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Abstract— This paper proposes a computational method is crucial that nontrivial geometric constraints be impbea
to solve constrained cooperative motion planning problems the allowable motions.
for _multiple vehicles L_lndergoing translational anq rotational Given the nature of the motion planning problem at
motions. The problem is solved by means of the Lie group pro- hand v th f trivial tri R
jection operator approach, a recently developed optimizabn and, namely the presence _0_ non ”V_'a geome r,'c co al
strategy for solving continuous-time optimal control problems ~and the need to take explicitly vehicle dynamics, actuator
on Lie groups. State constraints (for collision avoidancejare limitations, and (safety-related) state constraints adcount,
handled by means of a set of barrier functions, tumning the it is unlikely that standard path planning techniques can be
optimization approach into an interior point method. A sample g5 5jied to compute energy efficient maneuvers. We therefore
computation is shown to demonstrate the effectiveness of ¢h . . .
method. exploit the use of a numerical optimal control approach that
will allow for the introduction of nontrivial state and inpu
I. INTRODUCTION constraints. At this stage, however, we restrict oursetoes
kinematic models of the vehicles and take into account only
This papers addresses the problem of constrained coopefger-vehicle constraints.
tive motion planning for multiple vehicles undergoing tsan  The motion planner that we describe is based on the Lie
lational and rotational motions that are naturally destib group projection operator approach introduced in [1], [2].
in SE(3). The practical motivation for this study stems fromThis approach lifts the artificial constraints imposed bg th
a number of envisioned mission scenarios for autonomogsoice of any local parametrization of the rotation masice
underwater vehicles (AUVs). A representative example igat describe the attitude of the vehicles. Furthermore, th
when a number of AUVs equipped with acoustic and visiorxploitation of the geometry of the state spacd SEllows
sensor units must cooperate to obtain marine habitat mapsfiit the computation of the first and second derivatives of
complex 3D terrain that includes flat-like surfaces, neative the vehicle dynamics, cost, and constraints in an intrinsic
cal cliffs, and overhangs. In this situation, it is crucletthe fashion, thus avoiding the computation of first and second
vehicles carrying distinct but complementary resourcegemo derivatives of the local parametrization, which leads to
together at close range and change their spatial formatieemputational advantages. State and inputs constraisets ar
according to the orientation of the terrain being mappetandled using the barrier function approach [3].
This entails the development of a motion planner to solve the Solving complex motion planning problems for real time
problem of generating reference trajectories that theckehii applications is a challenging task. We expect that the cempu
should track in order to move from initial to target posesational method we are developing will be coupled with other
(positions and attitudes) in a coordinated manner. Suchracent planning philosophies such motions primitives [#] o
planner must, at the final stage, include a reasonably aecurgnulti-level planners [5] (e.g., to obtain a system trajegto
model of each vehicle and a possibly rough description qffter the graph search phase in a roadmap is completed).
known terrain obstacles The literature on vehicle motion planning is vast and defies
The constraints that must be taken into consideration agesimple summary. The plethora of methodologies available
twofold. The first is imposed by the fact that the vehiclesire quite diverse; we refer to, e.g., [6], [7], [8] and the
must not collide with each other or with the environmentreferences therein for a recent account.
The second arises naturally from the fact that in order to The key contributions of this paper are threefold: i) it is
do formation control the vehicles must use acoustic ranginghown that the Lie group projection operator approach can
devices and (at very close range) vision sensors to measi® used to solve constrained motion planning problem for
relative distances and attitudes. To avoid masking efféicts multiple vehicles, demonstrating its use on the Lie group
SE(3); ii) it is the first time that the barrier function appoh
A. Saccon, AP. Aguiar, AJ. Hausler, and AM. Pascoalcf [3]) is applied to solve a constrained optimal control
are with LARSyS, IST, Technical University of Lisbon . . .
(UTL), Portugal {asaccon, pedro, ahaeusl er,  Problem on a Lie group. In particular, we detail how to
antoni o}@sr.ist.utl.pt compute first and second order derivativesNofN — 1)/2
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postdoctoral scholarship of FCT. Geometric methods are becoming standard tools in numer-



ical integration [9], [10] and optimization [11]. Howevemt

B. The Lie groupSE(3)

so many numerical methods are available for solving optimal |n matrix form, every elementR, p) of SE(3) is repre-
control problems for dynamical systems whose configuratiogented as

space is a differentiable manifold. Noticeable and inténgs
exceptions are the discrete-time methods presented in [12]

[13], [14], [15] for mechanical systen@n Lie groups.
This paper is organized as follows. Mathematical prelim&An element of the Lie algebrae(3) is a matrix

inaries and a review of the projection operator approach are
given in Section II. In Section Ill, we detail the constraine

O
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optimization problem addressed in this paper. In Section IV

we explain how the constrained optimization problem can b&ith 2%, 2P € R?. As a vector, we can represent is as-
addressed via the Lie group projection operator approact™; 2?) € R°. This corresponds to a choice of an ordered
In Section V, we discuss the optimal descent directioRasis forse(3). Given this choice of a basis, the adjoint map
subproblem. A sample calculation is presented in Section \Ad: is simply given by the6 x 6 real matrix (recall that
to demonstrate the effectiveness of the method. Conclasiofd: 22 = [z1, 22])

are drawn in Section VII.

. PRELIMINARIES

[ o
a@ - [(zp)/\ (ZR)A . (3)
The exponential and logarithm maps of (S8Ecan be com-
puted as reported in, e.g., [21].

We assume that the reader is familiar with the theory of fic. The Lie group projection operator approach

nite dimensional smooth manifolds, covariant differetiia

[16], [17], [18], and matrix Lie groups [19], [20].

A. Notations and definitions

M, N
TM, T*M
f:M—N

Df:TM — TN.

D*f(z) - (v, w)
G

g
e

Lyx, Ryx
gr, xg,
9V, Vo g

smooth manifolds

tangent and cotangent bundles
(smooth) mapping from/ to N
tangent map of f

second covariant derivative ¢f [1]
Lie group

Lie algebra ofG

group identity

left and right translations
shorthand notation fof ;2 and Ry«
shorthand notation foDL,(x) - v,
andDRy(x) - vy

Lie bracket operation

adjoint representation af on g
adjoint representation af

onto itself (ags = [o,<])
exponential map

logarithm map (i.e., inverse afkp
in a neighborhood o#)

special orthogonal group
special Euclidean group

Lie algebra of S@B)

Lie algebra of SE3)

Lie algebra onR? with

cross product as bracket

Lie algebra isomorphism
A

€1 0 —I3 T2

T — T3 0 —I

I3 —X2 T 0
inverse ofA

The projection operator approach [22], [1], is a direct
method for solving continuous time optimal control probgem
generating a sequence of trajectories with decreasing cost
It differs from classical methods as it does not rely on
a transcription phase where the system dynamics and cost
functional are discretized in order to obtain a nonlinedi-op
mization problem. Rather, a quadratic approximation of the
optimal control problem is directly constructed in contuig
time. Each iteration of the algorithm amounts to integigtin
the vehicle dynamics and solving an associated Riccati
equations by means of an ordinary differential equation
solver. Implementations details and numerical experisient
on SQ3) and7'SQ(3) have been presented in [2], [23].

In [1], the authors have shown how the approach presented
in [22] can be generalized to work with a dynamical system
defined on a Lie groug-, that is, for a system in the form

g= f(gvuat) = g(t))\(g(t),u(t),t), 4)

wheref : G x R™ x R — TG is a control system o1t/
and ) : G x R™ xR — g, A(g,u,t) := g f(g,u,t), is its
left-trivialization. The approach, in its simplest formulation,
can handle optimal control problems in the form

(g,u)()
subject to

T
min / Wg(r) u(r), 7y dr +m(g(T)  (5)

g:f(g7u’t)7 (6)
9(0) = go, (7

wherel : G x R™ x R — R is the incremental cost,
m : G — R the terminal cost, ang, the initial condition.
Modifications of the strategy for handling a terminal con-
dition and mixed input-state constraints (through a barrie
functional approach) are discussed, for control problems o
R™, in [24] and [3].
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Fig. 1. Snapshots of the planned vehicle trajectories (f@en above). The plot corresponds to the time inst4at80, 2.00, 4.00, 5.34, 8.00, 10.00].

Roughly speaking, the projection operator approach carend
be thought as a Newton method in infinite dimension. Thegy (12),  is the cost functional appearing in (5) andis
approach is based on (and derives its name from) thge functional obtained by composigwith the projection
projection operatofP [25], which is an operator that maps operatorP, i.e., h := h o P. At each iterate, the search di-
a generic curveé(t) = (a(t), u(t)) € G x R™, t > 0, into  rection minimization (12) is performed on the tangent space
a trajectoryn(t) = (g(t),u(t)) € G x R™, t > 0, of the 7.7, that is, we search over the curvés) = (z(-),v("))
system (4). The operatd? is defined through the feedbackthat satisfies (9). Then, the step size subproblem (13) is con

system sidered. The classicapproximatesolution obtained using
gt) = gOAg®),u(t),t), ¢(0)=a0), backtracking line search with Armijo condition [26, Chapte
(8) 3] can be used to compute the optimal step sizeFinally,

u(t) = p(t)+ K(t)[log(g(t)'a(t))], _ : \

. m . . the update step (14yrojectseach iterate on to the trajectory
whereK(t) : g — R™ is a linear map, which can be thought,,,»hifod and the process restarts as long as termination
as a standard linear feedback as soon as a basis is Choégﬂditions have not been met.
for the Lie algebra. It is straightforward to verify thap The convergence to a local minimum that satisfies second

is indeed a projection, i.e., it satisfig¥ := P o P = P. order sufficient conditions for optimality can be readily
Given atrajectory {(¢) = (g(t),u(t)) of the control o yaq.

system (4), its (left-trivialized) linearization is defthas the

time-varying linear system [1l. THE OPTIMAL MOTION PLANNING PROBLEM
) = AE®),)z(t) + BE®), o(t), 9) _The motlon planning problem that we con_S|der.can be
. briefly described as follows. Given a fixed time interval
with (z(t),v(t)) € g x R™, ¢ > 0 and where [0,7], T > 0, and a number of vehiclesV, compute

A(E,1) == DyA(g, u, t) 0 ToLy — ah (g.ui),s (10) t_he inputs that steer_them_ from a give_n initial pose at at
B(&,1) 1= DaA(g, u 1). (11) tlme_ t_ = 0 to a desired final o_ne_at time = T _whll_e
’ » minimizing an energy-related criterion and avoiding inter

The projection operator approach consists in applying theehicle collisions.
following iterative method

Algorithm (Projection operator Newton method)
given initial trajectory &y, € T

for i=0,1,2,...

A. Vehicle dynamics

In what follows, the state of theth vehicle is represented
by an element of the Lie group $B asgl! = (R, pl%),
i €{1,2,...,N}. At the kinematic level, the motion of each

(search direction) L5 < . .
vehicle is described by the equations

G DS GO 3 DIE) (66 6C) R =R (0; ;1) (15)

(12) , S
plil = R (ul7; 0;0), (16)

~; = arg min B({l exp(v¢)) (step size) (13)
el where ; denotes row concatenation. In the above equations,
§iv1 = P& exp(7:G)) (update)  (14) the inputs for thei-th kinematic model are the pitch rate



¢!, yaw rater!’, and longitudinal velocity!". It is possible cr(g, ) == ||p? — pl||*/D% -1 (25)
to show that thariftlessleft-invariant control-affine system
(15)-(16) is controllable as it satisfies the Lie algebrakranwith i,j € {1,..., N}, i < j, andk = k(i,j) € {1,..., N.}.
condition (LARC). The terminal cost is defined as
In[]compact[f]orm, [\/}/e wri[t?a the input of theth vehicle L
i _ i c el colt 3 i iNT (41112 i in2
?1351)1_(1(2)) gs(q (t); r"(t); ul"(t)) € R® and the dynamics m,(g) = 5 ;PRHI_ (Rgc]) R[]H +PPHPH _ PBC]H :

i i) (i i 26

g(t) = £ (gl 1), ul' 1)) (17) (26)
B. The motion planning problem with p = (pr, pp). We now explain in details the cost (23).
The motion planning is obtained by solving the optimal &) €onstraint indexing: Each collision constraint is
control problem indexed through the indek. This index is computed from
the indexeg and; of the two vehicles to which the constraint

: T i\ |12 applies. For a generic value @f, one getsk(i,j) = j +

i [ 3 2l (U8) (N 1) i(i+1)/2.i<j.ije{L.....N}. ForN =3,

‘ _ o _ _ e.g..k(1,2) =1, k(1,3) = 2, andk(2, 3) = 3. For reasons
whereR**3 5 R = R" > 0 is a weighting matrix, subject that will be clarified later, we defing(j, i) = k(i, j), i < j,

to the dynamic constraint and k(i,i) = 0, i € {1,...,N}, making [k(i, ;)] into a
S(4) — symmetric matrix.
&(1) f(g(t),u(t)), (19) b) Modified barrier function:In this work, we use an
with initial and final constraints approximate barrier function based on the one proposed in
, , ‘ , [3] that is well adapted to constraints of the form (22). Rleca
R7(0) =RV, RU(T) =R, (20) that[3], foro <o <1,
p[i] (0) = p([)i]a Pm (T) = ng]a (21) —logz z>6
~ k
fori € 1,..., N. Thecollectivedynamics (19) is obtained by ~ 8s(z) = k-1 [( z — ko ) _ 1} Clogs 2<6
stacking all the control systems (17) into a control system k (k—1)s

with stateg = (g, gl?, ..., gl") € SE3)N and input
u = (ul,ul, ... ul™) e RN, Note that in this paper
the product Lie group SB)™ will play the role of the Lie
group G discussed in Section Il. We furthermore impos
N. = N(N —1)/2 collision constraints

provides an approximate log barrier function that can be
evaluated outside of the strictly feasible region- 0. (Here
ek > 1is an even integer, usually taken to be= 2.) In many
applications, including those using an input constraike li

1 — ||ul|* > 0, the constraint function is naturally bounded
|\P[”(t) —p[ﬂ(t)HQ/DQ— 1>0 (22) above by1l. On the other hand, an exclusion constraint

fori,j e {1,....N}, i < j, andt € [0,]. The collision function such asci(g,u) in (25) will often have values

constraint (22) requires that the distance between any tv]%' bstantially greater thanf resulting in an (art|f|_C|aIIy)
; . ' . . . ower than expected cost in (23) due to the possibly large
vehicles is never less than a fixed distarigeTo visualize

this set of constraints, one may imagine that each vehicle rigagmtude of - log i (g, u)(r). To capture the fact that we

contained within a safety spherical hull of diameferand only want to penalize attempted collisions, we make use of

that, during a manuever, the spheres are to remain esbpntiatl e "hockey stick” function

intersection free, being allowed to just touch one another. () = {tanh(z) 23>0

(27)

IV. SOLVING THE MOTION PLANNING PROBLEM z otherwise

We handle the inequality constraints on the state and gaqrate each exclusion constraint functigiig, u) ex-
control through the barrier function approach described 'Bressing, in exponential fashion (look atlog tanh 2, » >

[3]. The terminal constraint is indirectly (and approxi®ig)  (y the manner in which our concern for collision fades as

addressed using a terminal cost penalty, cf. [24]. Theegfore senaration distance increases. The approximate barrie

given the optimal motion planning problem introduced in,ction in (23) will thus be taken to bés(z) = F5(c(2))
Section 11I-B, from the cost functional (18) and inequality

constraints (22), we obtain the augmented cost functional

¢) Terminal costn: The terminal cost (26) weighs the
deviation of the final statg("(T") = %RM (1), pl(T)) from
T Ne the desired final stathﬂ = (Rgf],pgf ). Note that||7 — R||?
/0 Ug.u)+ ) ehs(er(g w)dr +m(@(T)  (23) refers to the squared Frobenius norif(f— R)” (I — R))
k=1 that, together with its first and second (covariant) derrest,

where has been described in [2], [23]. The paramejggsand p,
1 . are chosen large enough to ensure that the final state of
lgu) =3 > [l (24)  each vehicle approaches the desired terminal conditiom wit
i=1 a prescribed tolerance (penalty approach).
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Fig. 2. Detailed snapshots of the vehicle trajectories oxionity of a pos-

sible collision. The plot corresponds to the time instgrt80, 5.34, 8.00].
Fig. 3. Constraint function, without and with the evaluatiof barrier
function 35, respectively. In the bottom plos, = 10~8.

V. OPTIMAL DESCENT DIRECTION

The descent direction for the projection operator Newton
method is computed by solving the subproblem (12). As
shown in [2], given a trajector§(t) = (g(t),u(t)) of (19),

t € [0,T7], the subproblem (12) is equivalent to solving a LQ
optimal control problem of the form

o

Inputs (1)
I\I) o N

T L2 T [207)
T T
min [ a)" =) 47 W”i[wﬂ] win) M o ool
+ asz(T) + %Z(T)T.Plz(T) , (28) g 0 :3 \ 52;:

subject to the dynamic constraint

() = A(E(1))=(t) + B(E(1))o(D) , (29) .
z(0)=0. (30)

The general expressions for the left-trivialized lineafian

A and B appearing in (29) has been given in (10) and
(11), respectively. The general expressions of the vectors % 2 4 6 ) 10

b, a; and matrices¥, P; in terms of the (left-trivialized) Time [s]

dynamicsA and the integral codt and terminal costn are

given in [2]. Due to space limitations, we will not providerig. 4. Control inputs for the 3 vehicles. Respectively, ihge (1), green
the expressions of these quantities. An extended, eigtggpad?2). and yellow (3) vehicle. Pitch ratg)(is blue, yaw rater() is green, and
version of this paper containing the explicit expressiaors f '°nditudinal speed:() is red.

the special case of the cost (23) and dynamics (19) is readily

available upon direct request to the authors.

Inputs (3)
V\I) o N

Because no direct control of the roll velocity is available,
VI. SAMPLE CALCULATION the planner generates the desired roll motion mainly by
We consider in this section a planning example for threeycling the yaw and pitch rate commands, exploiting the
vehicles. The example shows the effectiveness of the ptanrmonlinear controllability of the model. This phenomenon is
in finding trajectories for the three vehicles that match thevident by looking at the optimal inputs given in Figure 4.
prescribed initial and final conditions and avoid interdeéh  Its effect on the roll angle of each vehicle can be apprediate
collisions. The scenario is depicted in Figure 1. The plannen Figure 1, where one can also see the cycling motion in
trajectory has a total duration @b seconds and snapshots the yaw angle. Two vehicles (blue and yellow) perform this
of the animation are shown. wiggling at the beginning of the optimal maneuver, while
The desired initial and final vehicle positions lie at theghe third (green) waits until it “slips through” the otheraw
corners of an hexagon and each vehicle must reach the cormehicles, thus avoiding a possible collision. The speed of
opposite to the one it starts from. The hexagon diameter hasch vehicle is kept approximately equal 2Zon/s as each
length 20 m. Starting with a zero initial roll angle, each vehicle has to cover a distance of approximatglym in
vehicle must reach the final position with a roll angle of 600 s.
degrees. The collision between the two slower vehicles does not



occur as one passes on top of the other as shown in the]
detailed snapshots of Figure 2. We can monitor at eacr[17]
iteration the value of the constraint functions by plotting
the value ofci(g(t),u(t)), t € [0,T], k € {1,2,3} as 8]
shown in the upper part of Figure 3. Due to the symmetry
of the problem, two constraints take the same value alon
the optimal trajectory (the distance of the green-yellow an[10]
the green-blue vehicle pairs is the same). The touchln
of the spherical hulls of the yellow and blue vehicles |§
reflected in the fact that the corresponding constrainttfanc [12]
goes to zero. The graph at the bottom of Figure 3 mak?ss]
evident the role of the barrier functigsy in penalizing the
possible collision between the hulls. Note hoy(cx (g, u))
gets larger as the corresponding constraint functigg, u)
approaches zero.

VIlI. CONCLUSIONS

We have discussed the application of the Lie grouf-s]
projection operator approach to a constrained optiminatio
problem involving a set of dynamics systems on(SEWe  [16]
have detailed how to construct the quadratic approximation
of the original problem and, in particular, how to computg, -
the first and second derivative of the constraint functions
that arise in the problem of cooperative planning for #18]
group of N vehicles. A sample computation was discusseg,
showing that with this approach it is possible to compute
a optimal trajectory that solves the constrained optindmat [20]
problem, improving the confidence that the strategy can 11
a viable way to deal with more complex vehicle dynamics
and geometric constraints. Convergence rate, existende an
unigueness, executions time, updating rules for the cainstr (22
parameterg andd, and further implementation issues will
be addressed in future work. (23]

For a single vehicle (and no collision constraints), the
particular optimal control problem studied in this paper
corresponds to the computation of the geodesics for a suB4l
Riemannian manifold defined on the Lie groups($H27],

[28], [29], [30]. The Lie group projection operator apprbac [25]
might be therefore used as an auxiliary tool in the study

of this interesting branch of differential geometry. Fenth
research is required however to understand if, e.g., we can

[14]

obtain strictly abnormal minimizers [31]. [27]
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