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Abstract— The Lie group projection operator approach is
an iterative scheme for solving continuous-time optimal cotrol
problems on Lie groups. This work details the approach for
optimal control problems on T SQO(3), the tangent bundle of
the special orthogonal group S@3). The dynamics of a rigid
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Il. PRELIMINARIES

We assume that the reader is familiar with the theory of fi-
nite dimensional smooth manifolds, covariant differetidia
[71, [8], [9], and matrix Lie groups [10], [11].

satellite is used as illustrative example. Numerical simaitions
are presented and discussed.

M, N
TM, T*M

I. INTRODUCTION

In [1], [2], the authors have introduced an algorithm f: M — N
for solving continuous time optimal control problems forDf : TM — TN.
systems evolving on Lie groups (including, as a particular \Y4
case, the flat spac®™). The approach borrows from and VxY
expand the key results of the projection operator approach
for optimization of trajectory functionals developed if.[3 Dy

In [2], the authors have discussed the implementation ~(t),te€ T
details of the approach for solving optimization problems o Pt;”“VO
SQ(3). Here the natural extension of that work is presented, D? f(z) - (v, w)

showing how to construct an iterative scheme for solving G
optimal control problems or7’'SQ(3), the tangent bundle g
of SO(3). The dynamics of a rigid satellite [4] is used as e
illustrative example. Lyx, Ryx

The reader might be interested in comparing our approach gz, zg,
with the discrete-timemethods presented in [5], [6] for GV, Vag
mechanical systenesvolving on Lie groups.

The paper is organized as follows. In Section II, we [ ]
introduce the notation and review the projection operator Ad,
approach for Lie groups. In Section lll, we formulate the ad,
optimization problem reviewing the systems dynamics of a
rigid satellite and introducing a specific cost functiorial. exp:g— G

Section IV, we compute the second order approximation log:G — g
of the optimization problem that defines the core of the

Lie group projection operator approach. Simulation result SQO(3)
are presented in Section V. Conclusions and future research ~ s0(3)
directions are presented in Section VI. R3

Due to space limitations, all results are stated without
proofs. They can be readily obtained upon request by con+\ : R} — s0(3)
tacting the authors.
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A. Notations and definitions

smooth manifolds

tangent and cotangent bundles
(smooth) mapping fromM/ to N
tangent map of f

affine connection

covariant derivative of the vector
field Y in the directionX
covariant differentiation w.r.t:
curve ( C R)

parallel displacement df;, along~
second covariant derivative gf [1]
Lie group

Lie algebra ofGG

group identity

left and right translations
shorthand notation foE,« and R,z
shorthand notation fobL,(x) - v,
andDRy(x) - vy

Lie bracket operation

adjoint representation aff on g
adjoint representation af

onto itself (ags = [o,<])
exponential map

logarithm map (i.e., inverse afkp
in a neighborhood o¢)

special orthogonal group

Lie algebra of S@B)

Lie algebra given byR? with
cross product as Lie bracket

Lie algebra isomorphism
A

X1 0 —XI3 To

X9 — I3 0 —I

T3 —XT2 T 0
inverse ofA

usaB. The Lie group projection operator approach
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The projection operator approach for the optimization of
trajectory functionals [3] is an iterative scheme to solve
continuous-time nonlinear optimal control problems. Iij [1
the authors have shown how the approach can be generalized
to work with a dynamical system defined on a Lie grakip



that is, for a system in the form for i=0,1,2,...
(search direction)

9= f(g7u, t) - g(t))\(g(t)7u(t)7 t)v (1) Cl —arg min Dh(Ez) &G+ %DQh(Ez) . (EZCa&C) (9)
wheref : G x R™ x R — TG is a control system oidr MET“T
and\: G xR™ xR — g, Mg, u,t) := g~ f(g,u,t), isits v =arg min h(& exp(vG)) (step size) (10)
left-trivialization. The approach, in its simplest formulation, (0]
can handle optimal control problems in the form i+1 = P(& exp(7i6i)) (update)  (11)

T end
/ Ug(T),u(r), ) dr +m(g(T)) (2) In(9), h is the cost functional appearing in (2) ahds the

min
_ (9()u()) Jo functional obtained by composinigwith the projection op-
subject to eratorP, i.e.,h := hoP. At each iterate, the search direction
§=flg,u,t) 3) minimization (9) is performed on the tangent spdgé, that
T is, we search over the curveé§) = (z(-),v(-)) that satisfies
9(0) = 9o, 4) (6). Then, the step size subproblem (10) is considered. The

with 1 : G x R™ x R — R the incremental cosip : G — R classicalapproximatesolution obtained using backtracking
the terminal cost, ang, the initial condition. Modifications line search with Armijo condition [16, Chapter 3] can be
of the strategy for handling a terminal condition and mixedised to compute the optimal step size Finally, the update
input-state constraints (through a barrier functionarapph) step (11)projectseach iterate on to the trajectory manifold
are discussed, for control problems &ft, in [12] and [13]. and the process restarts as long as termination conditions
From an abstract point of view, the optimization schem&ave not been met.
can be thought as a constrained Newton method in infinite AS explained in [1], the derivation of the above Newton
dimension. The approach is based on (and derives its na@igorithm on a generic Lie group has required the use of
from) the projection Operato’P [3], which is an Operator covariant differentiation of mappings'ndicated with the
that maps a generic cung&t) = (a(t), u(t)) € G x R™, symbolD. (In fact, in [1], the covariant derivative is called
t > 0, into a trajectoryy(t) = (g(t),u(t)) € GxR™, ¢ >0, ‘geometric derivative” as we were unaware at the time
of the system (1). It is defined through the feedback systethat the operatoi) should be interpreted as the covariant
) derivative of a two-point tensor [17]). This is related to
9(t) 9O g(t), u(t),?). 91(0) = a(0), (5) the problem of constructing the Taylor-like expansion of a
u(t) p(t) + K(t)[log(g(t)_ O‘(tm ’ function between two smooth manifoldd; and M, each
whereK (t) : ¢ — R™ is a linear map, which can be thoughtendowed with an affine connection.
as a standard linear feedback as soon as a basis is chosen ||| SysTEM DYNAMICS AND COST FUNCTIONAL
for the Lie algebray. It is straightforward to verify thaP is
indeed a projection, i.e., it satisfigd’ := P o P = P. The
projection operatof® was used in [14] to show that the set

The rotational dynamics of a rigid satellite with gas jet
actuators [4];m € {0, 1,3}, can be written as

of exponentially stabilizable trajectorigs(of infinite extent) R =R R € SQ(3) (12)
forms an infinite dimensional manifold, a fact that allows us Iw = (Iw) x w + Cu, wERS (13)
to use vector space operations [15] to effectively explare i . ] . . ]

Given atrajectory £(t) = (g(t),u(t)) of the control WhereRis the rotational matrix expressing the attitude of the
system (1), its (left-trivialized) linearization is defihas the ~Satellite relative to an inertial frame; the angular velocity
time-varying linear system in body frame,I the inertia matrix of the spacecraft in

' body coordinates, an@ € R3*™ a matrix whose columns
2(t) = A(E®),1)z(t) + B(E(t), t)v(t), (6)  represent the axis about which thecontrol torques: € R™
with t R™, t > 0 and where are applied by means of opposing pairs of gas jets.
(2(8), v(®)) € 9 GivenR € SQ(3), let||[I—R||% := tr((I— R)" P(I—R)).
A(&,t) :=D1A(g,u,t) 0o Te Ly — aly(g,u,0), (7)  Indicating withg = (R,w) € SO(3) x R? the system state,
B(&,t) := )\(g’ u,t). (8) we derive the expressions for the projection operator Newto

) ) ) method for the case where the incremental ¢osiSO(3) x
From a geometric point of view, a trajectoryRs) . rm xR — R and terminal costr : SO(3) x R? — R

¢(t) = (2(t),v(t)), t = 0, of the (left-trivialized) are given by
linearization about( should be regarded as a (left- 1
trivialized) tangent vector to the trajectory manifold, a Wg,u,7):= §|\I— RT(T)R||4

fact that is indicated as¢ € T¢7 [1]. 1 1
+ 3lwa(r) = wllge + 5llua(r) — ullk,  (14)
The projection operator approach consists in applymg

the following iterative method

Algorithm (Projection operator Newton method)

1
given initial trajectory &, € T m(g) = _HI RiRlps + 5 5llws = wlps.  (15)



where ((Rq,wa),uq)(t), t > 0 is a desired state-control of R?). A generic Lie algebra element®, »+) € R? x R3
curve, (Ry,wy) € SQ(3) x R? a reference terminal state, has matrix representation given by
Q", Qv, P¥, andP¥ positive semi-definite state weighting

P

matrices andR a positive define control weighting matrix. B0 0
These weighing matrices allow to control, similarly to the 0 0 2¢ (22)
standard LQ regulator, the trade off between the speed of 0 0 0

cogvehrgence 0 thfe dESi;?d Cu(;md(t)’wd(t))’ L€ 10.TT fom which one can show that the exponential map
and the amount of contral used. P e ‘
x R® — SQO(3) x R* is given by

Note the use of boldface to distinguish between thtD-:‘RX
configuration matrix® and the control weight matriR. (2, 2) = (exp(;}\{)’ 2) € SO3) x R? (23)

IV. THE QUADRATIC APPROXIMATION OF THE OPTIMAL  \yith exp the standard exponential fros(3) — SO(3).
CONTROL PROBLEM Given (R,w) € SO(3) x R? and (2%, 2) € R?, x R3, the
The rigid satellite state spa@@SO(3) can be made into a adjoint representation of the group into its Lie algebra is
Lie group in different ways. In this section, we propose and R o B
discuss one particular choice of group structure and detail Ad(rw) (27, 2%) = (R, 2%) (24)

how to co_mpl_Jte all the basic expressions t_hat defme_ the I‘419ne above expression is obtained differentiating the inner
group projection operator approach. In particular, we fev automorphisml,(h) — ghg~! with respect toh at the
explicit expressions for the left-trivialized linearizat and identity Given(jR =) and(=F, %) € R x R?, the adjoint
the quadratic approximation df, the functional obtained represéntation olf ’thle Lie aIngbléi < R onto itself is

from the composition of the cost function&j given in (2),

with the projection operatdP, given in (5). ad. )(zf 24) = (;f\gzé{ 0) (25)
z1t,2¢ ’ - ) .
A. The Lie groupSO(3) x R? and its Lie algebra The above expression can be obtained computing the com-

The dynamics (12)-(13) is defined dASO(3), which mutator of the matrix representations of the two elements of
can be identified with S@) x R3 via left translation. By the Lie algebra or by differentiating the Ad operator at the
choosing the operation identity.

(R,6R) - (5,65) = (RS,RS(S"6S + R"6R)),  (16) B. The left-trivialized dynamics and linearization

with (R,8R) and (S, 4S) € T'SQ(3), the manifoldI'SQ(3) Recall that given the control systein= f(g, u,t), with
can be made into a Lie group. Defining= (R”6R)¥ and ¢ € G, a Lie group, and: € R™, the left-trivialization of f
v = (S755)Y, the above operation on $8) x R3 simply is defined as\(g, u,t) := g~ f(g,u,t). From (12)-(13) and
reads (19), we obtain

(R,w) - (S,v) = (RS, v+ w). 17)  M(R,w),u,t) = (RT, —w)(Ro, T (Iw x w + Cu))

— —17 -1 3 3
The unit element of S@) x R? is e = (1,0) and for each = (W [T lww + 17 Cu) € R xR”. (26)
(R,w) € SO(3) x R3 its inverse is(RT, —w). Givenz € R3. define
The left translation on S@) x R? is ’

H(z) :=I"Y(Iz — 71). 27
L(rw)(S,v) = (RS,v +w) (18) (z) (Ix — 2T) (27)
Note that H is a symmetric operator in the sense that

with tangent map H(z)y = H(y)xr, Vr,y € R3. We can now state the

T(s.) LR (35, 0v) = (R3S, 6v), (19) following result N
' Proposition 4.1: The left-trivialized linearizationof the
which we also write in short form as control system (12)-(13) is given by

—o 1 0

(R,w)(68,6v) = (R4S, 6v) € T(SO(3) x R?).  (20) A(&t)_{ : H(w)] and B(g’t)_{]l—l(?} (28)

Similar expressions hold for the right translation. A féith

representation of the matrix grolf0(3) x R? is with £ = (g,u) = ((R,w),u) € SO3) x R™ and H(w) as
in (27).
R 0 O @7)
0 I w (21)  c. second order approximation of the cost functional

0 0 1
The search direction subproblem (9) consists in minimiz-

Clearly, the Lie algebra of S@) xR? is s0(3) xR* whichwe  ing the functionaDh()-£¢+ 4 D2A(£)-(£¢, £C) over the set
further identify withR? xR? (see Section Il for the definition of trajectories of the left-trivialized linearization of2)-(13)
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Fig. 1. Desired trajectorg(t) = ((Rq(t),wq(t)), uq(t)) € (SO(3) x R3) x R3, ¢ € [0,10]. Part (a) shows the unit quaternion representation of the
desired attitudeR,;(-); Part (b) shows the desired body angular velocity-); Part(c) shows the desired inpuf(-).

about¢. As shown in [2], this optimal control problem can
be written in matrix form as

min /0 Ta(T)Tz(THb(T)TU(TH% [jgg] TW(T) {jgg] dt 10

(z0)()
1
+a¥2(T) + 5Z(T)Tplz(T) : (29)
subject to the dynamic constraint

£(t) = A(E(t), 1)2(t) + B(&(), t)v(t) (30)
2(0) = 0. (31)

0

Fig. 2. Snapshots of the desired attitude trajectByy(¢), ¢t € [0, 10].
where (30) is the left-trivialized linearization given iB)¢

(7), a™ (1), b (t), a1, P, satisfy, respectively,
(©), B748), an, B (SO(3) x R3) x R™, is

(t)z Dll(g(t)vu(t)v ) g(t)z, .

(t)v = Dal(g(t), u(t),t) - v, 2 M(r) 0 0] [2Ff

ai z=Dm(g(T)) - g(t)z, D21 (6)-(6¢1,€¢2) = E‘f] [ 8 %‘” 1:0{ z%’
TRz = DPm(g(T)) - (9(T), o(T)) ! o

The matrix W (t) is symmetric and its explicit expression .
will be given, for the specific dynamics of our interest, inwherelT(g) =1 7),

the sequel. R w :
i = Ra ) i 0%~ )y Vi) :1725
Proposition 4.2: Given the incremental cost (14) and ter- 86 = (B, w) ) (=57, 28), vi) =12
minal cost (15)a(t), b(t), a; and P, are with ((27,2¢),v;) € (R® x R3) x R™, i € {1,2}, and
@ (O=Pa QO]+ a0 @O-u®TQT ) = (4,1 43)7 QT + )~ (@I Q") (39
b7 (1) = (u(t) — ua(t)) 'R
ol =2k TPR(,%I + &), (w(T) — wl)TP‘;] with ¢ = (¢s, ¢») € R x R® one of the two unit quaternions
ding to the rotation matriX! (1) R(7) andQ? :=
sI"F UTPR sI"F ) — TPRUIO Cor[espon_
py=| (el R TRl o) = (s, ) py|  @Y-QF

Lemma 4.4:The second covariant derivative of the left

where (¢;,q,) € R x R denotes one of the two unit trivialized vector field)\, given in (26), is given by
quaternions associated to the rotational maRjxt)” R(t),

(ks, kv) € R x R? is one of the two unit quaternions associ- DA (€) - (£61,6C2) = (OaH(ZEU)Zi”)a (34)

ated to the rotational matrik? R(T), Q := tr(QF)I-QF,

and P . tr(PA)[ — PE where¢ = (g,u) = ((R,w),u) € (SO3) x R3) x R™,
Before stating the main result concerning the explicit-(g,u) = Xg,u,7), G = (zi,v;) = ((2F,2¢),vi) €

expression of the matrik/, we state two technical lemmas. (R, x R?) x R™, i = {1,2}, and H as in (27).
Lemma 4.3:The second covariant derivative of the incre- We are ready to state the main result of this section.
mental cost, given in (14), abou§ = (¢, u) = ((R,w),u) € Proposition 4.5: The matrixiV (), appearing in (29), can
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Fig. 3. Initial trajectory&o(t) = ((Ro(t),wo(t)),u0(t)) € (SO(3) x R3) x R3, ¢ € [0, 10]. Part (a) shows the unit quaternion representation of the
desired attitudeR;(-); Part (b) shows the desired body angular velocity(-); Part (c) shows the desired inpug(-).

In (12)—(13), we sef = diag(0.9,1.0,1.1), C = I, and
the initial condition R(0) = diag—1,1,—1) and w(0) =
(0,0,0)T. The optimization horizon i§" = 10. The desired
10 curvesy(t) = ((Ra(t), wa(t)), ua(t)) € (SO3) x R?) x R?,
is the trajectory of (12)—(13) obtained by projecting thghu
(5) the curve(a(t),u(t)) = ((S(t),0),0) € (SO3) x
R?) x R3, ¢t € [0,10], where the rotational matrixs(t)
corresponds to the unit quaterniqtx)/||q(t)|| with ¢(t) =
(sin(0.1¢), sin(0.3t), cos(0.5¢), sin(0.2¢)) and the feedback
K(t) is identically equal the constant matrix

] . (38)

The trajectory&y(t), t € [0,10], is shown in Figure 1.

0

Fig. 4. Snapshots of the initial attitude trajectaRy (¢), ¢t € [0, 10].

= o O

10010
Ko=10 1 0 0 1
00100

be written as

M(7) —1/2;/)5 0 Figure 2 provides a visual representation of the desired
1/2;1\% Q“+E@p¥) 0 (35) attitude matrixRy using a rectangular box. The width and
0 0 R height of the box (corresponding to thg and z body

axes, respectively) are two and three times the depth (the
where (¢s,q,) € R x R3 is one of the two unit quater- » body axis). The box is centered at the poiit0,0)

nions associated to the rotational matiy(7)" R(7), p = and 11 snapshots in the intervale [0,10] (one for each
(p%,p¥) € RS (more correctly,p € (R? x R®)*) is the second) are shown. The optimization algorithm is started
solution at timer of the stabilized adjointequation with the initial trajectory&, which is obtained similarly

) - - to & but with a (constant) feedback set l1K,. The
—p(t) = Aa(t)" p(t) +a(t) = K@)"b(t),  (36) resulting trajectoryéy = ((Ro(t),wo(t)), uo(t)) is shown
p(T) = ay, (37) in Figure 3. Note that, is quite different from¢; (not at
) t = 0, where they are clearly equal). A visual representation
whereA(t) := A(§(t),t) - B(E(#), ¢) K (1), with A(E(1),1)  of ¢, is given in Figure 4. The weighting matrices in the
and B(¢(t), ) the left-trivialized linearization (28)K (t) the  incremental cost (14) ar@F = 1/2tr(Q7) — QF, with
feedback that defines the projection operaagt), b(t) and Q" = diag(10.0,10.0,10.0), Q“ = diag(10.0, 10.0, 10.0),
ai as in Proposition 4.2. and R = diag1.0,1.0,1.0). The weighing matrices in the
terminal cost (15) are given lp% = 1/2tr(Pf) — P, with
P = diag(13.0,13.0,13.0), and P¥ = diag(4.0,4.0,4.0)
This section demonstrates the effectiveness of the L@nd the state penalty is “centered” & = Ry(7") and
group projection operator approach @18Q(3) for solving wy = wq(T).
the optimal control problem defined in Section Il for the At each iteration of the optimization algorithm (9)—(11),
fully actuated case. We choose as desired cyiMe) = the feedbackK defining the projection operatdP is re-
((Ra(t),ua(t)),ua(t)) € (SO3) x R?) x R3, ¢t > [0,7], designed solving a standard LQR problem with linear dy-
a nontrivial trajectory of the system. This choice has theamics given by the transverse linearization about thesatirr
advantage that we can check easily if the optimizatiotrajectory ¢ and constant weighting matrices for the state
scheme is converging to the solution of the optimizatiomnd control identically equal to the identity. The Newton
problem which is clearly the trajectoyy, itself. algorithm (9)-(11) converges to the the optimal solution

V. NUMERICAL RESULTS
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k (iteration number)

Fig. 5. Descent. The plot showsg,, —Dh() - £k Cr = logqo(h(€k) —
h(&k+1)) as a function of the number of iterations.

that this was the best group structure to choose but direct
computations have shown that, in terms of complexity of the
expressions obtained for the Lie group projection operator
approach, the one which has been presented in the paper is
much more simpler. This leaves open the question of how to
choose the “best” group structure given an optimal control
problem defined on the tangent space of a Lie group.

Rigid satellite dynamics has attracted the attention of
the control community in particular for the problem of
controllability and stabilizability in the underactuatedse
[4], [18], [19]. As the linearization of the dynamics of the
underactuated rigid satellite about a constant trajectery
not controllable, some care is to be taken in trying to solve
numerically, e.g., an optimal stabilization problem. Weda
done some simulation in this context with the Projection
Operator approach, but further investigation is neededltp f

understand the obtained results.

& = &4 with quadratic convergence rate as one can see
in Figure 5. To integrate the differential equations reedir [1]
at each iteration of the algorithm, we used the function
ode45 of Mathworks Matlab, storing all the trajectories 2]
with a sampling period 0f.01s. The absolute and relative
tolerances of the ODE solver is set t0~'2 and 1072,
respectively. The termination condition +sDh (&) - £k (. =~
h(€x) — h(€ks1) < 10710, The algorithm takes about 2.3
seconds to run on a laptop equipped with a Intel Core 2 Dud#!
CPU P860@.40 GHz. (Reducing the error tolerance for the
ODE solver to standard values and setting the termination
condition to 10~7 one can easily reach an execution time [5]
way below one second.) The algorithm is coded as a mair['b]
m-function which calls a series of S-functions writtenGn

(3]

VI. CONCLUSIONS

In this paper we have detailed how to construct the
guadratic approximation of an optimal control problem on
T'SO(3). Numerical simulations have been presented to show?!
the effectiveness of the method and the quadratic convegy;
gence rate.

The second covariant derivative of the left trivialized[1C!
dynamics A of the rigid satellite has a relatively simple 11,
expression due to the fact thatdoes not depend on the
configurationR. Our long term goal is to address constrained2]
dynamical path planning problems for aerial and marine
vehicles, for which the general expression is required. THes3]
derivation we have presented is sufficiently detailed that
should allow the interested reader to derive the expressigyy
for the second covariant derivative in the general case.

This work has shown that the choice of the Lie grourhs]
structure given to the tangent bundi&O(3) is important.
Initially, we had chosen the operation

(R,0R) - (S,65) = (RS, R4S + 6RS)
= (RS,RS(ST6S + Ads-1 R 6R))

[7]

[16]
[17]
(18]

obtained by differentiation of the standard operation ofo]
SQ(3). This choice makel'SO(3) into what is commonly
called thetangent groupof SO(3). Initially, we thought
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