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Abstract— This paper proposes a computational method
to solve constrained cooperative motion planning problems
for multiple vehicles undergoing translational and rotational
motions. The problem is solved by means of the Lie group pro-
jection operator approach, a recently developed optimization
strategy for solving continuous-time optimal control problems
on Lie groups. State constraints (for collision avoidance)are
handled by means of a set of barrier functions, turning the
optimization approach into an interior point method. A sample
computation is shown to demonstrate the effectiveness of the
method.

I. I NTRODUCTION

This papers addresses the problem of constrained coopera-
tive motion planning for multiple vehicles undergoing trans-
lational and rotational motions that are naturally described
in SE(3). The practical motivation for this study stems from
a number of envisioned mission scenarios for autonomous
underwater vehicles (AUVs). A representative example is
when a number of AUVs equipped with acoustic and vision
sensor units must cooperate to obtain marine habitat maps in
complex 3D terrain that includes flat-like surfaces, near verti-
cal cliffs, and overhangs. In this situation, it is crucial that the
vehicles carrying distinct but complementary resources move
together at close range and change their spatial formation
according to the orientation of the terrain being mapped.
This entails the development of a motion planner to solve the
problem of generating reference trajectories that the vehicles
should track in order to move from initial to target poses
(positions and attitudes) in a coordinated manner. Such a
planner must, at the final stage, include a reasonably accurate
model of each vehicle and a possibly rough description of
known terrain obstacles

The constraints that must be taken into consideration are
twofold. The first is imposed by the fact that the vehicles
must not collide with each other or with the environment.
The second arises naturally from the fact that in order to
do formation control the vehicles must use acoustic ranging
devices and (at very close range) vision sensors to measure
relative distances and attitudes. To avoid masking effects, it
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is crucial that nontrivial geometric constraints be imposed on
the allowable motions.

Given the nature of the motion planning problem at
hand, namely the presence of nontrivial geometric constraints
and the need to take explicitly vehicle dynamics, actuator
limitations, and (safety-related) state constraints intoaccount,
it is unlikely that standard path planning techniques can be
applied to compute energy efficient maneuvers. We therefore
exploit the use of a numerical optimal control approach that
will allow for the introduction of nontrivial state and input
constraints. At this stage, however, we restrict ourselvesto
kinematic models of the vehicles and take into account only
inter-vehicle constraints.

The motion planner that we describe is based on the Lie
group projection operator approach introduced in [1], [2].
This approach lifts the artificial constraints imposed by the
choice of any local parametrization of the rotation matrices
that describe the attitude of the vehicles. Furthermore, the
exploitation of the geometry of the state space SE(3) allows
for the computation of the first and second derivatives of
the vehicle dynamics, cost, and constraints in an intrinsic
fashion, thus avoiding the computation of first and second
derivatives of the local parametrization, which leads to
computational advantages. State and inputs constraints are
handled using the barrier function approach [3].

Solving complex motion planning problems for real time
applications is a challenging task. We expect that the compu-
tational method we are developing will be coupled with other
recent planning philosophies such motions primitives [4] or
multi-level planners [5] (e.g., to obtain a system trajectory
after the graph search phase in a roadmap is completed).

The literature on vehicle motion planning is vast and defies
a simple summary. The plethora of methodologies available
are quite diverse; we refer to, e.g., [6], [7], [8] and the
references therein for a recent account.

The key contributions of this paper are threefold: i) it is
shown that the Lie group projection operator approach can
be used to solve constrained motion planning problem for
multiple vehicles, demonstrating its use on the Lie group
SE(3); ii) it is the first time that the barrier function approach
(cf. [3]) is applied to solve a constrained optimal control
problem on a Lie group. In particular, we detail how to
compute first and second order derivatives ofN(N − 1)/2
constraint functions that act pairwise on a set ofN vehicles;
finally, iii) the paper provides numerical evidence that the
Lie group projection operator might be a viable auxiliary
tool for investigating sub-Riemannian geometric problems
on Lie groups.

Geometric methods are becoming standard tools in numer-



ical integration [9], [10] and optimization [11]. However,not
so many numerical methods are available for solving optimal
control problems for dynamical systems whose configuration
space is a differentiable manifold. Noticeable and interesting
exceptions are the discrete-time methods presented in [12],
[13], [14], [15] for mechanical systemson Lie groups.

This paper is organized as follows. Mathematical prelim-
inaries and a review of the projection operator approach are
given in Section II. In Section III, we detail the constrained
optimization problem addressed in this paper. In Section IV,
we explain how the constrained optimization problem can be
addressed via the Lie group projection operator approach.
In Section V, we discuss the optimal descent direction
subproblem. A sample calculation is presented in Section VI
to demonstrate the effectiveness of the method. Conclusions
are drawn in Section VII.

II. PRELIMINARIES

We assume that the reader is familiar with the theory of fi-
nite dimensional smooth manifolds, covariant differentiation
[16], [17], [18], and matrix Lie groups [19], [20].

A. Notations and definitions

M , N smooth manifolds
TM , T ∗M tangent and cotangent bundles
f : M → N (smooth) mapping fromM to N

Df : TM → TN . tangent map of f
D

2f(x) · (v,w) second covariant derivative off [1]
G Lie group
g Lie algebra ofG
e group identity

Lgx, Rgx left and right translations
gx, xg, shorthand notation forLgx andRgx
gvx, vxg shorthand notation forDLg(x) · vx

andDRg(x) · vx
[·, ·] Lie bracket operation
Adg adjoint representation ofG on g

ad̺ adjoint representation ofg
onto itself (ad̺ς = [̺, ς ])

exp : g → G exponential map
log : G → g logarithm map (i.e., inverse ofexp

in a neighborhood ofe)
SO(3) special orthogonal group
SE(3) special Euclidean group
so(3) Lie algebra of SO(3)
se(3) Lie algebra of SE(3)
R

3
× Lie algebra onR3 with

cross product as bracket
∧ : R3

× 7→ so(3) Lie algebra isomorphism




x1

x2

x3





∧

7→





0 −x3 x2

x3 0 −x1

−x2 x1 0





∨ : so(3) 7→ R
3
× inverse of∧

B. The Lie groupSE(3)

In matrix form, every element(R,p) of SE(3) is repre-
sented as

[

R p

0 1

]

. (1)

An element of the Lie algebrase(3) is a matrix
[

(zR)∧ zp

0 0

]

(2)

with zR, zp ∈ R
3. As a vector, we can represent is asz =

(zR, zp) ∈ R
6. This corresponds to a choice of an ordered

basis forse(3). Given this choice of a basis, the adjoint map
adz is simply given by the6 × 6 real matrix (recall that
adz1z2 = [z1, z2])

adz =

[

(zR)∧ 0
(zp)∧ (zR)∧

]

. (3)

The exponential and logarithm maps of SE(3) can be com-
puted as reported in, e.g., [21].

C. The Lie group projection operator approach

The projection operator approach [22], [1], is a direct
method for solving continuous time optimal control problems
generating a sequence of trajectories with decreasing cost.
It differs from classical methods as it does not rely on
a transcription phase where the system dynamics and cost
functional are discretized in order to obtain a nonlinear opti-
mization problem. Rather, a quadratic approximation of the
optimal control problem is directly constructed in continuous
time. Each iteration of the algorithm amounts to integrating
the vehicle dynamics and solving an associated Riccati
equations by means of an ordinary differential equation
solver. Implementations details and numerical experiments
on SO(3) andTSO(3) have been presented in [2], [23].

In [1], the authors have shown how the approach presented
in [22] can be generalized to work with a dynamical system
defined on a Lie groupG, that is, for a system in the form

ġ = f(g, u, t) = g(t)λ(g(t), u(t), t) , (4)

wheref : G × R
m × R → TG is a control system onG

andλ : G× R
m × R → g, λ(g, u, t) := g−1f(g, u, t), is its

left-trivialization. The approach, in its simplest formulation,
can handle optimal control problems in the form

min
(g,u)(·)

∫ T

0

l(g(τ), u(τ), τ) dτ +m(g(T )) (5)

subject to

ġ = f(g, u, t), (6)

g(0) = g0, (7)

where l : G × R
m × R → R is the incremental cost,

m : G → R the terminal cost, andg0 the initial condition.
Modifications of the strategy for handling a terminal con-
dition and mixed input-state constraints (through a barrier
functional approach) are discussed, for control problems on
R

n, in [24] and [3].



Fig. 1. Snapshots of the planned vehicle trajectories (seenfrom above). The plot corresponds to the time instants[0.00, 2.00, 4.00, 5.34, 8.00, 10.00].

Roughly speaking, the projection operator approach can
be thought as a Newton method in infinite dimension. The
approach is based on (and derives its name from) the
projection operatorP [25], which is an operator that maps
a generic curveξ(t) = (α(t), µ(t)) ∈ G × R

m, t > 0, into
a trajectoryη(t) = (g(t), u(t)) ∈ G × R

m, t > 0, of the
system (4). The operatorP is defined through the feedback
system

ġ(t) = g(t)λ(g(t), u(t), t) , g(0) = α(0) ,
u(t) = µ(t) +K(t)

[

log(g(t)−1α(t))
]

,
(8)

whereK(t) : g → R
m is a linear map, which can be thought

as a standard linear feedback as soon as a basis is chosen
for the Lie algebrag. It is straightforward to verify thatP
is indeed a projection, i.e., it satisfiesP2 := P ◦ P = P .

Given a trajectory ξ(t) = (g(t), u(t)) of the control
system (4), its (left-trivialized) linearization is defined as the
time-varying linear system

ż(t) = A(ξ(t), t)z(t) +B(ξ(t), t)v(t), (9)

with (z(t), v(t)) ∈ g× R
m, t ≥ 0 and where

A(ξ, t) := D1λ(g, u, t) ◦ TeLg − adλ(g,u,t), (10)

B(ξ, t) := D2λ(g, u, t). (11)

The projection operator approach consists in applying the
following iterative method
Algorithm (Projection operator Newton method)
given initial trajectoryξ0 ∈ T
for i = 0, 1, 2, . . .

(search direction)
ζi = arg min

ξiζ∈Tξi
T

Dh(ξi) · ξiζ +
1
2 D

2h̃(ξi) · (ξiζ, ξiζ)

(12)

γi = arg min
γ∈(0,1]

h̃(ξi exp(γζi)) (step size) (13)

ξi+1 = P(ξi exp(γiζi)) (update) (14)

end
In (12), h is the cost functional appearing in (5) andh̃ is
the functional obtained by composingh with the projection
operatorP , i.e., h̃ := h ◦ P . At each iterate, the search di-
rection minimization (12) is performed on the tangent space
TξT , that is, we search over the curvesζ(·) = (z(·), v(·))
that satisfies (9). Then, the step size subproblem (13) is con-
sidered. The classicalapproximatesolution obtained using
backtracking line search with Armijo condition [26, Chapter
3] can be used to compute the optimal step sizeγi. Finally,
the update step (14)projectseach iterate on to the trajectory
manifold and the process restarts as long as termination
conditions have not been met.

The convergence to a local minimum that satisfies second
order sufficient conditions for optimality can be readily
checked.

III. T HE OPTIMAL MOTION PLANNING PROBLEM

The motion planning problem that we consider can be
briefly described as follows. Given a fixed time interval
[0, T ], T > 0, and a number of vehiclesN , compute
the inputs that steer them from a given initial pose at at
time t = 0 to a desired final one at timet = T while
minimizing an energy-related criterion and avoiding inter-
vehicle collisions.

A. Vehicle dynamics

In what follows, the state of thei-th vehicle is represented
by an element of the Lie group SE(3) asg[i] = (R[i],p[i]),
i ∈ {1, 2, . . . , N}. At the kinematic level, the motion of each
vehicle is described by the equations

Ṙ[i] = R[i]
(

0; q[i]; r[i]
)∧

, (15)

ṗ[i] = R[i]
(

u[i]; 0; 0
)

, (16)

where ; denotes row concatenation. In the above equations,
the inputs for thei-th kinematic model are the pitch rate



q[i], yaw rater[i], and longitudinal velocityu[i]. It is possible
to show that thedriftless left-invariant control-affine system
(15)-(16) is controllable as it satisfies the Lie algebra rank
condition (LARC).

In compact form, we write the input of thei-th vehicle
asu[i](t) = (q[i](t); r[i](t);u[i](t)) ∈ R

3 and the dynamics
(15)-(16) as

ġ[i](t) = f [i]
(

g[i](t),u[i](t)
)

. (17)

B. The motion planning problem

The motion planning is obtained by solving the optimal
control problem

min
(g,u)(·)

∫ T

0

1

2

N
∑

i=1

∥

∥u[i](τ)
∥

∥

2

R
dτ, (18)

whereR3×3 ∋ R = RT > 0 is a weighting matrix, subject
to the dynamic constraint

ġ(t) = f
(

g(t),u(t)
)

, (19)

with initial and final constraints

R[i](0) = R
[i]
0 , R[i](T ) = R

[i]
f , (20)

p[i](0) = p
[i]
0 , p[i](T ) = p

[i]
f , (21)

for i ∈ 1, . . . , N . Thecollectivedynamics (19) is obtained by
stacking all the control systems (17) into a control system
with stateg = (g[1],g[2], . . . ,g[N ]) ∈ SE(3)N and input
u = (u[1],u[2], . . . ,u[N ]) ∈ R

3N . Note that in this paper
the product Lie group SE(3)N will play the role of the Lie
group G discussed in Section II. We furthermore impose
Nc = N(N − 1)/2 collision constraints

‖p[i](t)− p[j](t)‖2/D2 − 1 ≥ 0 (22)

for i, j ∈ {1, . . . , N}, i < j, and t ∈ [0, T ]. The collision
constraint (22) requires that the distance between any two
vehicles is never less than a fixed distanceD. To visualize
this set of constraints, one may imagine that each vehicle is
contained within a safety spherical hull of diameterD and
that, during a manuever, the spheres are to remain essentially
intersection free, being allowed to just touch one another.

IV. SOLVING THE MOTION PLANNING PROBLEM

We handle the inequality constraints on the state and
control through the barrier function approach described in
[3]. The terminal constraint is indirectly (and approximately)
addressed using a terminal cost penalty, cf. [24]. Therefore,
given the optimal motion planning problem introduced in
Section III-B, from the cost functional (18) and inequality
constraints (22), we obtain the augmented cost functional

∫ T

0

l(g,u) +

Nc
∑

k=1

εβδ(ck(g,u)) dτ +m(g(T )) (23)

where

l(g,u) :=
1

2

N
∑

i=1

∥

∥u[i]
∥

∥

2

R
, (24)

ck(g,u) :=
∥

∥p[i] − p[j]
∥

∥

2
/D2 − 1 (25)

with i,j ∈ {1, . . . , N}, i < j, andk = k(i, j) ∈ {1, ..., Nc}.
The terminal cost is defined as

mρ(g) :=
1

2

N
∑

i=1

ρR
∥

∥I −
(

R
[i]
f

)T
R[i]

∥

∥

2
+ρp

∥

∥p[i] − p
[i]
f

∥

∥

2
,

(26)

with ρ = (ρR, ρp). We now explain in details the cost (23).
a) Constraint indexing: Each collision constraint is

indexed through the indexk. This index is computed from
the indexesi andj of the two vehicles to which the constraint
applies. For a generic value ofN , one getsk(i, j) = j +
i(N − 1)− i(i+1)/2, i < j, i, j ∈ {1, . . . , N}. ForN = 3,
e.g.,k(1, 2) = 1, k(1, 3) = 2, andk(2, 3) = 3. For reasons
that will be clarified later, we definek(j, i) = k(i, j), i ≤ j,
and k(i, i) = 0, i ∈ {1, . . . , N}, making [k(i, j)] into a
symmetric matrix.

b) Modified barrier function:In this work, we use an
approximate barrier function based on the one proposed in
[3] that is well adapted to constraints of the form (22). Recall
that [3], for 0 < δ ≤ 1,

β̃δ(z) =











− log z z > δ

k − 1

k

[

(

z − kδ

(k − 1)δ

)k

− 1

]

− log δ z ≤ δ

provides an approximate log barrier function that can be
evaluated outside of the strictly feasible regionz > 0. (Here
k > 1 is an even integer, usually taken to bek = 2.) In many
applications, including those using an input constraint like
1 − ‖u‖2 ≥ 0, the constraint function is naturally bounded
above by 1. On the other hand, an exclusion constraint
function such asck(g,u) in (25) will often have values
substantially greater than1, resulting in an (artificially)
lower than expected cost in (23) due to the possibly large
magnitude of− log ck(g,u)(τ). To capture the fact that we
only want to penalize attempted collisions, we make use of
the “hockey stick” function

σ(z) =

{

tanh(z) z ≥ 0
z otherwise

(27)

to saturate each exclusion constraint functionck(g,u) ex-
pressing, in exponential fashion (look at− log tanh z, z >
0), the manner in which our concern for collision fades as
the separation distance increases. The approximate barrier
function in (23) will thus be taken to beβδ(z) = β̃δ(σ(z)).

c) Terminal costm: The terminal cost (26) weighs the
deviation of the final stateg[i](T ) = (R[i](T ),p[i](T )) from
the desired final stateg[i]

f = (R
[i]
f ,p

[i]
f ). Note that‖I −R‖2

refers to the squared Frobenius norm tr((I −R)T (I −R))
that, together with its first and second (covariant) derivatives,
has been described in [2], [23]. The parametersρR andρp
are chosen large enough to ensure that the final state of
each vehicle approaches the desired terminal condition with
a prescribed tolerance (penalty approach).



Fig. 2. Detailed snapshots of the vehicle trajectories in proximity of a pos-
sible collision. The plot corresponds to the time instants[4.00, 5.34, 8.00].

V. OPTIMAL DESCENT DIRECTION

The descent direction for the projection operator Newton
method is computed by solving the subproblem (12). As
shown in [2], given a trajectoryξ(t) = (g(t),u(t)) of (19),
t ∈ [0, T ], the subproblem (12) is equivalent to solving a LQ
optimal control problem of the form

min
(z,v)(·)

∫ T

0

a(τ)T z(τ) +b(τ)T v(τ)+
1

2

[

z(τ )
v(τ )

]T

W (τ)

[

z(τ )
v(τ )

]

dτ

+ aT1 z(T ) +
1

2
z(T )TP1z(T ) , (28)

subject to the dynamic constraint

ż(t) = A(ξ(t))z(t) +B(ξ(t))v(t) , (29)

z(0) = 0 . (30)

The general expressions for the left-trivialized linearization
A and B appearing in (29) has been given in (10) and
(11), respectively. The general expressions of the vectorsa,
b, a1 and matricesW , P1 in terms of the (left-trivialized)
dynamicsλ and the integral costl, and terminal costm are
given in [2]. Due to space limitations, we will not provide
the expressions of these quantities. An extended, eight pages
version of this paper containing the explicit expressions for
the special case of the cost (23) and dynamics (19) is readily
available upon direct request to the authors.

VI. SAMPLE CALCULATION

We consider in this section a planning example for three
vehicles. The example shows the effectiveness of the planner
in finding trajectories for the three vehicles that match the
prescribed initial and final conditions and avoid inter-vehicle
collisions. The scenario is depicted in Figure 1. The planned
trajectory has a total duration of10 seconds and6 snapshots
of the animation are shown.

The desired initial and final vehicle positions lie at the
corners of an hexagon and each vehicle must reach the corner
opposite to the one it starts from. The hexagon diameter has
length 20 m. Starting with a zero initial roll angle, each
vehicle must reach the final position with a roll angle of 60
degrees.
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Fig. 3. Constraint function, without and with the evaluation of barrier
function βδ, respectively. In the bottom plot,δ = 10−8 .
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Fig. 4. Control inputs for the 3 vehicles. Respectively, theblue (1), green
(2), and yellow (3) vehicle. Pitch rate (q) is blue, yaw rate (r) is green, and
longitudinal speed (u) is red.

Because no direct control of the roll velocity is available,
the planner generates the desired roll motion mainly by
cycling the yaw and pitch rate commands, exploiting the
nonlinear controllability of the model. This phenomenon is
evident by looking at the optimal inputs given in Figure 4.
Its effect on the roll angle of each vehicle can be appreciated
in Figure 1, where one can also see the cycling motion in
the yaw angle. Two vehicles (blue and yellow) perform this
wiggling at the beginning of the optimal maneuver, while
the third (green) waits until it “slips through” the other two
vehicles, thus avoiding a possible collision. The speed of
each vehicle is kept approximately equal to2m/s as each
vehicle has to cover a distance of approximately20m in
10 s.

The collision between the two slower vehicles does not



occur as one passes on top of the other as shown in the
detailed snapshots of Figure 2. We can monitor at each
iteration the value of the constraint functions by plotting
the value ofck(g(t),u(t)), t ∈ [0, T ], k ∈ {1, 2, 3} as
shown in the upper part of Figure 3. Due to the symmetry
of the problem, two constraints take the same value along
the optimal trajectory (the distance of the green-yellow and
the green-blue vehicle pairs is the same). The touching
of the spherical hulls of the yellow and blue vehicles is
reflected in the fact that the corresponding constraint function
goes to zero. The graph at the bottom of Figure 3 makes
evident the role of the barrier functionβδ in penalizing the
possible collision between the hulls. Note howβδ(ck(g,u))
gets larger as the corresponding constraint functionck(g,u)
approaches zero.

VII. C ONCLUSIONS

We have discussed the application of the Lie group
projection operator approach to a constrained optimization
problem involving a set of dynamics systems on SE(3). We
have detailed how to construct the quadratic approximation
of the original problem and, in particular, how to compute
the first and second derivative of the constraint functions
that arise in the problem of cooperative planning for a
group of N vehicles. A sample computation was discussed,
showing that with this approach it is possible to compute
a optimal trajectory that solves the constrained optimization
problem, improving the confidence that the strategy can be
a viable way to deal with more complex vehicle dynamics
and geometric constraints. Convergence rate, existence and
uniqueness, executions time, updating rules for the constraint
parametersε and δ, and further implementation issues will
be addressed in future work.

For a single vehicle (and no collision constraints), the
particular optimal control problem studied in this paper
corresponds to the computation of the geodesics for a sub-
Riemannian manifold defined on the Lie groups SE(3) [27],
[28], [29], [30]. The Lie group projection operator approach
might be therefore used as an auxiliary tool in the study
of this interesting branch of differential geometry. Further
research is required however to understand if, e.g., we can
obtain strictly abnormal minimizers [31].
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