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Abstract— This paper addresses the problem of stabilizing
to a desired equilibrium point an eye-in-hand system, which
consists of a single camera mounted on a rigid body free to move
in SE(3). It is assumed that there is a collection of landmarks
fixed in the environment and that the image coordinates of those
landmarks are provided to the system by an on-board CCD
camera. The proposed method addresses not only the problem
of stabilization but also that of maintaining feature visibility
along the system’s trajectory. The resulting solution consists
of a feedback control law based on the image coordinates
and reconstructed depth information that guarantees i) almost
global asymptotic stability of the desired equilibrium point; ii)
positive invariance of a conveniently defined subset of SE(3),
to enforce feature visibility; and iii) exponential stability of an
error vector directly defined in the image plane.

I. INTRODUCTION

Computer vision has long been thought of as an extremely
flexible means of sensing the environment and acquiring
valuable information for feedback control. Over the last
decade, awareness of this potential has brought about a
widespread interest in the field of vision-based control,
also known as visual-servoing. Vision-based control can be
used to perform a variety of tasks such as positioning a
manipulator’s end-effector with respect to an object to be
grasped [1] or landing an UAV over a predefined target [2].

Visual-servoing is traditionally classified as either
position-based or image-based [3]. Despite their proved
merits, each of these methods exhibits a number of pitfalls,
leaving behind unsolved problems, as reported in [1], [4].
The main problem in position-based methods derives from
the fact that the feedback law is designed in the configuration
space, without taking into the account the mapping to the
image plane. Thus, the resulting camera trajectories are likely
to cause the loss of features in the field of view (FOV),
which precludes the reconstruction of the 3-D pose and con-
sequently leads to system failure. Likewise, the drawbacks of
the classical image-based approach should not be overlooked.
In particular, asymptotic stability of the system is only
guaranteed locally [5] and, more importantly, an analytical
characterization of the region of attraction for the desired
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equilibrium point is yet to be established. Furthermore, the
image-based approach does not entirely solve the problem
of image feature loss; for example, to produce a straight line
trajectory for the features in the image plane, the camera
may have to move behind the observed object, causing the
features to be occluded.

In view of the above considerations, one of the main ques-
tions in vision-based control, which continues to challenge
researchers, is the FOV problem. As described in [1], the
FOV problem presents two challenges: the features should
not leave the image boundaries and they should also not
become occluded by the object on which they are marked.
There are several recent approaches that address the problem
explicitly (see [6]–[9] and references therein). These include
methods that partition the system’s degrees of freedom into
position and rotation, allowing for the definition of decoupled
control laws [6] and hybrid methods that switch between
different controllers combining, for example, position-based
and image-based strategies [8], [9].

In this paper, building on results presented in [10], we
propose an alternative solution that guarantees almost glob-
ally asymptotically stability (GAS) of a target configuration
defined in SE(3). More importantly, the current approach
ensures the positive invariance of a subset of SE(3), specif-
ically defined to enforce feature visibility throughout the
closed-loop trajectories of the camera. In contrast to most
strategies, which only consider the problem of keeping the
features inside the camera’s FOV, the proposed method also
takes into account the second type of feature loss, which is
due to self-occlusions. To this end, the invariant set is defined
so that the camera not only points towards the features, but
also remains in front of them.

We reinforce the likelihood of maintaining feature visi-
bility by showing that a relevant error directly defined in
the image plane is exponentially stable inside the predefined
invariant set. The image error is given by the difference
between the current and desired images of a predefined point,
which if chosen judiciously can provide a valuable measure
for feature visibility. Note that a result of almost GAS for the
desired configuration in SE(3) is not a sufficient condition
for stability in the image plane. Consequently, although the
current approach is position-based in the sense that depth
information must be recovered from the image measurements
and a priori knowledge of the features’ geometry is required,
it can also be interpreted as image-based, with the advan-
tages relative to other solutions of taking into account self-
occlusions and providing a formal characterization for the
region of attraction.

The paper is organized as follows. Section II introduces



the vision-based control problem. Section III describes the
construction of an almost globally asymptotically stabilizing
controller for the system at hand. An exact expression for
the region of attraction is derived in Section III-A and the
positive invariance of a set of FOV-related configurations
together with the exponentially stability of the image error
are formally established in Section III-B. Simulation results
that illustrate the behavior of the control system are presented
in Section IV. For the sake of brevity, most of the proofs and
technical results are either omitted or only outlined in the
paper, and the reader is referred to [11] for a comprehensive
presentation of this material.

II. PROBLEM FORMULATION

Consider a fully-actuated rigid-body, attached to a coor-
dinate frame {B} and let (p, R) = ( BpI ,

B
I R) ∈ SE(3)

denote the configuration of an inertial coordinate frame {I}
with respect to {B}, such that

ṗ = −v − S(ω)p (1a)

Ṙ = −S(ω)R, (1b)

where v and ω ∈ R3 are the body-fixed linear and angular
velocities, respectively and S denotes the map from R3 to
the space of skew-symmetric matrices so(3) = {M ∈ R3×3 :
MT = −M} defined so that S(a)b = a× b, where a,b ∈
R3 and × is the vector cross product.

Consider also a target configuration (p∗, R∗) =
( DpI ,

D
I R) ∈ SE(3), defined as the configuration of {I}

with respect to the desired body frame {D}, which is
assumed to be fixed in the workspace, i.e. ṗ∗ = 0 and
Ṙ∗ = 0. Introducing the error variables

e = p− p∗ ∈ R3, Re = R∗T R ∈ SO(3), (2)

we can write the respective state equations as

ė = −v − S(ω)(e + p∗) (3a)

Ṙe = −S(R∗T ω)Re. (3b)

As illustrated in Fig. 1, it is assumed that there is a
collection of n feature points placed at fixed positions in
the environment and that the image coordinates yj and
y∗j ∈ R2, j ∈ {1, 2, . . . , n}, acquired at the current and
desired configurations (p, R) and (p∗, R∗), respectively, are
both available for feedback.

The feature points, whose position coordinates in {I} are
denoted by xj ∈ R3, j ∈ {1, 2, . . . , n}, are required to
satisfy the following assumptions:

Assumption 1: The n points are not all coplanar.
Assumption 2: The origin of {I} is placed so that the

feature inertial coordinates xj verify xT
j nπ ≤ 0 for some

vector nπ ∈ R3, j ∈ {1, 2, . . . , n}, meaning that all feature
points are “below” a plane Π orthogonal to nπ and that
crosses the origin of {I}.

Regarding the geometric condition introduced in Assump-
tion 1, it can be shown that it implies a set of algebraic
conditions as stated in the following lemma.
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Fig. 1. Setup for the vision-based control problem.

Lemma 2.1: If Assumption 1 is verified then the matrix
X = [x1 · · ·xn] ∈ R3×n is such that i) XXT > 0 and ii)
there is a vector a ∈ Rn such that Xa = 0 and 1Ta 6= 0,
where 1 = [1 · · · 1]T ∈ Rn.

Proof: See [11].
Though only 2-D image measurements are available, the

feedback law proposed in this paper will be based on

Q = [q1 . . . qn] ∈ R3×n, (4)

where

qj = Rxj + p, j ∈ {1, 2, . . . , n}, (5)

are the 3-D position coordinates of the feature points ex-
pressed in {B}. Similarly, we define the desired matrix
Q∗ = [q∗1 . . . q∗n]T ∈ R3×n, where q∗j = R∗xj + p∗.

Using the perspective camera model, the image yj of the
point qj can be written as

yj = λjAqj (6)

where A ∈ R2×3 is the camera calibration matrix assumed
to be known and λj is an unknown scalar encoding depth
information and given by λj = (eT

3qj)−1, e3 = [0 0 1]T .
Therefore, to reconstruct the position coordinates qj , the
depth variables λj need to be recovered from the image
measurements yj .

In view of the above, the primary control objective can be
defined as that of designing an output-feedback controller
that drives (p, R) to (p∗, R∗). Of course that in the case of
vision-based control systems, a simple convergence result is
not sufficient to avoid failure, the FOV problem needs to be
explicitly addressed. Thus, we consider the secondary goal
of keeping the features inside the camera’s FOV along the
closed-loop system’s trajectories.

As discussed in the introduction, feature loss can occur for
two reasons: the features may either leave the camera’s FOV
or become occluded by the object on which they are marked
(see for example the camera configuration {B3} shown in
Fig. 2). The likelihood of the first type of feature loss can
be greatly reduced by ensuring the asymptotic stability of
a relevant error directly defined in the image plane. We



propose that such error be given by the difference between
the images of the current and desired position vectors p and
p∗, respectively. Then, the image error vector can be written
as

ȳe = ȳ − ȳ∗ ∈ R2, (7)

where ȳ = (eT
3p)−1Ap and ȳ∗ = (eT

3p∗)−1Ap∗ are the
image coordinates of p and p∗, respectively. Since p is the
position of the inertial frame {I} expressed in the body frame
{B}, it is important to place {I} close to the feature points,
so that ȳe can provide an adequate measure for feature
visibility. Also note that even if ȳe = 0 is asymptotically
stable, ȳ may become invalid if eT

3p crosses the origin.
Therefore, we will also consider

eT

3p > 0, (8)

as a necessary condition for keeping feature validity.
To address the second type of feature loss, we introduce

the condition
nT

π
Ip = −nT

πRTp > 0, (9)

which guarantees that the camera is placed “above” the
plane Π. Note that the limit case nT

π
Ip = 0 yields line-

segment images for features that belong to Π, such as the
image obtained from {B2} in Fig. 2. Thus, this condition is
excluded from the valid set.
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Fig. 2. Valid ({B1}) and invalid ({B2} and {B3}) configurations.

In summary, the problem addressed in this paper can be
stated as follows:

Problem 1: Consider the rigid-body kinematic model de-
scribed in error coordinates by (3). Design a controller for
v and ω, based on Q and Q∗, such that

i) (e, Re) = (0, I3) is almost globally asymptotically
stable, i.e. its region of attraction RA coincides with
SE(3) except for a set of zero measure;

ii) a predefined set J ⊂ RA on which (8) and (9) hold
is guaranteed to be positively invariant;

iii) the image error ȳe converges to zero exponentially fast.
For the sake of completeness, we recall the definition of
positively invariant set [12] and almost Global Asymptotic
Stability [13] for a system of the form ẋ = f(x). A set M is
said to be positively invariant, if for every x(0) ∈ M , x(t)
remains in M for all t ≥ 0. The equilibrium point x = x∗ is
said to be an almost GAS if it is stable and, except for a set of
zero measure, all initial conditions converge asymptotically
to it.

III. A CONTROL LAW FOR VISUAL-SERVOING

In the following, we propose a solution to the problem of
vision-based control that builds upon the results presented in
[10]. To this end, we introduce the angle-axis representation
for rotations, according to which Re = rot(θ,n) = I3 +
sin θS(n) + (1− cos θ)S(n)2 represents a rotation of angle
θ ∈ R about the unitary axis n ∈ S2, and define the function
sign : R 7→ {1,−1} such that sign(x) = 1 if x ≥ 0 and
sign(x) = −1 if x < 0. It is also convenient to present the
following proposition, which has been adapted from [10].

Lemma 3.1: Consider the feedback law for ω given by

ω = kωR∗S−1(ReNNT −NNT RT

e ), (10)

where S−1 : so(3) 7→ R3 corresponds to the inverse of
the skew map S and N ∈ R3×m, m ≥ 2 is such that
its two largest singular values verify σ1 > σ2 > 0. Then,
the interconnection of (3b) and (10) has an almost GAS
equilibrium point at Re = I3 with region of attraction
SO(3) \ {Re : tr(I3 − Re) = 4}. Moreover, almost every
initial condition n(0) for the axis of rotation n(t) converges
asymptotically to sign(n(0)Tn1)n1, where n1 is a unitary
eigenvector of NNT associated with σ2

1 .
In loose terms, the proposed solution can be described as

comprising two sequential steps:
i) aligning the position vector p with the axis defined by

p∗ using solely rotational motion (the inertial position
Ip = −RTp remains unchanged);

ii) ensuring the convergence of (p, R) to (p∗, R∗) us-
ing a controller that also guarantees that n(t) →
sign(n(0)Tn1)n1 as t →∞, where n1 = Ip∗/‖Ip∗‖.

This strategy will allow for the definition of a positively
invariant set J ∈ SE(3) on which both (8) and (9) hold, and
therefore depends on the desired configuration (p∗, R∗) and
feature plane Π. The set J is defined as

J = J1 ∩ J2 \ NA, (11)

where NA is a zero measure set that will be explicitely
defined shortly and

J1 = {(e, Re) : eT

3 (e + p∗) > 0}, (12)
J2 = {(e, Re) : Ip = −RT

e R∗T (e + p∗) ∈ C}, (13)

with the set C ⊂ R3 given by

C =
{

Ip : Ip∗T Ip > cos απ ‖Ip∗‖‖Ip‖,

cos απ = ‖S(nπ)Ip∗‖
‖Ip∗‖

}
. (14)

As illustrated in Fig. 3, C defines an unbounded cone in
the space of inertial positions, which results from revolving
the vector −S(nπ)2Ip∗ (i.e. the projection of Ip∗ onto to the
feature plane) around Ip∗. It is easy to see that C is placed
“above” the plane Π, and therefore (9) holds inside J2. Also
note that the opening angle of the cone has a maximum of
απ = π/2 when Ip∗ is perpendicular to the plane (in this
case C coincides with the half-space above the plane) and
decreases to zero as Ip∗ approaches the plane.



Fig. 3. Set C ⊂ R3 for Ip∗ = [3 3 8]T and nπ = e3.

Having described the goals and properties of the proposed
solution, a feedback law that yields this result can be
constructed as follows:

1) Pick N ∈ R3×m, m ≥ 2 such that its two largest
singular values verify σ1 > σ2 > 0 and Ip∗ is an eigenvector
of NNT associated with σ2

1 .
2) Define the controller

v=
{

0 if e+p∗ /∈ Cγ , (15a)
kve + S(e + p∗)ω otherwise, (15b)

ω=
{−k0S(e)p∗ if e+p∗ /∈ Cγ , (16a)

kωR∗S−1(ReNNT−NNTRT

e ) otherwise, (16b)

where the set Cγ is given by

Cγ = {p : pTp∗ ≥ cos γ‖p‖‖p∗‖}, (17)

and γ, kv , k0, and kω are positive scalars.
The following lemma provides an expression for (15)-(16)

in terms of Q and Q∗.
Lemma 3.2: Under Assumptions 1 and 2, the controller

defined in (15)-(16) can be rewritten as

v =

{
0 if Qa /∈ Cγ ,

kv(Q−Q∗)a + S(Qa)ω otherwise,
(18)

ω =

{
−k0S(Qa)Q∗a if Qa /∈ Cγ ,

kωS−1(QPP T Q∗−Q∗PP T QT ) otherwise,
(19)

where P = (In − a1T )XT (XXT )−1N .
Proof: See [11].

Remark 3.1: It is straightforward to incorporate an hys-
teresis in the switching rule for (15)-(16) so as to obtain
a chattering-free commutation in the presence of small
disturbances.

A. Stability Analysis

In this section, we analyze the stability of the closed-loop
system and show that claim i) of Problem 1 is verified by
the proposed controller, as stated in the following result.

Theorem 3.3: Let Σ denote the closed-loop system that re-
sults from the feedback interconnection of (3) and (15)-(16).
The point (e, Re) = (0, I3) is an almost GAS equilibrium
point of Σ and the corresponding region of attraction is given
by RA = SE(3) \ NA, where

NA = {(e, Re) : tr(I3 −Rγ(e+p∗)Re) = 4 or
e = ap∗, a < −1} , (20)

and the function Rγ : R3 7→ SO(3) is given by

Rγ(p)=

{
I3 if p ∈ Cγ or S(p)p∗ = 0, (21a)

rot
(
acos( pT p∗

‖p‖‖p∗‖ )−γ, R∗T S(p)p∗

‖S(p)p∗‖

)
otherwise.

(21b)
To prove Theorem 3.3, we follow a constructive approach

that begins by focusing on the position system and then
proceeds to analyze the overall closed-loop system. Direct
substitution of (15)-(16) in (1a) yields an autonomous system
for p, which can be written as

ṗ =
{
−k0S(p)2p∗ if p /∈ Cγ , (22a)
−kv(p− p∗) otherwise. (22b)

As illustrated in Fig. 4, when p(0) 6= bp∗, b < 0, p(t)
moves towards ‖p(0)‖ p∗

‖p∗‖ through the shortest arc of cir-
cumference that results from connecting p(0) to ‖p(0)‖ p∗

‖p∗‖
until it reaches the cone Cγ . From then on, the motion of p(t)
is governed by (22b) and so it converges to p∗ describing
a straight line trajectory. An important result can be derived
from this analysis. It is easy to see that once p is inside the
cone Cγ it will not leave that set and consequently there will
be at most one switching (reached in finite time).

Fig. 4. Phase portrait of the position system (22).

This shows that the time evolution of the system is divided
into two stages, determined by the control laws (15a)-(16a)
and (15b)-(16b), respectively.

Proof: [Theorem 3.3] Considering the Lyapunov func-
tion V1 = 1

2e
Te and substituting (15)-(16) in V̇1 = eT (−v−

S(ω)p) yields

V̇1 =

{
k0p∗T S(p)2p∗ ≤ 0 if p(t) /∈ Cγ ,

−kveTe < 0 otherwise.
(23)

Since the switching condition p(t) /∈ Cγ is reached before
S(p)p∗ = 0, we have that V̇1 < 0 (provided that p(0) 6=
ap∗, a < 0), and therefore e = 0 is an almost GAS
equilibrium point of the autonomous position error system.

To analyze the rotation system, assume that the initial con-
dition is given by (e(t0), Re(t0)) and consider the following
two cases:

Case 1: p(t0) = e(t0) + p∗ ∈ Cγ . Since the system
is started directly inside the domain of application of the
second controller (15b)-(16b), it follows immediately from
Lemma 3.1 and (16b) that Re = I3 is an asymptotically



stable equilibrium point and that Re(t) → I3 as t → ∞,
provided that tr(I3 −Re(t0)) 6= 4.

Case 2: p(t0) /∈ Cγ . Let t1 > t0 denote the time instant
at which the switching occurs. Then, Re(t1) provides the
initial condition for the second stage, which according to
the arguments of Case 1 will converge to I3, provided that
tr(I3 −Re(t1)) 6= 4. Straightforward derivations, which are
omitted for the sake of brevity, show that Re(t1) can be
written as Re(t1) = Rγ(p(t0))Re(t0), where Rγ is given
by (21b).

B. Additional Stability and Convergence Properties
In this section, we show that claims ii) and iii) of

Problem 1 are also verified by the proposed controller.
By analyzing the convergence behavior of the closed-loop
system, we will be able to prove that the set J defined in (11)
is positively invariant. Next, we will show that the closed-
loop system for the image error vector ȳe defined in (7) is
asymptotically stable inside J .

Theorem 3.4: Consider the switched system Σ that results
from the feedback interconnection of (3) and (15)-(16) and
the set J defined in (11) as a function of the desired
configuration (p∗, R∗) ∈ SE(3) and feature plane Π. The
set J is positively invariant with respect to Σ if, given an
initial condition (e(0), Re(0)) ∈ J , the design variable γ
is such that 0 < γ < 1

2 (απ − α1), where απ ∈ (0, π/2] is
the angle between Ip∗ and Π and α1 ∈ [0, απ) the angle
between Ip∗ and Ip(0).

Proof: [Outline] Since the positive invariance of a col-
lection of sets implies that their intersection is also positively
invariant and J = RA ∩ J1 ∩ J2, we consider each set
separately. The positive invariance of RA follows from the
fact that it is the region of attraction of an asymptotically
stable equilibrium point. By simply observing the phase
portrait in Figure 4, it is straightforward to verify that if
eT
3p(0) > 0 and eT

3p∗ > 0 then

min
p(t)

eT

3p(t) ≥ min
{
eT

3p(0), ‖p(0)‖
‖p∗‖ eT

3p∗, eT

3p∗
}

>0, (24)

and so J1 is positively invariant.
Considering now the set J2, we recall that it can be

identified with the set C defined in (14). It is easy to observe
that the invariance condition will not be violated during the
first stage, since I ṗ(t) = R(t)Tv(t) = 0 while p(t) /∈ Cγ .
For the second stage (p(t) ∈ Cγ), we consider a particular
case and show that the intersection set J2∩{(e, Re) : e = 0}
is positively invariant. This result can be easily extended
for e 6= 0 as shown in [11]. Recalling that e = 0 is an
equilibrium point of the position error system, Ip can be
written as Ip(t) = Re(t)T Ip∗ for all t > 0 and the function
W : SO(3) 7→ R given by W (Re) = Ip∗T (I3 − RT

e )Ip∗

takes the form W (Ip) = Ip∗T (Ip∗ − Ip). Intersecting the
level curves of W with the cone C, it is straightforward to
observe that the nonincreasing monotonicity of W guarantees
the positive invariance of J2 ∩ {(e, Re) : e = 0}. To
show that Ẇ ≤ 0, recall that Ip∗ is an eigenvector of
NNT associated with σ2

1 . Then, Ẇ can be written as Ẇ =
−kω

Ip∗T (σ2
1I3 −RT

e NNT RT
e )Ip∗ ≤ 0.

To conclude this section, we analyze the stability of the
closed-loop system for the image coordinates ȳ. Recalling
that ȳ = (eT

3p)−1Ap, consider applying the coordinate
transformation [

ȳ
pz

]
=

[
(eT

3p)−1Ap
eT
3p

]
(25)

to the closed-loop system for p given in (22). Simple algebra
shows that the resulting system can be written as

˙̄y = −ky(ȳ − ȳ∗), ky =

{
k0‖p‖2 p∗z

pz
if p /∈ Cγ ,

kv
p∗z
pz

otherwise,
(26a)

and

ṗz =

{
−k0eT

3 S(p)2p∗ if p /∈ Cγ ,

−kv(pz − p∗z) otherwise,
(26b)

respectively, where p∗z = eT
3p∗, and ȳ∗ = p∗z

−1Ap∗. By
noting that p can be expressed as a function of ȳ and
pz , more specifically p = pzA

−1
1

[
ȳT 1

]T
, where A1 =[

AT e3

]T
, we can conclude that (26) is an autonomous

system and derive the following theorem.
Theorem 3.5: If p∗z > 0, the system given by (26) has an

asymptotically stable equilibrium point at (ȳ, pz) = (ȳ∗, p∗z)
and, inside the positively invariant set {(ȳ, pz) : pz > 0},
ȳ converges exponentially fast to ȳ∗ and ‖ȳ − ȳ∗‖ is
monotonically decreasing.

Proof: See [11].

IV. SIMULATION RESULTS

The simulation results presented in this section attest to the
stability and convergence properties of the proposed vision-
based controller. To implement the feedback law (15)-(16)
given the target configuration (p∗, R∗), we need to select
both the matrix N ∈ R3×m and the set of feature points in
the form of matrix X ∈ R3×n, with m ≥ 2 and n ≥ 4.

The matrix N is required to be such that the two largest
eigenvalues verify σ1 > σ2 > 0 and NNT Ip∗ = σ2

1
Ip∗.

Defining the unitary vector n1 = Ip∗/‖Ip∗‖ and assuming
that n1 and e1 = [1 0 0]T are not collinear, a possible choice
for N is given by

N = US, U =
[
n1

S(n1)e1
‖S(n1)e1‖

S(n1)
2e1

‖S(n1)2e1‖

]
, S =

[
σ1 0
0 σ2
0 0

]
.

(27)
Regarding X , it may seem that it can be formed by virtu-

ally any set of feature points satisfying Assumptions 1 and
2. However, since the visual-servoing problem is concerned
with keeping feature visibility and the proposed solution
only guarantees the positive invariance of J , the matrix
X should carefully chosen. To meet the assumptions and
ensure that the positive invariance of J does not lose its
significance, we consider a set of n = 8 feature points
such that X =

[
X1 X2

]
, where X1 =

[
a1 a1 −a1 −a1
b1 −b1 −b1 b1
0 0 0 0

]
,

X2 =
[ a2 a2 −a2 −a2

b2 −b2 −b2 b2
−c −c −c −c

]
, and 0 < a1 < a2, 0 < b1 < b2,

and c > 0. Note that the choice of feature configurations is
not limited to the one just proposed.



As shown in Fig. 1, the feature points correspond to
the vertices of a polyhedron that results from chopping the
top off a pyramid and the origin of {I} coincides with
the centroid of the polyhedron’s upper face. By aligning
the plane Π with this upper face, the positive invariance
of J , or equivalently of C, will guarantee that the inertial
position Ip(t) remains above the features, while converging
to Ip∗ = −R∗Tp∗. This choice of feature geometry also
simplifies the process of recovering the depth variables from
images coordinates, since the 3-D reconstruction algorithm
for planar scenes can be directly applied to the pairs (Y1, X1)
and (Y2, X2) [2].

The simulation results that follow were obtained with the
polyhedron parameters set to a1 = b1 = 0.56, a2 = b2 =
1.4, and c = 0.28 and a target position and orientation given
by p∗ = [0.1 0.25 10]T and R∗ = rot(−0.4, [0.77 0.63 −
0.1]T ), respectively. The corresponding set C, which results
from choosing nπ = [0 0 − 1]T , is shown in Fig. 5(a).

(a) 3-D trajectory
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Fig. 5. System trajectories.

Figure 5 illustrates the convergence behavior that can be
achieved with the proposed switching controller. The first
and second stages of the trajectory can be easily identified.
While the first controller is being applied, the body rotates
around itself (see Fig. 5(a)), yielding a translational motion of
the image coordinates yj in the image plane (see Fig. 5(b)).
Regarding the second controller, which takes the body to its
desired configuration, the resulting 3-D trajectory involves
both rotational and translational motions, which can be
identified as a rotation and zooming in of the feature points
in the image plane. Figure 6 shows that the position error

e and the angle of rotation θ converge exponentially fast to
zero.
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Fig. 6. Time evolution of e = [ex ey ez ]T and θ.

V. CONCLUSIONS

The paper presented a vision-based solution to the problem
of stabilization on SE(3). Based on the image coordinates of
a set of feature points and reconstructed depth information,
a switching controller was defined to ensure that the features
remain visible while the system converges to an almost GAS
target configuration. Exponential stability of an error vector
directly defined in the image plane was also established. Sim-
ulation results were presented, which support the adequacy
of the proposed method.
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[12] H. Khalil, Nonlinear Systems, Third Edition. New Jersey: Prentice
Hall, 2000.

[13] D. Angeli, “An almost global notion of input-to-state stability,” IEEE
Transactions on Automatic Control, vol. 49, no. 6, pp. 866–874, Jun.
2004.


