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Abstract— This paper addresses the state estimation problem
of nonlinear systems. We formulate the problem using a
minimum energy estimator (MEE) approach and propose an
entropy penalized scheme to approximate the viscosity solution
of the Hamilton-Jacobi equation that follows from the MEE
formulation. We derive an explicit observer algorithm that is
iterative and filtering-like, which continuously improves the
state estimation as more measurements arise. In addition, we
propose a computationally efficient procedure to estimate the
state by performing an approximation of the nonlinear system
along the trajectory of the estimate. In this case, for the first
and second order approximations of the state equation, we
derive a closed-form (iterative) solution for the Hessian of the
entropy-like version of the optimal cost function of the MEE.
We illustrate and contrast the performance of our algorithms
with the extended Kalman filter (EKF) using specific nonlinear
examples with the feature that the EKF do not converge to the
correct value.

I. I NTRODUCTION

The determination in real time of an estimate of the state
of a given nonlinear system from partial and noisy measure-
ments of the inputs and outputs and inexact knowledge of the
initial condition has been a fundamental and a challenging
problem in theory and applications of control systems [1],
[2]. By far, the extended Kalman filter (EKF) is the most
widely used method for estimating the state. It is obtained by
linearizing the nonlinear dynamics and the observation along
the trajectory of the estimate. However, since it is only a local
method, it may fail to converge. Several nonlinear observers
using deterministic and stochastic approaches can be found
in the literature[1-12]: Lyapunov-like, Luenberger-like, high-
gain observers, sliding-mode observers, optimization-based,
etc. Particular interesting classes of optimal nonlinear ob-
servers are the minimum energy estimator (MEE) and the
closely relatedH∞ estimator [7]. The MEE were first
proposed by Mortersen [8] and further improved by O. Hijab
[9]. In [10] the convergence of the MEE is proven, provided
that the system is uniformly observable for every input. In the
MEE approach one tries to find an observer that computes
an estimatêx(t) of the statex(t) that is compatible with
the system’s dynamics and measured outputs and minimizes
the energy of the noise and disturbances. One important
feature of this approach is that if the system is linear, then
one would obtain precisely the Kalman-Bucy filter. However,
in general, both minimum-energy andH∞ state estimators
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for nonlinear systems lead to infinite-dimensional observers
whose state evolves according to a first-order nonlinear PDE
of Hamilton-Jacobi (HJ) type, driven by the observations. To
the best of our knowledge, besides linear systems, the only
class of systems reported in the literature where one can have
a closed-form solution that is filtering-like and iterativeare
state-affine systems with implicit outputs [11], [12].

Motivated by the above considerations, this paper ad-
dresses the problem of computing the viscosity solution
J(x, t) of the HJ PDE that arises in the minimum energy
estimator formulation. We propose an alternative strategy
(compared to the traditional ones of computing directly
J(x, t) via finite elements) that consists in the discretization
of the estimation problem and in an addition of a suitable
entropy functional. This functional regularizes the evolution
of the discrete value function by acting as a viscosity
term. This strategy follows from recent results on entropy
penalization methods for HJ equations described in [13].

The main contributions of this paper are twofold. First,
we derive an explicit observer algorithm, calledentropy
penalized minimum energy estimatorthat is iterative and
filtering-like, which continuously improves the state esti-
mation as more measurements arise. Second, we propose a
computationally efficient procedure to estimate the state.In
this case, for the first and second order approximations of
the state equation and linear (or linearized) output equation,
we derive a closed-form (iterative) solution for the Hessian
of the entropy-like version of the optimal cost function of
the MEE. We illustrate and contrast the performance of the
proposed algorithms with the extended Kalman filter (EKF)
using specific nonlinear examples with the feature that the
EKF do not converge to the correct value.

The paper is organized as follows. Section II introduces
the entropy penalized the minimum energy estimator (MEE).
In Section 3, we derive the explicit iterative formulas of the
entropy penalized MEE when the output equation of the
process is linearized and the state equation is replaced by
a first or second order approximation. Section 4 illustrates
the performance of the entropy penalized MEE through
computer simulations using highly nonlinear systems. Con-
clusions and suggestions for further research are presented
in Section 5.

II. T HE ENTROPY PENALIZED M INIMUM ENERGY

ESTIMATOR

Consider the problem of estimating the current statex ∈
R

n of a nonlinear system

ẋ = f(x) + g(x)w, x(0) = x0 (1a)

y = h(x) + v, (1b)



wheref : R
n → R

n, g : R
n → R

n×m, h : R
n → R

p, y ∈
R

p denotes the measured output,w ∈ R
m an input distur-

bance that cannot be measured andv ∈ R
p the measurement

noise affecting the output. The initial conditionx0 and the
signals w and v are assumed deterministic but unknown.
For simplicity, we have considered a system without control
signal since for estimator design purposes this one is assumed
to be known. The minimum energy estimator produces an
estimate for the statex that is compatible with the system’s
dynamics and measured outputs for noisev and disturbances
w with lowest integral-square-norm [10], [11]. The optimal
state estimatêx at time t is defined as

x̂(t) := arg min
z∈Rn

J(z, t), (2)

where the cost functional is given by

J(x, t) := ‖x0 − x̂0‖
2
Q0

+ min
w:[0,t]

1

2

t
∫

0

‖w(τ)‖2 + ‖y(τ) − h(x(τ))‖2dτ,

(3)

‖x0 − x̂0‖
2
Q0

:= (x0 − x̂0)
T Q0(x0 − x̂0), Q0 > 0, and

x̂0 encodes a priori information about the state. Under
reasonable assumptions in (1) (see details in [10], [14]),
J(x, t) is locally Lipschitz continuous and it is a viscosity
solution of the HJ PDE

Jt(x, t) + Jx(x, t)f(x) +
1

2
‖JT

x (x, t)‖2
Γ

−
1

2
‖y(t) − h(x)‖2 = 0, (4)

whereΓ(x) := g(x)gT (x), andJt andJx denote the partial
derivatives ofJ w.r.t. t and x, respectively. Note that (2)
and (4) define an infinite dimensional observer with state
J(·, t). To rewrite it in a filtering like form (similar to a
Kalman filter) we follow the steps proposed in [10], [14] by
supposing thatJ(x, t) is a smooth solution to (4). In this
case, sincêx(t) is a minimum ofJ(x, t) then

Jx(x̂(t), t) = 0, (5a)

Jxx(x̂(t), t) ˙̂x(t) + Jxt(x̂(t), t) = 0. (5b)

Taking partial derivatives of (4) w.r.t.x, evaluating at
(x̂(t), t), and using (5a) it follows that

Jtx(x̂(t), t)+Jxx(x̂(t), t)f(x̂)

+ hT
x (x̂(t))

(

y − h(x̂(t))
)

= 0. (6)

From these two last equations we finally arrive to the
dynamic observer equation

˙̂x(t) = f(x̂) + J−1
xx (x̂, t)hT

x (x̂)
(

y − h(x̂)
)

. (7)

It is important to stress that we still have the problem of
computingJ(x, t) (or more precisely the Hessian ofJ(x, t)).
To solve this problem, we propose an entropy penalized
scheme to approximate the viscosity solution [15] of the HJ
PDE (4) following the procedure in [13]. To this effect, we

discretize in time, with time step∆t = tk+1 − tk, the cost
functional (3) and use the Lax-Hopf formula ( [16]) to obtain

J∆t
(x, i + 1) = min

w∈Rm

[

J∆t
(x + ∆tẋ, i)+ ∆tL(x, w)

]

, (8)

whereJ∆t
denotes the time discretization ofJ , i the iterative

step, andL the Lagrangian given by

L(x, w) :=
1

2
‖w‖2 +

1

2
‖y − h(x))‖2. (9)

As in [13], equation (8) can be written as

J∆t
(x, i+1) = min

µ∈℘

∫

Rm

[J∆t
(x + ∆tẋ, i) + ∆tL(x, w)] dµ(w)

(10)
where℘ denotes the space of the probability measures on
R

m. We now add an entropy functional to regularize the
evolution of the discrete value function which acts as a
viscosity term. For this purpose, letε > 0 be a small
parameter andD the set of probability densities onRm, i.e.,

D =







γ ∈ L1(Rm)|γ(w) ≥ 0 a.e.,

∫

Rm

γ(w)dw = 1







.

Then, applying the entropy penalized scheme to (10) we
obtain an approximation toJ∆t

that, to simplify notation
we still denote byJ∆t

and is given by

J∆t
(x, i + 1) = min

γ∈D

∫

Rm

[

J∆t
(x + ∆tẋ, i)

+ ∆tL(x, w) + ε lnγ(w)
]

γ(w)dw.

(11)

Using the results in [13], we can then conclude that (11) is
equivalent to the following explicit iteration scheme

J∆t
(x, i + 1) = −ε ln





∫

Rm

e−
J∆t

(x+∆tẋ,i)+∆tL(x,w)

ε dw



 .

(12)
We call the system composed by (7), or a discretization of
it, e.g.,

x̂i+1 = x̂i + ∆t

[

f(x̂i) + (J∆t
)−1
xx (x̂, i)hT

x (x̂i) [y − h(x̂i)]
]

together with the scheme (12) to approximate the value
function J(x, t) as the entropy penalized minimum energy
estimator.

In the next section, for the first and second order ap-
proximations of the state equation and the linearized output
equation, we present explicitly iterative formulas to compute
(J∆t

)xx(x, i).

III. T HE ENTROPY PENALIZEDMEE FOR SYSTEMS WITH

LINEARIZED OUTPUTS

In this section, we restrict system (1) to

ẋ = f(x) + Gw, x(0) = x0, (13a)

y = hx(x̂)x + v, (13b)

whereG ∈ R
n×m is assumed to be a Hermitian matrix, and

hx is the Jacobian matrix ofh around the estimated state



x̂. In the following, we derive iterative formulas using the
entropy penalized scheme to compute the approximation of
the viscosity solution of the HJ PDE (4). In Section III-A,
we consider a first order approximation of the state equation
in the estimate point̂x and compute an approximation of the
cost function valid in a neighborhood of that point. In Section
III-B, we further improve the results by using a second order
approximation.

A. First order approximation

Theorem 1:Consider system (13) withf replaced by a
first order approximation

f(x) = f(x̂i) + fx(x̂i)(x − x̂i) (14)

and set the initial condition of the value functionJ∆t
(x, 0)

as
J∆t

(x, 0) = ‖x − µ0‖
2
Q0

,

whereµ0 = x̂0 andQ0 is a positive definite matrix.
Then, the cost functionJ∆t

(x, i) at each time stepi ≥ 1
is quadratic and its Hessian(J∆t

)xx(x, i) can be written as

(J∆t
)xx(x, i) =

(

‖x − µi‖
2
Qi

)

xx
,

where

µi = −
1

2
Q−1

i−1

(

2ΘT
2i−1

Λi−1Θ1i−1 − ∆ty
T hx(x̂i)

)T
, (15)

Qi = ΘT
1i

Λi−1Θ1i
+

(

1

2
∆th

T
x (x̂i)hx(x̂i)

)

, (16)

Θ1i
=
(

I + ∆tfx (x̂i)
T
)

, (17)

Θ2i
=
(

∆tf (x̂i) − ∆tfx (x̂i)
T

x̂i

)

− µi, (18)

Λi =
(

Qi − QiGU−1
i ∆2

t G
T QT

i

)

, (19)

Ui =

(

∆2
t G

T QiG +
1

2
∆tI

)

. (20)

Proof: The proof follows by induction. Fori = 0 the
result is trivial since the initial condition is quadratic.For the
induction step, assume that the hypothesis holds fort = ti =
∆ti. We will show that it also holds att + ∆t = (i + 1)∆t.
Recall (12) and consider first the argument of the exponential
power. Using the fact thatJ∆t

(x, i) can be written by a
quadratic term of the formJ∆t

(x, i) = ‖x−µi‖
2
Qi

+cte due
to the induction hypothesis, it follows that

J∆t
(x + ∆tẋ, i) = ‖(x + ∆tẋ − µi)‖

2
Qi

+ cte

= ‖x + ∆t (f (x̂i) + fx (x̂i) (x − x̂i)) − µi‖
2
Qi

+ cte

= ‖(α + ∆tGw)‖
2
Qi

+ cte,

wherecte denotes a constant term that we will neglect since
we are interesting in the Hessian andα is given by

α = (I + ∆tfx (x̂i))x + (∆tf (x̂i) − ∆tfx (x̂i) x̂i) − µi.

(21)

The Lagrangian (9) can be re-wrriten as

∆tL(x, w) = ‖w‖
2
1
2∆tI

+ ‖x‖
2
1
2 ∆thT

x (x̂i)hx(x̂i)

− ∆ty
T hx(x̂i)x + ‖y‖

2
1
2∆tI

.

where ‖y‖
2
1
2∆tI

is a constant term that can be neglected.
Thus,

J∆t
(x + ∆tẋ, i) + ∆tL(x, w) =

‖(α + ∆tGw)‖
2
Qi

+ ‖w‖
2
1
2∆tI

+ ‖x‖
2
1
2∆thT

x (x̂i)hx(x̂i)
− ∆ty

T hx(x̂i)x + cte.

Completing the squares we obtain

J∆t
(x + ∆tẋ, i) + ∆tL(x, w) = (L∗w)

T
L∗w

+ 2
(

∆tα
T QiG (L∗)

−1
)

L∗w

+
(

∆tα
T QiG

)

U−1
i

(

∆tα
T QiG

)T

−
(

∆tα
T QiG

)

U−1
i

(

∆tα
T QiG

)T

+ αT Qiα + ‖x‖
2
1
2∆thT

x (x̂i)hx(x̂i)

− ∆ty
T hx(x̂i)x + cte

=
∥

∥L∗w + ∆tL
−1GT QT

i α
∥

∥

2

+ αT
(

Qi − QiGU−1
i ∆2

t G
T QT

i

)

α

+ ‖x‖2
1
2∆thT

x (x̂i)hx(x̂i)
− ∆ty

T hx(x̂i)x + cte.

(22)

where

Ui =

(

∆2
t G

T QiG +
1

2
∆tI

)

= LL∗,

is the Cholesky decomposition. Using the notation in (17)–
(20), noticing thatα = Θ1i

x + Θ2i
, and replacing (22) in

(12) we obtain

J∆t
(x, i + 1) =

∫

Rm

e−
‖L∗w+∆tL−1GT QT

i
α‖2

ε dw

+ αT
(

Qi − QiGU−1
i ∆2

t G
T QT

i

)

α

+ ‖x‖
2
1
2∆thT

x (x̂i)hx(x̂i)
− ∆ty

T hx(x̂i)x + cte.

where the integrant term represents a Gaussian distribution
with suitable parameters, and therefore the integral assumes
a constant value. Rearranging the terms to provide symmetric
form yields

J∆t

(

x, i+1
)

=

∥

∥

∥

∥

x +
1

2
Q−1

i

(

2ΘT
2i

ΛiΘ1i
− ∆ty

T hx(x̂i)
)T

∥

∥

∥

∥

2

Qi

−
1

4

(

2ΘT
2i

ΛΘ1i
− ∆ty

T hx(x̂i)
)

Q−1
i

(

2ΘT
2i

ΛiΘ1i
− ∆ty

T hx(x̂i)
)T

+ ΘT
2i

ΛiΘ2i
+ cte.

Differentiating twice with respect tox we arrive at

(J∆t
)xx =

(

∥

∥

∥

∥

x+
1

2
Q−1

i

(

2ΘT
2i

ΛiΘ1i
−∆ty

T hx(x̂i)
)T

∥

∥

∥

∥

2

Qi

)

xx

which ends the proof.



B. Second order approximation

In this section we improve our method by performing a
second order approximation. In this casef(x) is replaced by

f(x) = f(x̂i)+fx(x̂i)(x − x̂i)+
1

2
(x − x̂i)

T fxx(x̂i)(x − x̂i)

Before we proceed, the following elementary lemma is
needed.

Lemma 1:The integral
∫

Rm

e−
M+T

ε dw1...dwm, (23)

where

M = (w + c2)
T

P (w + c2) ,

T = ΛT WΛ,

Λ = (w + c1)
T

fxx (x̂) (w + c1),

ε > 0, W, P ∈ R
m×m are positive definite matrices, andcj

are suitable constant vectors, is absolutely convergent.

Proof: SinceW is positive definite,T is bounded from
below. SinceP is positive definite, the termM has quadratic
growth as|w| → ∞, which ensures convergence.

Theorem 2:Consider system (13) withf replaced by the
second order approximation and set the initial condition of
the value functionJ∆t

(x, 0) as

J∆t
(x, 0) = ‖x − µ0‖

2
Q0

,

whereµ0 = x̂0 and Q0 is a positive definite matrix. Then,
the cost functionJ∆t

(x, i) at each time stepi ≥ 1 is of order
four and its Hessian(J∆t

)xx (x, i) can be computed using
the following iterative method. Fori = 1,

(J∆t
)xx (x, 1) =

(

αT
i

(

Q0 − ∆2
t Q0GU−1GT QT

0

)

αi

+
1

2
∆tx

T hT
x (x̂i)hx(x̂i)x

)

xx
,

where

U =

(

∆2
t G

T Q0G +
1

2
∆tI

)

,

andαi is given by

αi = x + ∆t

(

f (x̂i) + fx (x̂i)
T

(x − x̂i)
)

+ ∆t

(

1

2
(x − x̂i)

T
fxx (x̂i) (x − x̂i)

)

.

For i ≥ 2,

(J∆t
)xx (x, i) =

(

ΞT
i ΩiΞi +

1

2
∆tx

T hT
x (x̂i)hx(x̂i)x

)

xx

,

where

Ξi = αi+
(

1

2
Ω−1

i

(

∆ty
T hx(x̂i) −

1

2
∆4

t y
T hx(x̂i)GGT CT hx(x̂i)

))T

Ωi =
1

2
∆th

T
x (x̂i)hx(x̂i)

−
1

4
∆4

t h
T
x (x̂i)hx(x̂i)GGT hT

x (x̂i)hx(x̂i).

Proof: [outline] The proof follows by induction, using
the same techniques as in the Theorem 1. However, here
we do not identify the distribution as a Gaussian, but apply
Lemma 1 to obtain the constant term. See [17] for a detailed
proof.

IV. SIMULATION RESULTS

The performance of the entropy penalized minimum en-
ergy estimator (EPMEE) is now evaluated through two
examples similar to those presented in [14]. The first example
is an one dimensional system and the second one is a two
dimensional system. In both cases we illustrate the first and
second order approximation and compare the performance
with the EKF. In the following,ei = x̂i − xi denotes the
estimation error in the coordinatei and|e| the absolute error.

A. One dimensional example

Consider the system

ẋ = 0.1x2 − x

y = x

where we set the initial conditionsx0 = 2, x̂0 = 0.1, Q0 =
1, and a time step of∆t = 0.1. For the EKF, we used the
same initial condition,P0 = 0.1419 (generated randomly)
andQ = R = 10.

Figure 1 shows the time evolution of the estimation errors
of the EPMEE using a first order approximation and the
EKF. Note that contrary to the EPMEE estimator, the state
estimate of the EKF do not converge to the correct value.
Figure 2 illustrates the case for the EPMEE using a second
order approximation. The absolute value ofe is displayed
in Fig. 3 and 4. From these figures, one can see that the
convergence of the second-order EPMEE is faster.
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Fig. 1. 1D example - First Order Approximation Error
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Fig. 4. 1D example - Absolute EPMEE Second Approximation Error

B. Two dimensional example

We now present the simulation results for the second-order
highly nonlinear system

ẋ1 = −4x1 − x2 − (x2
1 + x2

2)
2x1

ẋ2 = x1 − 4x2 − (x2
1 + x2

2)
2x2

y = [x1, x2]
T

(24)

In this simulation, the initial condition for both estimators is
x̂0 = (0.1, 0.1) while the real system starts atx0 = (2, 2),
Q0 = diag([1 1]) and the time step is∆t = 0.1. For the EKF,
we usedP0 = [0.1023 0.0012; 0.012 0.0212] (generated
randomly) andQ = R = diag([0.1 0.1]). Figures 5-8 display
the results obtained, which agree with the one-dimensional
case.
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Fig. 5. 2D example - First Order Approximation Error
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Fig. 6. 2D example - Second Order Approximation Error

The MEE is a particular case of theH∞ observer, see
for instance [18]. To provide an insight about the robustness
of the EPMEE, Fig. 9 shows the case when there exist
uniformly distributed measurement errors in the interval
[−0.5, 0.5]. As one can see, even in the presence of sig-
nificant noise the EPMEE do not diverge and the estimation
errors converges to a small neighborhood of zero.

C. Discussion of Results

The EPMEE derived in this paper has the desired feature
of being iterative and filtering-like. It continuously improves
the state estimate as more measurements arise. In fact, it
resembles the EKF (see expression (7)). However, there is
a main diference. In the EKF, it is the Riccati equation
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Fig. 8. 2D example - Absolute EPMEE Second Approximation Error

that provides an estimative of the evolution of the value
function, which may give poor results if the system is highly
nonlinear. In approach proposed in the paper, the fact that the
system is nonlinear is taken into consideration by computing
an estimate of the evolution of an approximation of the
viscosity solution. The simulations show that the EPMEE is
less sensitive to the nonlinear nature of the plant compared
with the EKF. The drawback is that the convergence speed
of the EPMEE in some cases is slightly slower than the EKF
(when this one converge).

V. CONCLUSIONS ANDFURTHER RESEARCH

We have considered the state estimation problem of non-
linear systems using a minimum energy estimator approach
combined with an entropy penalized scheme to approximate
the viscosity solution of the Hamilton-Jacobi equation. We
derived a computationally efficient procedure to estimate the
state and the Hessian of the value function for the first and
even second order approximations of the state equation and
linearized output equation. The simulation results illustrate
and contrast the good performance of our algorithms com-
pared with the EKF. Preliminary convergence results of the
EPMEE can be found in [17]. Future work will address
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Fig. 9. 2D example - Second Order Approximation Error with Uniform
Errors

the development of new techniques to compute the value
function using Monte Carlo approximation methods for the
entropy penalized method.

REFERENCES

[1] T. B. Schon,Estimation of Nonlinear Dynamic Systems - Theory and
Applications. Linkoping Studies in Science and Technology, 2006.

[2] A. Gelb, Applied optimal estimation. MIT Press, 1974.
[3] J. Gauthier, H. Hammouri, and S. Othman, “A simple observer for

nonlinear systems applications to bioreactors,”IEEE Transactions on
Automatic Control, vol. 37, pp. 875–880, 1992.

[4] C. R. B. Wei Kang, Mingqing Xiao,New trends in nonlinear dynamics
and control, and their applications. Springer, 2007.

[5] A. H. Jazwinski, Stochastic Processes and Filtering Theory. Aca-
demic Press, 1970.

[6] T. Basar, “Paradigms for robustness in controller and filter desingns,”
J. Macroeconomic Dynamics, 2002.

[7] K. M. Nagpal and P. P. Khargonekar, “Filtering and smoothing in an
H-infinity setting,” IEEE Transactions on Automatic Control, vol. 36,
no. 2, 1997.

[8] R. E. Motersen, “Maximum likelihood recursive nonlinear filtering,”
J. Optimization Theory and Applic., no. 2, pp. 386–394, 1968.

[9] O. Hijab, “Minimum energy estimation,”PhD Dissertation, Univ. of
California, Berkeley, 1980.

[10] A. J. Krener, “The convergence of the minimum energy estimator,” in
New trends in nonlinear dynamics and control, and their applications,
ser. Lecture Notes in Control and Inform. Sci. Berlin: Springer, 2004,
vol. 295, pp. 187–208.

[11] A. P. Aguiar and J. P. Hespanha, “Minimum-energy state estimation
for systems with perspective outputs,”IEEE Trans. on Automat. Contr.,
vol. 51, no. 2, pp. 226–241, Feb. 2006.

[12] ——, “Robust filtering for deterministic systems with implicit out-
puts,” Syst. & Contr. Lett., vol. 58, no. 4, pp. 263–270, Apr. 2009.

[13] D. A. Gomes and E. Valdinoci, “Entropy penalization methods for
Hamilton-Jacobi equations,”Advances in Mathematics, vol. 215, pp.
94–152, 2007.

[14] A. Krener and A. Duarte, “A hybrid computational approach to
nonlinear estimation,”Proceedings of the 35th CDC, 1996.

[15] M. Bardi and I. Capuzzo-Dolcetta,Optimal control and viscosity
solutions of Hamilton-Jacobi-Bellman equations. Boston, USA:
Birkhuser - Boston, 1997.

[16] P. Cannarsa and C. Sinestrari,Semiconcave Functions, Hamilton-
Jacobi Equations, and Optimal Control. Birkhauser, 2003, vol.
Progress in Nonlinear Differential Equations and Their Applications -
Volume 58.

[17] S. Pequito, “The entropy penalized minimum energy estimator,” MSc
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