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Abstract

This paper considers the problem of global stabilization
of an underactuated autonomous underwater vehicle
(AUV) to a point, with a desired orientation. Con-
trollability and stabilizability properties of the vehi-
cle model are discussed and a logic-based hybrid con-
troller is proposed that yields global convergence of the
AUV to an arbitrarily small neighborhood of the target
point. Convergence and stability of the closed loop sys-
tem are analyzed. To illustrate the control law devel-
oped, simulation results are presented using the model
of the Sirene AUV.

1 Introduction

The problem of steering an underactuated autonomous
underwater vehicle (AUV) to a point with a desired
orientation has only recently received special atten-
tion in the literature. This task raises some challeng-
ing questions in control system theory, because the
vehicle is underactuacted. Furthermore, as will be
shown, its dynamics are complicated due to the pres-
ence of complex hydrodynamic terms. This rules out
any attempt to design a steering system for the AUV
that would rely on its kinematic equations only. Pi-
oneering work in this field is reported in [14], where
open loop small-amplitude periodic time-varying con-
trol laws were proposed to re-position and re-orient un-
deractuated AUVs. A feedback control law that gives
exponential convergence of a nonholonomic AUV to a
constant desired configuration is introduced in [9]. The
design of a continuous, periodic feedback control law
that asymptotically stabilizes an underactuated AUV
and yields exponential convergence to the origin is de-
scribed in [16]. See also [17] for an extension of these
results to address robustness issues. In [19], a time-
varying feedback control law is proposed that yields
global practical stabilization and tracking for an un-
deractuated ship using a combined integrator backstep-
ping and averaging approach. Practical applications of
these results can be found in [18]. More recent work
is described in [6], where the problem of regulating a
dynamic model of a nonholonomic and underactuated
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AUV to a desired point with a given orientation is ad-
dressed and solved. This is done by using a discontin-
uous, nonlinear adaptive state feedback controller that
yields convergence of the trajectories of the closed loop
system in the presence of parametric modeling uncer-
tainty.
This paper addresses the problem of stabilizing an un-
deractuated AUV in the horizontal plane using a new
technique that builds on hybrid control theory. To the
best of the authors knowledge, this work is the first
application of hybrid control to the stabilization of un-
deractuated marine vehicles. A feedback logic-based hy-
brid control law is derived that yields global stabiliza-
tion of an underactuated AUV to an arbitrarily small
neighborhood of a target position with a desired orien-
tation. Control systems design is done by transforming
the AUV dynamic model into extended nonholonomic
double integrator (ENDI) form plus a drift vector field,
followed by the derivation of a controller for that sys-
tem that explores previous work on feedback hybrid
control of the ENDI [2, 5]. It is worth pointing out
that the technique proposed in this paper is not a sim-
ply extension of the methodology developed in [2, 5].
In fact, point stabilization of an underactuated AUV
poses considerable challenges to control system design-
ers, since the models of those vehicles typically include
a drift vector field that is not in the span of the input
vector fields, thus precluding the use of input transfor-
mations to bring them to driftless form.

The paper is organized as follows: Section 2 describes
the dynamical model of a prototype AUV named Sirene
that is the focal point of this work. A coordinate trans-
formation is introduced and some important results on
stabilizability and controllability of the underactuated
AUV model are discussed. Section 3 proposes a piece-
wise smooth controller for AUV stabilization based on
hybrid systems theory, and discusses the stability of
the resulting closed loop. It is shown that closed loop
system is stable and that for any initial condition the
AUV converges to a small neighborhood of the desired
final position with a desired orientation. The radius of
the neighborhood can be chosen arbitrarily close to zero
(depending only on the controller parameters). Section
4 contains simulation results that illustrate the perfor-
mance of the proposed control strategy. The paper
concludes with a summary of results and recommenda-
tions for further research.

1



2 The Autonomous Underwater Vehicle

This section describes the simplified equations of mo-
tion of the underactuated AUV Sirene and addresses
the problem of controlling it to a point with a de-
sired orientation. The controllability and stabilizabil-
ity properties of the vehicle are discussed. The Sirene
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Figure 1: The vehicle Sirene coupled to a benthic lab-
oratory. Body-fixed {B} and earth-fixed {U}
reference frames

vehicle - depicted in Fig. 1 - has an open-frame struc-
ture and is 4.0m long, 1.6m wide, and 1.96m high. It
has a dry weight of 4000Kg and a maximum operating
depth of 4000m. The vehicle is equipped with two back
thrusters for surge and yaw motion control in the hori-
zontal plane and one vertical thruster for heave control.
Roll and pitch motion are left uncontrolled, since the
metacentric height1 is sufficiently large (36 cm) to pro-
vide adequate static stability. The AUV has no side
thruster. In the figure, the vehicle carries a representa-
tive benthic lab that is cubic-shaped and has a volume
of 2.3m3. See [1, 3] for complete details on the AUV
dynamic model.

2.1 Vehicle Modeling

General equations of motion

Following standard practice, the kinematic and dy-
namic equations of motion of the AUV can be devel-
oped using a global coordinate frame {U} and a body-
fixed coordinate frame {B}, as depicted in Fig. 1. In
the horizontal plane, the kinematic equations of motion
of the vehicle can be written as

ẋ = u cosψ − v sinψ, (1a)

ẏ = u sinψ + v cosψ, (1b)

ψ̇ = r, (1c)

where, following standard notation, u (surge speed)
and v (sway speed) are the body fixed frame compo-
nents of the vehicle’s velocity, x and y are the cartesian
coordinates of its center of mass, ψ defines its orienta-
tion, and r is the vehicle’s angular speed.

Neglecting the motions in heave, roll, and pitch, the
simplified equations of motion for surge, sway and
heading yield [10]

muu̇−mvvr + duu = τu, (2a)

mv v̇ +muur + dvv = 0, (2b)

mr ṙ − (mu −mv)uv + drr = τr, (2c)

1distance between the center of buoyancy and the center of
mass.

where mu = m − Xu̇, mv = m − Yv̇, mr = Iz − Nṙ,
and muv = mu − mv are mass and hydrodynamic
added mass terms and dur = −Xu −X|u|u |ur|, dvr =
−Yv−Y|v|v |vr|, and dr = −Nr−N|r|r |r| capture hydro-
dynamic damping effects. The symbols τu and τr de-
note the external force in surge and the external torque
about the z axis of the vehicle, respectively. In the
equations, and for clarity of presentation, it is assumed
that the AUV is neutrally buoyant and that the center
of buoyancy coincides with the center of gravity.

Coordinate Transformation

Consider the global diffeomorphism given by the state
and control coordinate transformation

z1 = ψ

z2 = x cosψ + y sinψ

z3 = −2
(

x sinψ − y cosψ
)

+ ψ
(

x cosψ + y sinψ
)

u1 =
1

mr

τr +
mu −mv

mr

uv − dr
mr

r

u2 =
mv

mu

vr − du
mu

u+
1

mu

τu − u1
z1z2 − z3

2
+ vr

− r2z2
that yields

z̈1 = u1 (3a)

z̈2 = u2 (3b)

ż3 = z1ż2 − z2ż1 + 2v (3c)

and transforms the second order constraint (2b) for the
sway velocity into

mv v̇ +mu

(

ż2 + ż1
z1z2 − z3

2

)

ż1 + dvv = 0. (4)

Throughout the paper, q = (z1, z2, z3, ż1, ż2, v)
′, and

u = (u1, u2)
′ denote the state vector and the input

vector of the system described by equations (3) and
(4), respectively.

2.2 Controllability and Stabilizability Results

The AUV falls into the class of control affine nonlinear
systems with drift described by

q̇ = f(q) +
m
∑

i=1

gi(q)ui

where q ∈ M , M is a smooth n-dimensional manifold,
u ∈ Rm, and the mappings f, g1, . . . , gm are smooth
vector fields on M . The theorem that follows estab-
lishes basic results on nonlinear accessibility and con-
trollability of (1)-(2). See [12, 15, 20] for relevant back-
ground.

Theorem 1 Consider the underactuated AUV model
described by (1)-(2). Let Me be the set of equilibrium
solutions corresponding to τu = τr = 0, that is, Me =
{(x, y, ψ, u, v, r)′ ∈ R6 : u = v = r = 0}. Then, the
AUV model satisfies the following properties:

1. There is no time-invariant continuously differen-
tiable feedback law that asymptotically stabilizes
the closed loop system to (xe, ye, ψe, 0, 0, 0)

′ ∈
Me.
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2. The AUV system is locally strongly accessible for
any (x, y, ψ, u, v, r)′ ∈ R6.

3. The AUV system is small time locally controllable
(STLC) at any equilibrium (xe, ye, ψe, 0, 0, 0)

′ ∈
Me.

Proof. See [2]. 2

3 Hybrid Controller Design

This section proposes a piecewise smooth controller to
stabilize the AUV that builds on hybrid system theory.
The objective is to design a feedback law for system
(3)-(4) that will make the state q = (z1, z2, z3, ż1, ż2, v)

′

converges to an arbitrarily small neighborhood of the
origin despite the drift vector field introduced by the
sway velocity v that is not in the span of the input vec-
tor fields. Consequently, it is also necessary to guaran-
tee that the sway velocity v subject to the constraint
(4) goes to zero.

Hybrid systems are specially suited to deal with
the combination of continuous dynamics and discrete
events. The literature on hybrid systems is extensive
and discusses different modeling techniques [7, 21]. In
this paper, a continuous-time hybrid system Σ is de-
fined as [11]

ẋ(t) = fσ(t)
(

x(t), t
)

, t ≥ t0 (5a)

σ(t) = φ
(

x(t), σ(t−)
)

(5b)

where σ(t) ∈ I 4
= {1, . . . , N} and x(t) ∈ X 4

=
∪Nσ=1Xσ ⊂ Rn. Here, the differential equation (5a)
models the continuous dynamics, where the vector
fields fσ : Xσ × R+ → X , σ ∈ I are each locally Lip-
schitz continuous maps from Xσ to X . The algebraic
equation (5b), where φ : X × I → I, models the state
of the decision-making logic. The discrete state σ(t) is
piecewise constant. The notation t− indicates that the
discrete state is piecewise continuous from the right.
The dynamics of the system Σ can now be described
as follows: starting at (x0, i) with x0 ∈ Ri ⊂ Xi,
the continuous state trajectory x(t) evolves accord-
ing to ẋ = fi(x, t). When φ

(

x(·), i
)

becomes equal
to j 6= i, (and this could only happen when x(·) hits
the set X\Ri), the continuous dynamics switches to
ẋ = fj(x, t), from which the process continues. As in
[11], the ”logical dynamics” will be determined recur-
sively by equation (5b) with σ−(t0) = σ0 ∈ I, where
σ−(t) denotes the limit of σ(τ) from below as τ → t
and the transition function φ is defined by

φ(x, σ) =

{

σ if x ∈ Rσ,

maxI
{

k : x ∈ Rk

}

otherwise.
(6)

Consider now the AUV model described by equations
(3)-(4) with state vector q = (z1, z2, z3, ż1, ż2, v)

′ ∈ R6.
Define the function W (q) : R6 → Ω ⊂ R2 as

ω
4
= (ω1, ω2)

′ = W (·) =
[

s
2
, λ1(λ− λ1)(z1)

2 + (ż1)
2]′
,

where s = ż3 + λz3 and λ and λ1 are positive con-
stants that satisfy λ1 < λ. The image of W is the

two-dimensional closed positive quadrant space Ω =
{(ω1, ω2) ∈ R2 : ω1 ≥ 0, ω2 ≥ 0}. The mapping W has
the following property: if ω1 is bounded (say ω1 ≤ ε)
then z3 is also bounded by

|z3(t)| ≤ e−λ(t−t0)|z3(t0)|+
√
ε

λ
. (7)

In particularly, if ω1(t) converges to zero then z3(t) also
converges to zero.

Consider the following three overlapping regions in Ω
(see Fig. 2) that play a key role in the definition of
φ(q, σ) in (6)

R1 =
{

(ω1, ω2) ∈ Ω : ω1 > ε1 ∧ ω2 ≤ γ1
}

(8a)

R2 =
{

(ω1, ω2) ∈ Ω : ω1 > ε2 ∧ ω2 > 0
}

∪
{

(ω1, ω2) ∈ Ω : ε1 < ω1 ≤ ε2
} (8b)

R3 =
{

(ω1, ω2) ∈ Ω : ω1 ≤ ε2
}

, (8c)

where

ε2 =

{

+∞ σ = 3 ∧ z1ż1 > 0 ∧ |z1| < |ż1|
λ
,

ε2 otherwise,

γ1 =

{

+∞ |z1(t0)| < |ż1(t0)|
λ

,

γ otherwise,

and ε2 > ε1, ε1, and γ are positive constants.
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Figure 2: Definition of regions R1, R2, and R3.

The following control law is proposed

u = (u1, u2)
′ = hσ(q), (9)

where the vector fields hσ : R6 → R2, σ ∈ I = {1, 2, 3}
are given by

h1(q) =

[

−λż1 + k1
−λż2

]

, h2(q) =

[

−λż1
−λż2 + k2 sat( s√

ε1
)

]

,

(10)

h3(q) =

[

−λż1 − λ1(λ− λ1)z1
−λż2 − λ1(λ− λ1)z2 − k3z1s

]

, (11)

with k1 = sgn
(

z2(t0) + ż2(t0)
λ

)

sgn(s), k2 =

− sgn
(

z1(t0) +
ż1(t0)
λ

)

, and k3 a positive constant. The
function sgn(·) is defined by sgn(x) = 1 if x ≥ 0, and
sgn(x) = −1 if x < 0. The function sat(·) is in turn
defined by sat(x) = sgn(x) if |x| > 1, and sat(x) = x
if |x| ≤ 1. The switching signal σ(t) is piecewise con-
stant, takes values in I = {1, 2, 3}, and is determined
recursively by

σ(t) = φ
(

ω(t), σ−(t)
)

, σ−(t0) = σ0 ∈ I (12)
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where the transition function is defined according to
(6).
The control laws for each region were designed accord-
ing to the following simple rule: if σ = 1, the variable
ω2(t) must move away from zero; when σ = 2, ω1(t)
must decrease and reach a given bound in finite time
and ω2(t) must not increase; finally, when σ = 3, the
variable ω2(t) and therefore the state z2(t) must con-
verge to zero while ω1(t) should remain near ε1 (in this
case its behavior will be dictated by the drift state v).
A sketch of a typical trajectory in theW -space is shown
in Fig. 3.

e1 e2 w1

w2

g1

s = 1s = 2
s = 3

s = 3

s = 2

Figure 3: Image of a representative trajectory in the
(ω1, ω2)-space.

The following is the key result of this paper.

Theorem 2 Consider the hybrid system ΣAUV de-
scribed by (3)-(4), (8)-(12), and (6). Let {q(t), σ(t)} =
{q : [t0,∞) → R6, σ : [t0,∞) → I} be a solution to
ΣAUV . Then, the following properties hold.

1. Given an arbitrary pair {x0, σ0} ∈ R5 × I
(initial condition), there exists a unique so-
lution {x(t), σ(t)} for all t ≥ t0 such that
{x(t0), σ−(t0)} = {x0, σ0}.

2. For any set of initial conditions {q(t0), σ−(t0)} =
{q0, σ0} ∈ R6 × I, there exists a finite time T
such that for t > T the state variables z1(t),
ż1(t), z2(t), ż2(t), and v(t) converge to zero, and
ω1(t) ≤ ε2, where ε2 > 0 is a controller parameter
that can be chosen arbitrarily small.

3. The origin q = 0 is a Lyapunov uniformly stable
equilibrium point of ΣAUV .

Proof.
Existence and Uniqueness
Since for each i ∈ I the vector field hi(q) is contin-
uously differentiable with respect to q, then hi(q) is
locally Lipschitz in q. Moreover, since for i = 1, 2 the
Jacobian matrix [∂hi/∂q] is uniformly bounded in R6

it follows that hi(q) is globally Lipschitz. For i = 3,
h3(q) is not globally Lipschitz. However, it can be
shown that every solution of ΣAUV with q0 ∈ R3 and
σ0 = 3 lies entirely in a compact set S ⊂ R6. A proof
of this statement arises naturally in the discussion be-
low. Notice also that the distance between two points
in the (ω1, ω2)-space where consecutive switching may
occur is always nonzero. It now follows from classical
arguments [13] that the hybrid system ΣAUV has ex-
actly one solution over [t0,∞) for each initial condition
{q0, σ0} ∈ R6 × I.

Convergence
An outline of the convergence proof is given based on
the following five claims. See [2] for complete details.

Claim 1 Given an initial time t0 ≥ 0, there exists a
finite time T ≥ t0 such that σ(t) ∈ I\{1} for all t ≥ T .
Proof. Consider first that σ0 = 1 at t = t0, and sup-
pose that by contradiction σ(t) = 1 (and consequently,
ω(t) remains in R1) for all t ≥ t0. In this case, the
dynamics of z1 satisfy z̈1 = −λż1 + k1. Therefore,
ω2(t) = λ1(λ−λ1)z21+ ż21 is unbounded and ω(t) leaves
region R1 which is a contradiction. The remainder of
the proof consist of showing that if σ0 ∈ I\{1}, then
σ will never switch to 1. From the definition of re-
gions Ri, i = 1, 2, 3(expression (8)) and according to
the switching logic implemented for σ(t) (see equation
(6)) it can be easily checked that σ can only switch
to 1 if there exists a finite time t̄ > t0, such that
ω(t̄) ∈ R =

{

(ω1, ω2) ∈ Ω : ω1 > ε2(t) ∧ ω2 = 0
}

.
Assume (by contradiction) that this happens. Then
there exists τ > 0 such that for all t ∈ [t̄− τ, t̄) one has
σ(t) = 2 and the dynamics of z1(t) satisfy z̈1 = −λż1.
This in turn shows that (since the initial condition
ω2(t̄ − τ) 6= 0), ω2 will never be zero at a finite time
t = t̄.

Claim 2 For any T ≥ tσ2
≥ t0 such that σ(t) = 2 for

t ∈ [tσ2
, T ), there exist finite constants γ̄0 > 0, λ̄ > 0,

and γ̄ > 0 such that the sway velocity v(t) satisfies for
t ∈ [tσ2

, T ) the inequality

|v(t)| ≤ γ̄0 + γ̄ e
−λ̄(t−tσ2

) +

∫

t

tσ2

e
−λ̄(t−τ)

h(τ)|s(τ)|dτ,

where h(t) = mu

mv

ż2

1
(tσ2

)

2λ e−2λ(t−tσ2
). Moreover, if

for T = ∞ one has limt→∞ h(t)|s(t)| = 0, then
limt→∞ v(t) = 0.

Claim 3 For any tσ2
≥ 0 such that σ(tσ2

) = 2, if

z1(tσ2
) 6= − ż1(tσ2

)

λ
, then there exists a finite time T ≥

tσ2
such that ω1(T ) = ε1.

Proof. To prove that ω1(t) reaches the boundary ω1 =
ε1 in finite time, observe that for σ = 2 the dynamics
of ω1 are given by

ω̇1 = 2s
[

z1k2 + 2(v̇ + λv)
]

, ω1 ≥ ε1. (13)

Since z̈1 = −λż1, it can be checked that there exists a
finite time t̄1 > tσ2

such z1(t)k2 = −|z1(t)| sgn(s) for
all t ≥ t̄1. Thus, from equation (13) it follows that

ω̇1 = −2s
[

|z1| sgn(s)− 2(v̇ + λv)
]

, t ≥ t̄1

Notice that limt→∞ h(t)|s(t)| = 0 (see [4]) which im-
plies, according to Claim 2, that limt→∞ v(t) = 0. No-
tice also that z1(t) converges to a value different from

zero (z1(tσ2
)+

ż1(tσ2
)

λ
6= 0). Thus, there will be a finite

time t̄2 > t̄1 such that ∀t ≥ t̄2, ω̇1(t) < 0. Therefore
ω1(t) will reach the boundary ω1 = ε1 in finite time.

Claim 4 For any tσ2
and any positive interval τ > 0

such that σ(t) = 2 for t ∈ [tσ2
, tσ2

+ τ ], if the initial

conditions
(

z1(tσ2
), ż1(tσ2

)
)′
satisfy

z1(tσ2
)ż1(tσ2

) ≤ 0, |z1(tσ2
)| > |ż1(tσ2

)|
λ

, (14)
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then for all t ∈ [tσ2
, tσ2

+ τ ]

ω2(t) ≤ ω2(tσ2
). (15)

Proof. For σ = 2, z̈1 = −λż1. In this case z1(t)

converges to z1(tσ2
) +

ż1(tσ2
)

λ
as t → ∞ and if con-

ditions (14) hold, then |z1(t)| ≤ |z1(tσ2
)|. Thus, since

ω2(t) = λ1(λ− λ1)z21(t) + ż21(t), it follows (15).

Claim 5 There exists a finite time T ≥ t0 such that
σ(t) = 3 and ω1(t) ≤ ε2 for all t > T . Furthermore,
the state variables z1(t), ż1(t), z2(t), ż2(t), and v(t)
converge to zero.

Proof. Consider first that σ(t) = 3 for all t ≥ T .
Clearly, from (3), (9), and (11) and the fact that λ1 > 0
and λ−λ1 > 0, it follows that (z1, ż1)

′ is exponentially
stable. Also, one can conclude that (z2, ż2)

′ is exponen-
tially stable if |s(t)| is bounded. From (4), it can be
inferred that v(t) converges to zero (notice that dv > 0)
if |s(t)| is bounded. Due to space limitations, the proof
of boundedness of |s(t)| is omitted. See [2].

To conclude the proof, it remains to show that there
exists a finite time T such that for all t ≥ T , σ(t) = 3.
First, observe that one can always find positive con-
stants ω?2 and v? such that for any initial conditions
σ(tσ3

) = 3, z1(tσ3
), ż1(tσ3

), and v(tσ3
) that satisfy

ω2(tσ3
) ≤ ω?2 and |v(tσ3

)| ≤ v?, the bound of ω1(t)
is less or equal to ε2 for all t ≥ tσ3

. Notice also that
for σ = 3, the closed loop dynamics of z1(t) are given
by z̈1 = −λz1 − λ1(λ − λ1)z1. Thus, it follows that
for any tσ3

such that σ(tσ3
) = 3, there exist a positive

time interval τ > 0 and a finite time T ∈ [tσ3
, tσ3

+ τ ]
such that for all t ∈ [T, tσ3

+ τ ]

z1(t)ż1(t) ≤ 0 and |z1(t)| >
|ż1(t)|
λ

. (16)

From the definition of ε2, it can be concluded that σ
can not switch from 3 while condition (16) is not true
(since ε2 = +∞). Thus, if σ(t) switches from 3 to 2, it
means that conditions (16) hold. Consequently, from
Claim 4 and 3 it follows that w2(t) will not increase and
also that, after a finite time, the signal σ will switch
again to 3. Hence, there will be finite jumps between 2
and 3 until ω2 becomes less or equal to ω?2 . See Fig. 3
for a better understanding of the switching logic. From
the proofs of Claims 2 and 3, it follows that after a finite
time (say t = T ) one has |v(T )| ≤ v?, and ω2(T ) ≤ ω?.
Consequently, it can be concluded that for all t ≥ T ,
ω2(t) ≤ ε2, σ(t) = 3, and v(t) converges to zero. This
conclude the proof of Claim 5 and naturally item 2 of
Theorem 2.

Stability
From the proof of Claim 5 it can be concluded that
there exists a positive constant r̄ such that for any
q(t0) ∈ Br̄(0), σ(t) = 3 for all t ≥ t0. Moreover, given
any ε > 0, there exists a positive constant r ≤ r̄ such
that with q(t0) ≤ r it follows that |z3(t)| ≤ ε for all
t ≥ t0 (see (7)). Also, from the closed loop system
equations for σ = 3, it can be easily proved that the
other components of the state q, i.e., z1, ż1, z2, ż2, and
v are asymptotically stable. Therefore, the hybrid sys-
tem ΣAUV is Lyapunov uniformly stable by definition.

This concludes the outline of the proof of Theorem 2.
2

4 Simulation Results

This section illustrates the performance of the proposed
control scheme with a model of the Sirene AUV. The
parameters of the complete model can be found in [1].
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Figure 4: Path of the underactuated Sirene AUV.

The simulation results for a sample initial condi-
tion given by

(

x, y, θ, u, v, r
)

=
(

2m, 2m, 0, 0, 0, 0
)

, or

equivalently q0 =
(

z1, z2, z3, ż1, ż2
)′

= (0, 2, 4, 0, 0, 0)′,
and σ(0−) = 1 are shown in Figures 4-6. The con-
trol parameters were chosen to be ε1 = 0.1, ε2 = 0.2,
γ1 = 0.6, λ = 1.0, λ1 = 0.95, and k3 = 100.

Fig. 4 shows the AUV trajectory in the horizontal
plane. The vehicle converges to a small neighborhood
of the target position with a desired orientation. Fig.
5 is a plot of the vehicle linear and angular velocities.
Notice that the most aggressive motions occur during
the first 20 seconds. This is clearly mirrored in the
sway velocity activity over that time period. During
the rest of the maneuver, as expected, the sway ve-
locity v(t) converges to zero as the trajectory of the
vehicle straightens out.
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Figure 5: Time evolution of linear velocity in x-direction
(surge) u, linear velocity in y-direction (sway)
v, and angular velocity r.

To better understand the action of the hybrid control
law proposed, examine Fig. 6 that shows the time evo-
lution of the variables ω1(t), ω2(t), and σ(t). It can be
seen that ω(t) starts in region R1 and, consequently,
ω2 grows until reaches γ1. At that moment, the signal
σ switches to 2, ω2 does not increase, and ω1 decreases
until it reaches the boundary ω1 = ε1. Then, σ switches
to 3 and z1(t), z2(t), and v(t) converge to zero. This
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Figure 6: Time evolution of variables ω1, ω2, and σ(t).

implies that the state x(t) and θ(t) also converge to
zero.

5 Conclusions

A feedback hybrid control law was proposed to globally
stabilize an underactuated AUV in the horizontal plane
to a point with a desired orientation. The control law
derived builds on hybrid systems theory and exhibits
a simple structure. Convergence of the AUV to an ar-
bitrarily small neighborhood of the origin and stability
of the resulting closed loop system were analyzed. To
illustrated the control law developed, simulations were
conducted using a dynamic model of the Sirene AUV.
The simulation results show that the control objectives
were achieved successfully. Notice, however that due to
the existence in the control law of a coordinate transfor-
mation of the AUV model to extended nonholonomic
double integrator with drift terms, the resulting path is
hard to predict and may not be a ”natural maneuver”.

Future research will address this problem and that of
robustness against parametric model uncertainty. Fur-
ther work is also required to bridge the gap between
theory and practice, effectively bringing the theoreti-
cal results derived to bear on the development of con-
trollers for underactuated marine robots.
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