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Abstract

This paper addresses the problem of regulating the
dynamic model of a nonholonomic underactuated au-
tonomous underwater vehicle (AUV) to a point with
a desired orientation. A time-invariant discontinuous
controller is proposed that yields convergence of the
trajectories of the closed-loop system in the presence
of parametric modeling uncertainty. Controller design
relies on a non smooth coordinate transformation in
the original state space followed by the derivation of a
Lyapunov-based, adaptive, smooth control law in the
new coordinates. Convergence of the regulation system
is analyzed and simulation results are presented.

1 Introduction

1.1 Practical Motivation

Recently, there has been renewed interest in the de-
velopment of stationary benthic stations to carry out
experiments on the biology, geochemistry, and physics
of deep sea sediments and hydrothermal vents in situ,
over long periods of time. However, current meth-
ods of deploying and servicing benthic laboratories are
costly and require permanent support from specialized
crews resident on board manned submersibles or sur-
face ships. As a contribution to overcoming some of
the abovementioned problems, a European team led by
IFREMER, France developed a prototype autonomous
underwater shuttle vehicle named SIRENE to automat-
ically transport and position a large range of stationary
benthic laboratories on the seabed, at a desired target
point, down to depths of 4000 meters. The reader is
referred to [4] for a general description of the project
carried out by the partners IFREMER (FR), IST (PT),
THETIS (GER), and VWS (GER).

The Sirene autonomous underwater vehicle (AUV) - de-
picted in Figure 1 - has an open-frame structure and
is 4.0m long, 1.6m wide, and 1.96m high. It has
a dry weight of 4000 Kg and a maximum operating
depth of 4000 m. The vehicle is equipped with two back
thrusters for surge and yaw motion control in the hor-
izontal plane, and one vertical thruster for heave con-
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trol. In the figure, the vehicle carries a representative
benthic lab which is cubic-shaped with a volume of ap-
proximately 2.3m3. The dynamic model of the Sirene
can be found in [2].

{u}

Figure 1: The vehicle SIRENE coupled to a benthic lab-
oratory. Body-fixed {B} and earth-fixed {U}
reference frames

1.2 Underactuated AUVs

The problem of steering an underactuated AUV to a
point with a desired orientation has only recently re-
ceived special attention. This task raises some chal-
lenging questions in control system theory, because the
vehicle is underactuacted and, in general, falls in the
category of so-called nonholonomic systems. Further-
more, as will be shown, its dynamics are complicated
due to the presence of complex hydrodynamic terms.
This rules out any attempt to design a steering system
for the AUV that would rely on its kinematic equations
only. Pioneering work in this field is reported in [8],
where open loop small-amplitude periodic time-varying
control laws are used to re-position and re-orient un-
deractuated AUVs. A feedback control law that gives
exponential convergence of a nonholonomic AUV to a
constant desired configuration is introduced in [5]. The
design of a continuous, periodic feedback control law
that asymptotically stabilizes an underactuated AUV
and yields exponential convergence to the origin is de-
scribed in [9]. In [10], a time-varying feedback control
law is proposed that yields global practical stabilization
and tracking for an underactuated ship using a com-
bined integrator backstepping and averaging approach.

It is important to point out that some of the control
laws developed so far for underactuated underwater ve-
hicles do not take explicitly into account their dynamics
and are therefore unrealistic. Furthermore, even when
the dynamics are taken into account the resulting closed
loop system trajectories are often not "natural”.



1.3 Outline

Motivated by the above considerations, this paper ad-
dresses the problem of regulating a nonholonomic un-
deractuated AUV in the horizontal plane to a point with
a desired orientation. A discontinuous, adaptive state
feedback controller is derived that yields convergence of
the trajectories of the closed loop system in the presence
of parametric modeling uncertainty. This is achieved
by resorting to a polar representation of the kinematic
model of the AUV that relies on a non smooth trans-
formation in the original state space, followed by the
derivation of a smooth, time-invariant control law in
the new coordinates. The design of the new control al-
gorithm proposed, together with the analysis of its con-
vergence properties, build on Lyapunov stability theory,
LaSalle’s invariance principle, and backstepping design
techniques [7]. The reader will find in [1] an introduc-
tion to the circle of ideas explored in this paper, as well
as their application to the regulation of a nonholonomic
wheeled robot with parametric modeling uncertainty.

2 The AUV. Control Problem Formulation

This section describes the kinematic and dynamic equa-
tions of motion of the AUV of Figure 1 in the horizon-
tal plane, and formulates the problem of controlling it
to a point with a desired orientation. The control in-
puts are the thruster surge force 7, and the thruster
yaw torque 7,.. The AUV has no side thruster. Us-
ing the results of [11] and the fact that the elements of
the gravitational field corresponding to the unactuated
dynamics are zero, it follows that the AUV is a second-
order nonholonomic systems and therefore it cannot be
C' asymptotically stabilizable to a single equilibrium
point.

2.1 Vehicle Modeling

Following standard practice, the general kinematic and
dynamic equations of motion of the vehicle can be de-
veloped using a global coordinate frame {U} and a
body-fixed coordinate frame {B}, as depicted in Fig-
ure 1. In the horizontal plane, the kinematic equations
of motion of the vehicle can be written as

T =wucosty —vsiny, (2.1a)
Uy = usiny + v cos, (2.1b)
) =r, (2.1c)

where, following standard notation, u (surge speed) and
v (sway speed) are the body fixed frame components of
the vehicle’s velocity, x and y are the cartesian coordi-
nates of its center of mass, 1 defines its orientation, and
r is the vehicle’s angular speed. Furthermore, neglect-
ing the motions in heave, roll, and pitch the simplified
equations of motion for surge, sway and heading yield
[6]

My — Myur + dytt = Ty, (2.2a)
My + myur + dyv = 0, (2.2b)

My T — My + dpr = 7, (2.2¢)

where m, = m—X,, my, =m-—-Y,, m,. = I, — N;, and
My = My, — My, capture the effect of mass and hydro-
dynamic added mass terms, and dy, = =Xy — Xy |ul,
dy = =Y, = Y)yu|v|, and d, = =N, — N}, |r| cap-
ture the hydrodynamic damping effects. The symbols
7, and 7, denote the external force in surge and the
external torque about the z axis of the vehicle, respec-
tively. In the equations, and for clarity of presentation,
it was assumed that the AUV is neutrally buoyant and
that the centre of buoyancy coincides with the centre
of gravity.

2.2 Problem formulation

Let {G} be a goal reference frame and assume for sim-
plicity of presentation that {G} = {U}. The problem
considered in this paper can be formulated as follows.

Given the nonholonomic underactuated AUV with kine-
matics and dynamics equations (2.1) and (2.2), derive
a feedback control for T, and T, to regulate {B} to {G}
in the presence of parametric model uncertainty.

The type of parametric uncertainty considered includes
the general case where all the hydrodynamic coefficients
of the vehicle’s dynamic model are all to deviate from
their nominal values. The presentation that follows
borrows from and extends the results described in [1].

Figure 2: Coordinate Transformation.

2.3 Coordinate Transformation
Consider the coordinate transformation (see Figure 2)

e=z2+y? (2.3a)
¥+ B = tan™t (_y> (2.3b)

where d is the vector from Op to Oy, e is the length of d,
and [ denotes the angle measured from xp to d. Notice
that in equation (2.3b) care must be taken to select
the proper quadrant for 8. Differentiating (2.3) with
respect to time, the kinematics equations of motion of
the AUV in the new coordinate system for e # 0 can
be written as

é=—ucos@ —vsinf (2.4a)
. sinfg cos 3

8= U~ v—T (2.4b)
p=r (2.4c)



Remark 1 Notice that the coordinate transformation
(2.3) is only valid for non zero values of the distance
error e, since for e = 0 the angle 3 is undefined. This
will introduce a discontinuity in the control law that will
be derived later, which will obviate the basic limitations
imposed by the result of Brockett.

3 Nonlinear Controller Design

This section proposes a nonlinear control law to reg-
ulate the motion of the AUV described by equations
(2.1) and (2.2) to a target point with a desired ori-
entation. The Lyapunov based control law builds on
previous work described in [1]. Only the rationale for
the control law proposed is introduced, a formal proof
of convergence of solutions being omitted. See [3]. For
details, the structure of the control law can best be de-
rived by introducing a candidate Lyapunov functions
recursively, in a sequence of logical steps that are di-
rectly related to vehicle heading regulation and target
distance regulation. This methodology borrows heavily
from the techniques of backstepping [7]. A switching
term is introduced in the control law at the last stage
in order to solve the indeterminacy at e = 0 caused by
the polar representation adopted.

Step 1. (Heading regulation) Define the variables

U v 1
pP=— fzfa 525"1'*1#’
e e 5y
t 1 [t s
c=0B+9Y+ fcosﬁdT—&—f/psmﬁz/JdT,
to ry to 6

where 7 is a positive even integer constant. Rewrite the
equations of motion (2.2) and (2.4) as

. —1
5:psin6—§cosﬂ—’y r (3.1a)
1 sing
&= psinf+ = " 3.1b
p -7 5 (3.1Db)
: u dv .
fz—m—pr——£+§pcosﬂ+£2smﬂ (3.1¢)
My My
7= [Tr + Mypuv — dpr] (3.1d)
and

é = —pcos fe — Esin fe (3.2a)
p= [T + myvr — dyu] + p? cos f 4 pésin 3

mye

(3.2b)

where the final system has been divided in two subsys-
tems that will henceforth be referred to as the heading
and distance subsystems, respectively. Consider first
the heading subsystem (3.1), where the control objec-
tive is to regulate the variables §, o, £, and r to zero,
and ¢ to a point in Oy = {¢ = 27n; n € Z}. In order
to do this, observe from equations (3.1a), (3.1b), and
(3.1d) that r can be viewed as a virtual control input.

Define the positive definite function
1 1
V1 = 552 + §k0-0'2,

and compute its time derivative along the trajectories
of (3.1) to obtain
sin 3

V1 =0 kgapT + psinff —&cos B —

Following the methodology in [7], let r be a virtual
control input and

v—1

.

o= k00p¥ +psinf—EcosB+ked, ko >0, (3.3)

a virtual control law. Introduce the error variable
-1
z1 = Rt o, (3.4)
Y

and compute V1 to obtain V1 = —ky0% — 62.

Step 2. (Backstepping) The function V; is now aug-
mented with a quadratic term in z; to obtain the new
candidate Lyapunov function

1

The time derivative of V5 can be written as

. 1
Vo = —ko6®+ 21 [77

T

(TT + My UV — drr) — G — (5} .

Let the control law for 7,- be chosen as

Tr = —MypUV + drr + m, 1 1 (O[ +0— ]41321) ) (35)

ks > 0. Then Vo = —kyd% — kgz? < 0, that is, V5 is
negative semidefinite.

Step 3. (Free dynamics analysis) In this step, the
dynamic motion of 8 and § in the manifold £ =
{(6,0,21) € R3 : Vo = 0} is analyzed. We assume
p = ki > 0, where k; is a positive scalar (see also
Step 4). First, observe that since V5 is positive defi-
nite, radially unbounded, and has negative semidefinite
derivative, then it follows that J, o, and z; are globally
bounded. Furthermore, LaSalle’s theorem guarantees
convergence of these variables to the largest invariant
set M contained in E. Thus, §(t) — 0 and 21(¢t) — 0
as t — oo. Observe also that in the set ' the variables
0 and 0 are zero and therefore (3.1a), (3.3), and (3.4),
imply that
sin 3

]{51]{507 0.

The above expression is verified if ¢) sin = 0, with
B #0or i) o =0. In the first case, one obtains that

é: —[d—v — (ﬂ% +1)k1COSﬁ]f.

My My Yy —



in E. Consequently, lim;_,, £(t) = 0 if the controller
parameter k; is chosen such that

My

d'U u
> (m—i + 1)k1.
My vy — 1

In the second case, important conclusions about {f, £}
restricted to manifold E can be derived by resorting to
the candidate Lyapunov function
m 1
V= fym—:fkf(l —cos 3) + 552. (3.6)

Computing its time derivative, yields

Vo _ lkl, /7’?: sinﬁ]TQ [kl,/'y?sinﬁ] ’

where
1 L . M(lfcos.ﬁ)
Q= . ~F—1"1 . 2(v—1) V' my )
2(7'711) 7%(1—cosﬁ) #—(%7—1—1+1)k1c05ﬁ—£sin[3

Under the assumption that £ is bounded, i.e., assuming
there exists a positive number r¢ such that

it can be checked that @ is positive definite if the in-

equalities ﬁlﬁ > 0 and :T“; > {2%% + 1} ki +

T¢ hold. In this case,
V < = Amin(@Q)(1 4 cos B)V <0,

where \,,;,(Q) denotes the minimum eigenvalue of the
positive matrix (). Hence, it can be concluded that
lim; oo V(t) = 0 which implies that {sin3,£{} con-
verges to zero as t — oo. From the definition of §,
and since vy takes an even integer value, it follows that
’lﬂ — Oil}'

To estimate a region of attraction for £ in the manifold
E (in order to validate assumption (3.7)) observe that

1 . 1
SESV S Vo <2tk + 6.

Thus, for any &(tg) = & such that

My
&0l < \/7E - 4’Ym7k%> (3.8)

and (0,0,21) € E, lim;_, £(t) = 0.

Step 4. (Distance regulation) Consider now the distance
subsystem (3.2) and in particularly examine equation
(3.2a). Since {sin3,&} — 0, then, intuitively, a possi-
ble strategy to force e to converge to zero is the follow-
ing: make the variable p converge to a positive value
if cosf — 1 as t — oo; for the particular case where
cosf — —1 make p converge to a negative value. In
order to apply this strategy, a new error variable

o — p+k1 if(Qa/Bag)leR(Sv
2 p— k1 otherwise,

is defined. The region R is a subset of

Re = {q = (570-%721’22)/’555 : ||Q|| < €qs

[sin ] < €5 < 1, cos 5 < 0, |¢] < ec ),

where €, €3, € are positive constants such that R.
is an invariant set. Consider now a third candidate
Lyapunov function given by

1
Vs =Vy + 525

Computing its time derivative gives

Vo = — koo — kyo? + zg[

(Tu + myur — duu)
u

+p2cosﬂ+p§sinﬁ].
Now, by choosing the control input

Ty = —MuUT + dyu — mye [p2 cos 3+ p€sin 8 + k422},
(3.9)
the time derivative of V3 becomes

Vs = —kod? — ksz? — ky22 <0, (3.10)

that is, V3 is negative semidefinite.

Step 5. (Switching control law) So far, it has been as-
sumed that the AUV will never start at or reach the
position x = y = 0 in finite time, because the polar
representation (2.3) and consequently the control law
described above are not defined at e = 0. To deal with
this situation, a switching control law must be intro-
duced at this stage. A possible solution is to make

Tu =0, (3.11a)

Tr = —kpr — kg, (3.11b)
where k, and k,, are positive constants, when e = 0.
The complete control law is thus given by

o { Tu } :{ (3.(53)',1(13).9) e#0 (3.12)

Tr e=0

The following theorem can now be proved [3].

Theorem 1 Consider the closed loop nonlinear invari-
ant system ¥ described by (2.1), (2.2), and (3.12).
Consider also the set R(0y, 0y, k1),

v

- < .

e ’ - (SU}

Let X(t) = (2,y,9,u,v,7) = {X : [tg,00) — RO},
to > 0, be a solution of ¥. Then given any compact
neighborhood S C R* of (z,y,v,r) = (0,0,27n,0), n €
Z, one can find sufficiently small k1 > 0, 6, > 0, and
0y > 0 such that, for any initial conditions X(ty) =
XopeSUR

1. X(t) exists, is unique and defined for all t > to;

2. X(t) is bounded;

3. The solution X(t) converges to an equilib-
rium point in O = {(x,y,w,u,v,r)’ =

(0,0,271,0,0,0), n € Z} ast — oo.

R = {(u,v,e) eR?:e>0,

(3
7_k1’ S(Siu
e




4 Adaptive Nonlinear Controller Design

This section describes an extension of the previous con-
trol law to deal with parameter uncertainty. Again,
only the rational for the resulting adaptive control
law is described through the introduction of a general
Lyapunov function that captures parameter deviations
from the nominal values. See [3] for formal convergence
proofs.

4.1 Control law
Consider the set of all parameters of the AUV model
(2.2) concatenated in the vector

mu YU YU v
0= I:muzmv,mummmxuax\u\mNthrlrv 777¢:|
My My Moy
and define the parameter estimation error © as © =
©—0, where O denotes a nominal value of ©. Consider
the augmented candidate Lyapunov function

1., 1 1, 1., 1., 1 1= ~
Vi = =624 k0242224 = =24 —@T Pr 10
U L L R T N :

where ﬁ = p_ﬁ7 g: 5_57 r= dlag {717727 "'7711}a and
p - diag{LLLLLLLLlll}

My’ My’ My? My My’ My’ My’ My
where v; > 0, ¢ = 1,2,...11 are adaptation gains. Let
the variable z; be now slightly modified and redefined
as z1 = %17" — &, where

y sin 3

a(0,0,8,p,€) = koop 3

Notice the inclusion of the variables p and §~ in the Lya-
punov function V,. This was done because in the pro-
cess of computing & the variables p and £ must also be
computed and these in turn are functions of the model
parameters (see equations (3.1c) and (3.2b)). Moti-
vated by the choices in steps 2 and 3, choose the control
laws

—|—ﬁsinﬁ—écosﬁ+k25.

7 = —Ozuv — O7r — ég\r|r +6, i 1 [07 + 5}
K (4.1a)
S
3 1
v—1
Tu = —Oavr — O5u — Oglulu

ot _ B (4.1b)
91e[p cos 3+ pfsmﬁ] kyiezo,

and the updating laws

51%0% +osinfB+kyp, k,>0  (4.2a)

p

€ = —0y pr 4 010€ + 011 |v]€ + p€ cos B

N (4.2b)
—l—fzsinﬁ—écosﬁ—i—k;gg, ke >0
that yield
o 2 ks 2 ~ 17
Vi = —k20" — —27 — [22,p] Q1 [22, 7]
My (4.3)

— k€2 4+ OTP[Qy —T710),

kg kg

where Q1 = ( o 21’:“ ) is a positive definite matrix if
I3

2mig,

ko > Ah]’fn—“u and @5 is a diagonal matrix given by

Qs = diag{ (5 + 22)(p* cos 8 + pE sin ), (5 + 22)¢r,

v,z (6 +06), p(z2 + p), p(z2 + p)|ul,

21

y—1 ~~-1 PP
a0 T, ~Gor. €6, dlole )

Notice in equation (4.3) how the terms containing ©;
have been grouped together. To eliminate them, choose
the parameter adaptation law as

0 =TQs, (4.4)

to yield

. k N 3 -~
Vi = —kyo? — m3 23 — [22, ) Q1 [22, p) — ke&? < 0.

r

Thus, the complete adaptive control law is given by

S PR Ll e
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Figure 3: The Sirene AUV path for different initial
conditions in (z,y). The initial condition for
(¥, u,v,7)" is zero.

5 Simulation Results

This section illustrates the performance of the proposed
control scheme (in the presence of parametric uncer-
tainty) using computer simulations. The objective is
to regulate the position and attitude of the SIRENE
AUV to zero. The control parameters were selected as
follows: k1 = 0.03, ke = 0.5, k3 = 100, k4 = 20, k, = 1,
v =2, k, =10, k¢ = 10, ky = 1.6, k, = 1.9, and
I' = diag(10,10,10,1,1,2,2,2,20,20,20). The initial
estimates for the vehicle parameters were disturbed by
50% from their true values.

Figures 3-5 show the simulation results for the nonlinear
adaptive control law (4.5). Figure 3 illustrates the ve-
hicle trajectory in the xy-plane for different initial con-
ditions in (z,y). Figures 4-5 display the time responses
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Figure 4: Time evolution of position variables z(¢) and
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Figure 5: Time evolution of linear velocity in x g-direction
(surge) wu(t), linear velocity in yp-direction
(sway) v(t), and angular velocity r(t).

of the relevant state space variables for the initial con-
dition (zo, Yo, %o, uo, v, 0) = (—30m, —60m, 0,0,0,0).
Notice how, in spite of parameter uncertainty and the
drift term (see the sway velocity activity in Figure 5),
the vehicle converges asymptotically to the origin with
a "natural”, smooth trajectory.

6 Conclusions

This paper proposed a new solution to the problem
of regulating the dynamic model of an underactuated,
nonholonomic AUV to a point with a desired orienta-
tion. A discontinuous, bounded, time invariant, nonlin-
ear adaptive control law that yields convergence of the
trajectories of the closed loop system in the presence
of parametric modeling uncertainty was derived. Sim-
ulation results show that the control objectives were
achieved successfully. Future research will address the
problem of control and analysis of mechanical nonholo-
nomic systems in the presence of noise measurements,
actuator saturation constraints, and observer dynamics.
Notice that for the AUV case, robust control schemes
are mandatory due to significant model uncertainty,
measurement noise, and the strong influence of exter-
nal disturbances such as underwater currents. Another
open problem is the application of this theoretical de-
velopments to real world practical applications.
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