m,−10m,−5m),

p2 = (x2, y2, z2) = (5m,−15m, 0m), p3 = (x3, y3, z3) =
(5m,−20m, 5m), R1 = R2 = R3 = I , and v1 = v2 =
v3 = ω1 = ω2 = ω3 = 0. The reference speed vL was set

to vL = 0.5 s−1.

The vehicles are also required to keep a formation pat-

tern whereby they are aligned along a common vertical

line. Figure 1 shows the trajectories of the AUVs. Figure

2 illustrates the evolutions of the coordination errors and

path-following errors while the communication links fail

periodically. Clearly, the vehicles adjust their speeds to

meet the formation requirements and the coordination errors

γ12 := γ1 − γ2 and γ13 := γ1 − γ3 converge to zero.

VI. CONCLUSIONS

The paper addressed the problem of steering a group

of underactuated autonomous vehicles along given spatial

paths, while holding a desired inter-vehicle formation pattern

(coordinated path-following) in the presence of commu-

nication failures. A solution was derived that builds on

recent results on path-following control [2], [4] and state-

agreement (coordination) control [11], [12]. The effect of

communication failures was addressed using the notion of

brief instabilities and cascade systems. The solution pro-

posed builds on Lyapunov based techniques and addresses

explicitly the constraints imposed by the topology of the

inter-vehicle communications network. Furthermore, it leads

to a decentralized control law. Simulations illustrated the

efficacy of the solution proposed. Further work is required

to extend the methodology proposed to address the problems

of robustness against communication delays.
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[18] P. Ögren, M. Egerstedt, and X. Hu, “A control lyapunov function
approach to multiagent coordination,” IEEE Trans. on Robotics and
Automation, vol. 18, pp. 847 – 851, Oct. 2002.

[19] M. Pratcher, J. D’Azzo, and A. Proud, “Tight formation control,”
Journal of Guidance, Control and Dynamics, vol. 24, no. 2, pp. 246–
254, March-April 2001.

[20] R. Skjetne, T. I. Fossen, and P. K. Kokotović, “Robust output maneu-
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