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Abstract— This paper addresses the state estimation problem for nonlinear systems lead to infinite-dimensional obsexve
of nonlinear systems. We formulate the problem using a whose state evolves according to a first-order nonlinear PDE
minimum energy estimator (MEE) approach and propose an ot yamilton-Jacobi (HJ) type, driven by the observatiors. T
entropy penalized scheme to approximate the viscosity sdion T . '
of the Hamilton-Jacobi equation that follows from the MEE the best of our knowledgg, bes'(?'es linear systems, the only
formulation. We derive an explicit observer algorithm that is ~ Class of systems reported in the literature where one caa hav
iterative and filtering-like, which continuously improves the a closed-form solution that is filtering-like and iteratisee
state estimation as more measurements arise. In addition,&v  state-affine systems with implicit outputs [11], [12].
propose a computationally efficient procedure to estimatette Motivated by the above considerations, this paper ad-

state by performing an approximation of the nonlinear systen . . . .
along the trajectory of the estimate. In this case, for the fist dresses the problem of computing the viscosity solution

and second order approximations of the state equation, we J(z,t) of the HJ PDE that arises in the minimum energy
derive a closed-form (iterative) solution for the Hessian bthe  estimator formulation. We propose an alternative strategy

entropy-like version of the optimal cost function of the MEE. (compared to the traditional ones of computing directly
We illustrate and contrast the performance of our algorithms 7, 4) via finite elements) that consists in the discretization
with the extended Kalman filter (EKF) using specific nonlinea . . . - .
examples with the feature that the EKF do not converge to the ©f the estimation problem and in an addition of a suitable
correct value. entropy functional. This functional regularizes the evioin
of the discrete value function by acting as a viscosity
. INTRODUCTION term. This strategy follows from recent results on entropy
The determination in real time of an estimate of the stateenalization methods for HJ equations described in [13].
of a given nonlinear system from partial and noisy measure- The main contributions of this paper are twofold. First,
ments of the inputs and outputs and inexact knowledge of thvee derive an explicit observer algorithm, calleshtropy
initial condition has been a fundamental and a challengingenalized minimum energy estimatthat is iterative and
problem in theory and applications of control systems [1[fltering-like, which continuously improves the state esti
[2]. By far, the extended Kalman filter (EKF) is the mostmation as more measurements arise. Second, we propose a
widely used method for estimating the state. It is obtained bcomputationally efficient procedure to estimate the stiate.
linearizing the nonlinear dynamics and the observationglo this case, for the first and second order approximations of
the trajectory of the estimate. However, since it is onlyaalo the state equation and linear (or linearized) output eqoati
method, it may fail to converge. Several nonlinear observewe derive a closed-form (iterative) solution for the Hessia
using deterministic and stochastic approaches can be foudtithe entropy-like version of the optimal cost function of
in the literature[1-12]: Lyapunov-like, Luenberger-likggh- the MEE. We illustrate and contrast the performance of the
gain observers, sliding-mode observers, optimizatiosetla proposed algorithms with the extended Kalman filter (EKF)
etc. Particular interesting classes of optimal nonlindar o using specific nonlinear examples with the feature that the
servers are the minimum energy estimator (MEE) and tHeKF do not converge to the correct value.
closely relatedH,, estimator [7]. The MEE were first The paper is organized as follows. Section Il introduces
proposed by Mortersen [8] and further improved by O. Hijatthe entropy penalized the minimum energy estimator (MEE).
[9]. In [10] the convergence of the MEE is proven, providedn Section 3, we derive the explicit iterative formulas oéth
that the system is uniformly observable for every inputhia t entropy penalized MEE when the output equation of the
MEE approach one tries to find an observer that comput@socess is linearized and the state equation is replaced by
an estimatei(t) of the statexz(t) that is compatible with a first or second order approximation. Section 4 illustrates
the system’s dynamics and measured outputs and minimizée performance of the entropy penalized MEE through
the energy of the noise and disturbances. One importa@@mputer simulations using highly nonlinear systems. Con-
feature of this approach is that if the system is linear, theglusions and suggestions for further research are presente
one would obtain precisely the Kalman-Bucy filter. Howeverin Section 5.

in general, both minimum-energy add., state estimators
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wheref : R" - R", g : R" — R™™™, h:R" — RP, y € discretize in time, with time step\; = ¢;4+1 — ¢, the cost
RP denotes the measured output,c R™ an input distur- functional (3) and use the Lax-Hopf formula ( [16]) to obtain
bance that cannot be measured ang R? the measurement . .

noise affecting the output. The initial conditiary and the T weRm [ai(@+ A, i) + AcL(z, w)], (8)
signalsw and v are assumed deterministic but unknownyhere 7, denotes the time discretization éf i the iterative
F_or sm_phcny, we have cons@ered a system_ W|tho_ut contr@tep, andL the Lagrangian given by

signal since for estimator design purposes this one is asgum 1 1

to be known. The minimum energy estimator produces an L(z,w) := _Hw”? + =y — h(:c))||2. 9)
estimate for the state that is compatible with the system’s _ 2 2 _

dynamics and measured outputs for naisend disturbances As in [13], equation (8) can be written as

JAt(CC,i—I— 1)

w with lowest integral-square-norm [10], [11]. The optimal ) ] o
state estimaté at timet is defined as Ia, (2, i+1) = ﬁlelg/ [Ja (@ + Ay i) + D¢ L@, w)] dpp(w)
Rm
Z(t) := arg min J(z,1t), (2) (10)
=eRr where o denotes the space of the probability measures on
where the cost functional is given by R™. We now add an entropy functional to regularize the

evolution of the discrete value function which acts as a
viscosity term. For this purpose, let > 0 be a small
parameter an@® the set of probability densities dR™, i.e.,

J(,T,t) = H.%‘o — jOHQQD

b min 2 [ w1 + o) - )l
’ ©) D= q~e L' (R™)y(w) >0 a.e.,R[ y(w)dw =1

o = Zol|3, = (x0 — #0)"Qo(zo — 0), Qo > 0, and  Then, applying the entropy penalized scheme to (10) we
Zo encodes a priori information about the state. Undegptain an approximation td/a, that, to simplify notation
reasonable assumptions in (1) (see details in [10], [14]}ve still denote byJa, and is given by
J(x,t) is locally Lipschitz continuous and it is a viscosity
solution of the HJ PDE Ia,(z,i4+1) = meig/ [Ja, (x4 Ay, i)
- ) T
ﬁ@i%+h@¢ﬁ@%+%l&%ﬂh § AL, w) + e Tny(e)] 4 ()
— 3ly® —h@)]* =0, @ (1)
Using the results in [13], we can then conclude that (11) is
wherel'(z) := g(z)g" (x), and.J; and.J, denote the partial equivalent to the following explicit iteration scheme
derivatives of J w.r.t. ¢ and z, respectively. Note that (2)

and (4) define an infinite dimensional observer with stateJ T 7‘7m<z+Ati’“+AtW’w>d
J(-,t). To rewrite it in a filtering like form (similar to a (@ it1)=—ehn € ’ w
Kalman filter) we follow the steps proposed in [10], [14] by m (12)
supposing Athat{(a:,t) s a smooth solution to (4). In this We call the system composed by (7), or a discretization of
case, since(t) is a minimum ofJ(x,t) then it, e.g

To(@(6),) = 0, G2 g1 =i+ A [f(@0) + (Ja)n @, DAL () [y — hl#:)]]

Taa(#(8),0)2(t) + Jar (2(2),1) = 0. (5b) together with the scheme (12) to approximate the value
Taking partial derivatives of (4) w.rtz, evaluating at function J(z,t) asthe entropy penalized minimum energy

(Z(t),t), and using (5a) it follows that estimator
R . R In the next section, for the first and second order ap-
Jia(2(1), 1)+ 00 (2(2), ) f(2) proximations of the state equation and the linearized dutpu

+hl (@) (y — h(2(t)) = 0. (6) equation, we present explicitly iterative formulas to cartep

. . . (JAt)zz(«fC,'L)
From these two last equations we finally arrive to the

dynamic observer equation [1l. THE ENTROPY PENALIZEDMEE FOR SYSTEMS WITH
, . . LINEARIZED OUTPUTS
o(t) = f(2) + Joy (&, 0)hg (2) (y — h(2)). @) In this section, we restrict system (1) to

It is important to stress that we still have the problem of i=f(z)+Gw, z(0)=ux, (13a)

computingJ(z, t) (or more precisely the Hessian $fz, t)). B .
To solve this problem, we propose an entropy penalized y=he(B)z +v, (13b)

scheme to approximate the viscosity solution [15] of the HWhereG € R™"*" is assumed to be a Hermitian matrix, and
PDE (4) following the procedure in [13]. To this effect, weh, is the Jacobian matrix ok around the estimated state



Z. In the following, we derive iterative formulas using thewhere ||y||2;AJ is a constant term that can be neglected.
entropy penalized scheme to compute the approximation ®hus, o

the viscosity solution of the HJ PDE (4). In Section IlI-A,

we consider a first order approximation of the state equatioﬁﬁt(ff + A, i) + AL(w,w) =

in the estimate point and compute an approximation of the

cost function valid in a neighborhood of that point. In Sewti

[1I-B, we further improve the results by using a second order

approximation.

A. First order approximation

Theorem 1:Consider system (13) witlf replaced by a
first order approximation

f(x) = f(@:) + fa(Zi)(x — 2;) (14)

and set the initial condition of the value functioi, (z,0)
as

JAt(I5O) = HZC - :LLOHZQO )

where g = Iy and Qg is a positive definite matrix.
Then, the cost functiotfa, (z,4) at each time step > 1
is quadratic and its Hessigia, )..(x,¢) can be written as

(Tados (i) = (e = pily,) -
where

1 A
pi = —5Q (208 A1, — AwTha(d) ", (15)

Qi =07 Ai_101, + <%Athf(:&i)hm(:&i)) : (16)
o1, = (I+Af, (gzi)T) : (17)
O, = (Atf (&) = Aufa ()" fz) = i (18)

Ai = (Qi = QiGU'AFGTQT) (19)

U; = (AfGTQiG + %AJ) : (20)

Proof: The proof follows by induction. Foi = 0 the
result is trivial since the initial condition is quadratieor the
induction step, assume that the hypothesis holds fer; =
Ayi. We will show that it also holds at+ A; = (i + 1)As.

power. Using the fact thatia, (z, i)
quadratic term of the forda, (z,7) = ||z — |3, + cte due
to the induction hypothesis, it follows that

In, (@4 A, i) = ||(z + Avz — ,ul)HQQ + cte

= llo + A (f (@) + fo (&) (x — 33)) — illy, + cte
= (e + AG)|I5,, + cte,

wherecte denotes a constant term that we will neglect since

we are interesting in the Hessian ands given by

=+ Afo ()2 + (Aef (2i) — Aefa (&) &) — s
(21)

The Lagrangian (9) can be re-wrriten as
2 2
ALz, w) = lwllia,; + 1205 a,07 @000 @0

. 2
— Ay he () + ||?JH%AJ :

2 2
[(a + AcGw)ll, + [[wll1a,;

2 R
+ H‘TH%Ath:{(ii)hx(ii) — Ay hae(8:)x + cte.

Completing the squares we obtain
Ja, (@ + Ay, i) + Ay L(z,w) = (L*w)" L*w
42 (AtaTQZ—G (L*)*l) L'w
+ (A" QiG) U (Ad"QiG) "
— (AT QG U (Ad"QiG) "
+ o’ Qi+ Htz%Athz(fci)hz(ii)
— Ayt hy (Z;)x + cte
= HL*w + AthlGTQlTaHQ
+a’ (Qi — QiGU;'AIGT QT )
+ HZHQ%AthE(ii)h,(:ﬁi) — AyyT he (@) + cte.
(22)
where
U; = (AfGTQZ-G + %AJ) =LL",
is the Cholesky decomposition. Using the notation in (17)—

(20), noticing thate = ©1,2 + ©3,, and replacing (22) in
(12) we obtain

2
L*w+AtL’1GTQ;.Ta||

N (x,i—i—l):/e* c dw
B
+a7 (Ql - QiGU;lA?GTQlT) o
+ HiUHQ%Athg(@i)hx(@i) — Ay  hae(8:)x + cte.

where the integrant term represents a Gaussian distributio

. . with suitable parameters, and therefore the integral assum
Recall (12) and consider first the argument of the exponlent@ D J

constant value. Rearranging the terms to provide symenetri

can be written by a form yields

2

In(z,i+l) =z + %Q;l (207 A0y, — AtyThm(:%i))T

Qi
1 .
— 7 (205,401, — AyThy (i)

_ Y
Q; ' (207 1,01, — AvyThy(24))
+ @;Ai@Qi + cte.
2 )
Qi) ra

Differentiating twice with respect ta we arrive at

T+ %Q:l (2@%;Ai@11—AtyThm (i‘l))T

(Jay) e = (

which ends the proof.



B. Second order approximation

In this section we improve our method by performing a
second order approximation. In this cg&e) is replaced by

f(@) = f(&:)+fa(@:)(z — i?z)+%(117 — )T fou (@) (x — &5)

Q; = %Athf(:ki)hm(:ki)
AT ()b () OGN (i) e ().

Proof: [outline] The proof follows by induction, using
the same techniques as in the Theorem 1. However, here

Before we proceed, the following elementary lemma igve do not identify the distribution as a Gaussian, but apply

needed.
Lemma 1:The integral

_ M4T
e & dwi...dwn,,
R’VVL

(23)

where
M= (w—i—cQ)TP(w—i-cQ),
T =ATWA,
A= (w+er) foo (@) (w+er),

e >0, W,P e R™ ™ are positive definite matrices, arng
are suitable constant vectors, is absolutely convergent.

Proof: SinceW is positive definite]" is bounded from
below. SinceP is positive definite, the term/ has quadratic

growth as|w| — oo, which ensures convergence.
|

Theorem 2:Consider system (13) witlf replaced by the

Lemma 1 to obtain the constant term. See [17] for a detailed
proof.
]

IV. SIMULATION RESULTS

The performance of the entropy penalized minimum en-
ergy estimator (EPMEE) is now evaluated through two
examples similar to those presented in [14]. The first exampl
is an one dimensional system and the second one is a two
dimensional system. In both cases we illustrate the first and
second order approximation and compare the performance
with the EKF. In the following,e; = &; — x; denotes the
estimation error in the coordinateand|e| the absolute error.

A. One dimensional example
Consider the system

t=01z%2 -z
y=x

second order approximation and set the initial condition afyhere we set the initial conditionsy = 2, o = 0.1, Qo =

the value function/a, (x,0) as

JAt(I5O) = HZC - :LLOHQQO )

where g = Iy and Qg is a positive definite matrix. Then,
the cost function/a, (z, 7) at each time step> 1 is of order

1, and a time step of\; = 0.1. For the EKF, we used the
same initial condition,Py, = 0.1419 (generated randomly)
and@ = R = 10.

Figure 1 shows the time evolution of the estimation errors
of the EPMEE using a first order approximation and the

four and its HessianiJa, ), (x,4) can be computed using EKF. Note that contrary to the EPMEE estimator, the state

the following iterative method. Far= 1,
(Ja)as (5:1) = (T (Qo — AFQGUT'GTQE) o
+ %Athhf(:%i)hm(:ﬁi)x) ,

where )
U= (AfGTQOG + 5AJ> ,

anda; is given by
o=+ A (F @)+ fo (2)" (@ - 32))
A, (% (2= 30)7 fun (30) (& — :c)) -
Fori > 2,

() (2,1) = (ETQE + %At:vThf(:%i)hm(fci)x) ,

xrx

T
GQil <AtyThm(:Ei) - %AfyThz(j:i)GGTC’Thz(:Ei)»

estimate of the EKF do not converge to the correct value.
Figure 2 illustrates the case for the EPMEE using a second
order approximation. The absolute value cofs displayed

in Fig. 3 and 4. From these figures, one can see that the
convergence of the second-order EPMEE is faster.
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Fig. 3. 1D example - Absolute EPMEE First Approximation Erro

Fig. 4. 1D example - Absolute EPMEE Second ApproximatioroErr

B. Two dimensional example

In this simulation, the initial condition for both estimasds

Zo = (0.1,0.1) while the real system starts ap = (2,2),

Qo = diag([1 1]) and the time step i&; = 0.1. For the EKF,

we usedP, = [0.1023 0.0012;0.012 0.0212] (generated
randomly) and? = R = diag([0.1 0.1]). Figures 5-8 display
the results obtained, which agree with the one-dimensional
case.

el
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0 05 1 15 2 25 3

Fig. 5. 2D example - First Order Approximation Error

Fig. 6. 2D example - Second Order Approximation Error

The MEE is a particular case of thE> observer, see
for instance [18]. To provide an insight about the robustnes
of the EPMEE, Fig. 9 shows the case when there exist
uniformly distributed measurement errors in the interval
[-0.5,0.5]. As one can see, even in the presence of sig-
nificant noise the EPMEE do not diverge and the estimation
errors converges to a small neighborhood of zero.

C. Discussion of Results

We now present the simulation results for the second-order The EPMEE derived in this paper has the desired feature

highly nonlinear system
i = —dx1 — 29 — (27 + 23)%14
To = 11 — 4wy — (22 + 23)%22 (24)
y = [z, 20]"

of being iterative and filtering-like. It continuously ingues

the state estimate as more measurements arise. In fact, it
resembles the EKF (see expression (7)). However, there is
a main diference. In the EKF, it is the Riccati equation
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EPMEE

the development of new techniques to compute the value
function using Monte Carlo approximation methods for the
entropy penalized method.

] (1]
] [2]
] (3]

[4]
T 5)

Time (s)

[6]
Fig. 8. 2D example - Absolute EPMEE Second ApproximationoErr [7]

. L . 8]
that provides an estimative of the evolution of the value
function, which may give poor results if the system is highly [9]
nonlinear. In approach proposed in the paper, the fact tileat t[10]
system is nonlinear is taken into consideration by computin
an estimate of the evolution of an approximation of the
viscosity solution. The simulations show that the EPMEE izl |
less sensitive to the nonlinear nature of the plant compar &
with the EKF. The drawback is that the convergence speed
of the EPMEE in some cases is slightly slower than the EKE2
(when this one converge). [13]

V. CONCLUSIONS AND FURTHER RESEARCH 14
14
We have considered the state estimation problem of non-

linear systems using a minimum energy estimator approaéf!
combined with an entropy penalized scheme to approximate
the viscosity solution of the Hamilton-Jacobi equation. \Weg16]
derived a computationally efficient procedure to estimhate t
state and the Hessian of the value function for the first and
even second order approximations of the state equation and]
linearized output equation. The simulation results iHatst

and contrast the good performance of our algorithms COMg)
pared with the EKF. Preliminary convergence results of the
EPMEE can be found in [17]. Future work will address
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