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Abstract— In this paper we propose an alternative solution many successful applications have been carried out thanks
to the Monocular Simultaneous Localization and Mapping to a variety of methods used to reduce the approximation
(SLAM) problem. This approach uses a Minimum-Energy — orqrs. One of the methods that contributed to the SLAM

Observer for Systems with Perspective Outputs and provides ffici d effecti b ina techni
an optimal solution. Contrarily to the most famous EKF-  €MCIENCY and Eliectiveness are sub-mapping techniqees, s

SLAM algorithm, this method yields a global solution and no  for instance [6].
linearization procedures are required. Furthermore, we stow When only a single camera sensor is used we are dealing
that the estimation error converges exponentially fast towrd  wijth Monocular SLAM where the effects of the nonlinearity
a neighborhood of zero, where this region increases gracdi  j, the ohservation model is particularly significant. Intfac
with the magnitude of the input disturbance, output noise aml if the land K timat far f th | val th
initial camera position uncertainty. if the landmarks estimates are far from the real value, the

For practical purposes, we present also the filter in both linearization error can be great. A wide literature addeess
continuous and discrete time form. Moreover, to show how to the problem of feature initialization, see for instanced8H
integrate a new landmark in the state estimation, a simple [9]. An inverse depth landmark parameterization is pres@nt
|n|t|a_1llzat|on pro_ced_ure is presented. The filter performances in [13] which, along with other advantages, reduces the
are illustrated via simulations. . . .

observation model nonlinearity.

. INTRODUCTION The main results of this work is the introduction of a
The Simultaneous Localization and Mapping (SLAM)”eW approach based on Minimum-Energy estimation theory

problem asks whether it is possible for a robot placed ap' SyStems with perspective outputs [7] that solves the
an unknown location in an unknown environment to build &1°nocular SLAM problem. The result is an optimal filtering

map of the environment while simultaneously determine t§0ution where, in absence of input disturbances, output
location within the map using only relative observation of10'1S€ apd with no uncertainty on thg initial robot pose, the
the environment. The ability for a robot to localize itsefida  €Stimation error converges exponentially to zero. In cdse o

map the environment is a fundamental step toward the fu"ipitial camera pose uncertainty or when input disturbance
autonomous operation of a robotic system Or output noise are present, the estimation error converges

The SLAM problem has been widely analyzed and diﬁer_egponentially to a bounded region around zero, where the

ent solutions have been presented, see for example the wifidth of this region is proportional to the magnitude of
[10] that provide a comprehensive introduction to the topi¢'1€S€ disturbances. We highlight that, under the assumptio

The main solutions are based on either nonlinear filteringf the model presented and given that no linearization ésror

or optimization techniques and an interesting comparisdftroduced, we provide a global and optimal solution agains
of the two can be found in [8]. The EKF-SLAM [11] and the local solution of the EKF-SLAM. This implies, for
the FastSLAM [5], [4] are the two most famous fiIteringinStance' that no special landmarks initialization prared

solutions based on the Extended Kalman Filter and Partici® required, and the andmark position estimat_e ,Wi_” cogeer
Filter, respectively. toward the real value independently from how it is initiafiz
A key difficulty with the classical EKF-SLAM approach The remainder of this paper is organized as follows.

stems from the nonlinearity of the motion and observatioﬁeCtion II.states the SLAM problem. In S.ectic_m Il we show
models. The consistency of the EKF-SLAM is analyzed if'®W to write the SLAM problem as an estimation problem of

[1] and [2], and eventual inconsistency of the aIgorithn?yStem with perspective outputs and we present the observer

has been proved especially for large maps. In spite of th&duations in both continuous and discrete time. We close the
Section with the filter convergence propriety. The Sectin |
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landmarks, let}” € R3 andI{ € R3 with i € {1,..., N} The scalara; is unknownand contains the information
denote the coordinates of thth landmark in world frame about the landmark depth. The constraint (5) shows that

and camera frame, respectively. Then we have the observationg;, perspective observations, do not carry
W c any information in their module but only in their direction.
li7 = pwc+ Rwcl; @) This is exactly what happen when a landmark position is

Now, let (v€,QC) € se(3) be the twist that defines the projected in the camera sensor. Moreover, we assume that

velocity of the frame{C} with respect to{W}, expressed Measurements are available at the sampling times <
in the frame{C}. The symbol se(3) represents the Cartesiafe < Z := {0, ..., k} with #o := 0 < #; < ... <1; and that
product of R? with the space so(3) df x 3 skew-symmetric Only & subset/; of the N measurements is available at time
matrix. The following holds ti-
C_ pT . - C_ pT f

vt = Rwepwe, @ = Ryclwe, 2) B. From SLAM to a system with perspective outputs
wherev® € R3 is the linear velocity of the camera expressed
in {C} and Q¢ is defined by the angular velocity vector
wY = [wy,ws,ws]T as follows

To model the observation from a bearing-only sensor as
perspective outputs, consider the genétitlandmark. The
image coordinates of this landmark (which are the only

0 —ws wo observation measure for the estimation problem) are given
Q=1 w3 0 —w |. by y; that satisfies
- 0
w2 w1 QY = lzcv (6)

Using a bearing only sensor we observe the projection of

the generic point” = [I7},17,,1¢,] in the camera sensor. A where a; is an unknownscalar containing the information
normalized version of the observation is the homogeneoabout the landmark depth. From (1) it follows that

image coordinate that follows,

. = lfl lg2 1 r
= ey I ) -

Our goal is to estimate iteratively, as measurements avghere we defined; := RL, IV andp := R, cpwe.
arriving, the camera and landmarks final positions. In order to obtain a linear output function, we consider

Il M INIMUM ENERGY SLAM the following state vector

In this section the ME-SLAM approach is presented. We = (pli,.. .,ZN)T c R3N+3,
start by defining a generic system with perspective outputs,

then we show that it is possible to write the Monocularrhis step is important because it motivates our features and
SLAM problem as state estimation problem of such systergamera pose representation in the state vector. In factg usi
We conclude with the filter expressions in both continuougertial coordinates we would have a nonlinear perspective

If = Ryl — Riyepwe

li—p

and discrete form. output equation, while using this representation we have
A. System with perspective outputs o = L — p
A state affine system with multiple perspective outputs is R ’
of the form which is linear in the state. We remark that we are not using
i o= Az +bw) + Gu)d 3) a linear outqu in the classical sense, but we are using a
o J 4 linear perspectiveoutput.
XYi = 'j(u)x +dj(u) +n; ) Now we proceed with the analysis of the kinematic equa-
jeJ ={12,....N} tions. Using (2) and assuming static landmarks (¥ .= 0)
wherez € R™ is the state vectory € R™ is the control W€ have
input, y; € R™ is the jth perspective outputy € R™¢ s — RT RT.
an input disturbance that cannot be measurgdec R™ p _ _ggpv}/ﬁﬂ_ chvgg
measurement noise affecting then output, A : R™ — _odC webwe
Ran, b:R™ — R?, G :R™ — Rand, Cj - R — - = ch+v
Rm*m, d; + R™ — R™. The right-hand-side of (4) is 4,4
assumed to be always non zero, and the initial condition), [ _ QBT W . pTjW
the signald andn; are all assumed to be deterministic but L gg i 4T' ZVV‘{,C i
unknown. Eachy; € R, j € J denotes a scalar determined B _QgCﬁWC i
by a normalization constraint - Twet

lyil|=1 or wvly; =1 (5) Defining the controk := {v®,w®} and using the Kronecker



product®, we can write our system in the form (3)-(4) for an initial landmark position guess sufficiently closetie

true value.
_ _0C/(,,C (3N+3)x (3N +3)
Alw) = Ivnxven ® —7(@W7) €R With our approach, given an input u defined on an interval

[0,t), and a measured outpyt(t;), j € J; with ¢ € Z,,, we

b(u) = (0 ve ) € R3NV+3 obtain the state estimatgt) at timet defined by
3N x1
#(t) ;= arg min J(z,t) (7
C z€R™
1
: = (—I3x3 @ 1nx1 Ianxan ) € RANV3NH3 where S
Cx J(z;t) == min {(z(0) — 20)" Py " (x(0) — o)
d:[o,t),’ﬁj(ti),(!ji
wherel and1 are identity and ones matrixes, respectively, i=0,1,....k
with dimension specified by the subscript. +ft ld(p)|I dp + Z’go Sy lng ()] :
For practical purposes we also present a discretized ver- 0 e
sion of the state equation. Consider to receive input cbntro a(t) = 2,2 = A(w)z + b(u) + G(u)d
at time ¢;,¢ € Z. We remark that the observation arrival oy (t) = Cay, + ds (u) + ny(t;)}
identified byZ, C 7 can be a subset of the control arrival e e ’ (8)
time_. Assuming that the control inputs are constant for alind P, > 0, 2, encodea priori information about the state.
the interval of timeAt = ¢;,, — t; we have Note that if we pose no restrictions on the state distur-

bance and output noise of (3)-(4), a measured sequence of

plti + At) = e~ Fwedtp(t,) . .
observations could correspond to any state solution. The

e LA —Q(t+At-T) g

ti T solution (7) corresponds to the state solution that neesss le
o o amount of disturbance and noise to be explained. Notice
~ —QWCAt (t)+ C —QWCAtAt . . . L.
€ p(ti) +v~e also that in general the solution of this minimum energy
formulation for a general nonlinear system leads to an iefini
= R(—w%, At)p(t;) + R(—w®, At)v© At dimensional observer, whose state evolves according teta fir

order nonlinear PDE of Hamilton-Jacobi type, driven by the
observation. However, for the case of a linear system we
obtain the Kalman filter, and for perspective systems we can
also obtain an exact close form solution that is filterirkgeli
and iterative.

Li(t; + At) = e—Q%cAtzi(ti) The filter equation that solves (7)-(8) are the following
-forti<t<ti+1, 1 €7,

P = A(u)P(t) + P()A(w)" + G(u)GT (u), P(t;) = P;

where R(—wC, At) = e~ %weAt ¢ §O(3) is the rotation
matrix associated to the rotation for a tindet about the
axesw® with angular velocity—|w®|. In the same way, for
the genericith landmark we obtain

= R(—wc, At)lz(tl)

The discrete time model is then given by T = A(uw)z(t) + blu), (t;) = @
)
«T(ti-i—l) :Ai,f(tk)'f‘bi—f'Gidi _ att:ti, EIO
where P(ti) = (P(r7)™ 4+ W (1))~ (10)
A = Insnwvan ® R(—wC, At) € ROV (@) #(ts) = a(t7) = P(7) (Wt)2(t]) + w(t:)
where
b — <R(—U(J)Ca At)UCAt) c R3N+3 i
(8N)x1 W(t) = Zjejkgj CJT(U) I— yj(ti)yj(tig C;(u)

G : R — R"*"4 gndd; € R™ is the discrete disturbance s e

that cannot be measured. D)y )T ) 7
U)(tl) = Zjejkgj C;T(u) I— W dj(u)

C. Observer equations
}f we are interested on working with the discrete time model,

In the previous section we showed how to convert th ' A : A : -
Monocular SLAM problem to a estimation problem of aWe can replace the continuous time Riccati equation (9) with
thye discrete time version, obtaining

system with perspective outputs. To estimate the state '
this class of systems we use the filter presented in [7].att:ti+1’ i€
For practical purposes, within this work we also present the P(tiy1) = AiP(t)AT + G;GT
discrete time version. Z(tig1) = Aii(t;) + b;

We let the reader note that we could redefine the output .
equation ag; = (I;—p)/|(l;—p)|, and then apply EKF. How- ~ att =ti1, 1€ 1o
ever, due to linearization, this would lead to a local solui P(tiy1) = (Pt ) '+ W(tig1)) ™ (12)
meaning that the filter convergence would be guaranteed only & (t;11) = &(t; ;) — P(t; )W (tiv1)2(t;4,)

(11)



where equations (11) and (12) can be considered as tf@lowing first and second statistical moments
counterpart of the prediction step and update step of the ) ) N \T
Kalman filter, respectively. = 9 y2.p) = (o py2 p) . (13)

As can be seen from (8), the initial valug, of P(t) B = v < R 0 )VT (14)
reflects our confidence on the initial estimateof z(0), e.g. " 7 0 9

2
g
P
a large value ofP, strongly penalizes any deviation of thewherevq is the Jacobian of(.) evaluated aj and
state from our “a-priori” gues$,. Because of this, in fact, '

lAC

we can interpret the initial value aP(t) as the covariance p 0 U1
matrix that reflects our certainty on our initial guess foe th Veo=10 0 w2
state. 0 0 1
Using this initialization function we set the initial estite of
D. Convergence the new landmark on a position coherent with the observation

y» 0N a plane in front of the camera, parallel to the camera

Similarly to the minimum energy estimator for systemssensor and distant from the optical camera center. Thus,
with perspective outputs, under suitable observability ashe initialization of a new landmark is

sumptions (see Theorem 3 of [7]), the state estimation error
. . x P 0
converges exponentially fast to a neighborhood. Furthegmo = = < ic 4 > , P= ( 0 P 4P > (15)
the estimation error degrades gracefully with the incregsi n TP tn P
of the magnitude of the output noise and state disturbanc&here P, is the covariance matrix relative to the vector
For the specific case of the SLAM problem the estimatioand O is a zero matrix with appropriate dimensions. After
error also depends on the uncertainty of the initial camef@5) an update using the current observations is desirable t
pose. In Appendix we provide a lower bound on the covarieorrelate the new landmark with the other state components.
ance matrix associated with any single landmark estimate aslf we wish to remove some landmarks form the state, it
a function of the initial covariance in the camera position. is enough to delete the component of the state vector and
covariance matrix relative to those landmarks.

A. Pseudocode

In this section we present a pseudocode that summarizes
The theory behind the convergence of the ME-SLAMhe overall system procedures.
outlined above guarantees global convergence for angliniti
ization of the filter. However, in practice, the performanée Algorithm 1 ME-SLAM
the filter can be significantly improved by suitably feature ., ¢
initialization, which corresponds to choosing approgriat ()
initial conditions to (9). L—10
In the literature we find several accurate initialization £, «— ()
techniques for bearing-only sensor. Since our system does(z, P) «— systeminitialization
not require special accuracy we propose an intuitive methodfor all i € Z do
and show how to update the state vector and covariance if i € Z, then

IV. FEATURES INITIALIZATION

matrices. img «— get _i mage
Let v, = [y1,%2,1]7 be the homogeneous image co- L — feature_extraction(img)
ordinate associated to the landmark that we would like (Ln, L) < feature_mat hi ng(£, L)
to initialize, which has camera frame coordindfe The Ls—initializelandnmarks(Ls, Ly)
vector [y1,y2]7 is corrupted by additive sensor noise, with (z, P) «— updat e(x, P, L)
known covariance matrixk € R2?*2. Assume to have a (x,P, L)« featuresel ection(x,P,Ly)
priori information about the distribution of the depth ofth (x,P) < prediction(z,P)
observed landmarks, namely its first and second statistical else
moment,s and crﬁ. For instance, during indoor exploration (z, P) « prediction(z, P)

we can exclude the possibility to observe landmarks 50 end if
meters far from the camera, and it is reasonable to assumeend for
some distribution over closer distances.

A simple approach to feature initialization consists in In the pseudocodef is the set of features extracted

defining aninitilization functiong : R? — R? as from an image, each of its elements carries the homoge-
neous image coordinatg, of the observed landmark and
1§ =g(y1,y2.0) = (py1  py2 p)T a descriptord; used to identify the landmark in different
images. WithZ,,, and £Z,, we identify the subset of matched
Sinceg(.) is a function of random variables, thaf is also  features and new features respectively, U £,, = L.

a random variable and a linear estimate of it is given by th€hese sets are obtained by the funcfi@at ur e_nat hi ng



using the setC; of descriptors associated to the landmark:
in the current state vector and comparing them with th
descriptors of the landmark just observed. The functio 20
initializelandmarks initialize the new landmarks
and refers to the set of equation (13) (14) and (15). Th
estimation is updated with the functiarpdat e using the
observation. This step refers to the equations (12). Tt
function f eat ur e_sel ecti on is used to perform a se-
lection of robust landmarks. For instance, it is reasonable
discard a landmark if only one observation has been cotlect
along a sequence of consecutive camera images. These ex
information needed for the selection are considered part
L. Also information fromz, P can be used to support this
operation. Finally the functiompr edi cti on predicts the
future state using (11).

V. SIMULATION RESULTS

In this section we show the filter performance via sim-
ulation where the camera moves inside a room along tf _
walls and takes observations of the landmarks placed over . . .
h ls. Th . lati ti . foll The initi IFlg. 1. Top view of the 3D scenario at time t = 35 s. The blue sEes
the walls. € simulation setung IS as Tollows. € ni Iarepresent the true landmarks position, the means and tleeiaoges of their

camera position is(() 0 O)T and faces the wall defined estimates are represented by the red crosses and the pséglliespectively.
. T The red asterisk and the red ellipse stand for the estimatbeotamera
by the landmarks displaced betwednr-6 2 0) and position. A draw of the camera shows the heading and the direeitentify

(6 2 O)T in the frame of Fig. 1. Then, the camera turnghe observed landmarks. The scale is in meters.
right and starts moving along the corridor at velocity of
1 m/s. It takes observations of landmarks in front of the
camera that are closer than 10 m. Whenever a landmarks
observed for the first time, a state component is initialize 20}
assuming an initial landmark depth of 0 m and a= 20m.
We use an unreasonable initial guess of the depth to shc
the filter behavior in case of significant initial estimation
error. Moreover, we simulated additive zero mean noise ¢
the camera state equation and output equation, both wi lor
correlation matrix 00.001 /3«3, wherels s it a 3x 3 identity
matrix. sl
In Fig. 1 it is worth to notice that two of the landmarks
close to the origin have a wide covariance. This is becau:
the camera started its exploration turning right and th
filter did not experience enough parallax to reduce the tw
landmarks covariances. Similarly happens for the landma -5¢
in front of the camera at time t=35s. 15 =T s o s 1 s
This phenomena is observable also from the bottom plot «
Fig. 3 where the trace of the covariance matrices relative to
the position of landmarks and camera are displayed. We Seig. 2. Top view of the 3D scenario at time t = 70.4 s. The blugsses
that the covariances of these two landmarks only Converﬁesent the true landmarks position, the means and tlaiaoges of their
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10 a value around zer0 when they are observed again at B e e e e o i st o . i
end of the loop, around time t = 42s and t = 46s. The effe@bsition. A draw of the camera shows the heading and the direeitentify
of this on the estimation error is visible from the top plot he observed landmarks. The scale is in meters.

where the estimation error is shown. The spikes correspond

to the initialization times of the landmarks, after whicteth

covariance matrices and the estimation errors converge fultiple perspective outputs (3)-(4). Using this formidat
small values. we avoid linearization, main cause of EKF-SLAM diver-

gence, and we provide a global solution to the Monocular

VI. CONCLUSIONS SLAM problem against the local solution of the EKF-SLAM.
We presented an alternative solution to the Monocular Using a Minimum-Energy observer we can guarantee
SLAM, by rewriting the problem as a state affine system witlthe estimation error to converge exponential to zero in



State estiamtion error (m)

position, P,, the covariance matrix of the landmark afgl,,

] andP,,, cross covariance matrices. If there is no information
i on the landmark position at time= 0 we have
_ _ P10) 0
\ly P =", 0). )
| Then, from (16) and (17) we obtain
Time (s) * b (ij(ti) PP}% (ti)) = <PP1(O)+ M(t:) _M(ti)>
Trace of the landmarks covariance (m) Pmp (tl) Pm (tl) _M(tl) M(tl)
EZZ with M (t;) = 3, <; rez, M (tx). Invoking the matrix inver-

—

I
M1 R]
10 20 40
Time (s)

© pr—

70

(1]

Fig. 3. The plot on the top shows the state estimation erroe dlot on
the bottom shows the trace of the covariance matrices of &ammark
separately.

(2]

absence of input disturbance, output noise and initial came
pose uncertainty. When input disturbance, output noise anl
initial robot pose uncertainty are present, the estimation
error degrades gracefully with the magnitude of the input)
disturbance, output noise and initial camera pose unogytai

We presented the system and the observer equation in
both continuous form, (9)-(10), and discrete form, (112)(1
This last manifests the two steps Prediction-Update that i)
particularly useful for practical implementation.

Given the dynamic nature of the SLAM problem, where
the number of landmark that we estimate grows with time, in(6]
Section IV we presented a recursive initialization procedu
(13), (14) and (15), suitable for our state vector.

Finally, the filter behavior has been shown via simulation.
Here the traces of the landmarks position uncertainty con
verge toward a value around zero as expected.

(7]
[8]

APPENDIX

Using a similar approach of the one used in [15] for the
EKF SLAM, in this section we show that the lower bound ofj10]
the covariance matrix is determined by the initial uncettai
on the camera pose. [

For sake of simplicity we consider a single landmark. In

order to analyze the lower bound, we assume to use obser\[/&-]

El

[N
_—

tion from a stationary camera (i.€(t; ) = P(t;—1)). Then,
from (12) we have
PRNE) Ppi(t))
(Pm;(tz—) Pml(t»)
(PMt) Bt (M) M)y
Pt Pt)) T\-M) M)
(16) [%
where M(t;) = I — y(t:)y(t:)7/|jy(t:)||° is a positive

semidefinite matrixP, the covariance matrix of the camera

sion lemma for partitioned matrices, we can conclude that

: Py(ti)  Pom(ti) P,(0)  F,(0)
i (Pmp(ti) Pm(tl-)) = (Pp(()) Pp(0)>'
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