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Abstract— This paper focuses on the problem of developing has been addressed in many recent publications. To mention
control laws to solve theTime-Coordinated 3D Path-Following g few, in [1] and [2] a stabilization and control algorithm
task for multiple quadrotor UAVs in the presence of time- is developed using Lyapunov stability theory. In [3] and [4]

varying communication networks and spatial and temporal . .
constraints. The objective is to enable a fleet of quadrotors PD? and PID architectures are compared with LQR based

to track predefined spatial paths while coordinating to acheve ~control theory. Backstepping control is proposed in [5],
synchronization in both time and heading. One scenario is a while in [6] and [7] a visual-based feedback control law is

symmetric exchange of position by four quadrotors initialy  presented using camera measurements for pose estimation.
positioned in four corners of a square room. When th.e.mlssmn Fuzzy-logic control techniques are proposed in [8]. lirell
starts, every quadrotor is required to execute collision fee ent control, based on neural networks, is introduced in [9]
maneuvers and arrive at the opposite corner at the same desd g . e . ' .
instant of time. In this paper, the time-coordination task is t0 achieve vertical take-off and landing. Integral slidmgde
solved by adjusting the second derivative of the coordinatin  and reinforcement learning control are presented in [10]
variable along the desired paths. Conditions are derived uder  as solutions for accommodating the nonlinear disturbances
which thht;e Choorg'“é;“on an('j:rpe;]th-followmgl errors Convergeéo for outdoor altitude control. Finally, in [11] a trajectery
a neighborhood of zero. Flight test results are presented to . : : ’ : .
validate the theoretical findings. tracking control algorithm is formulated using the Spegal
Orthogonal grouppO(3) for attitude representation, leading
|. INTRODUCTION to a simple and singularity-free solution for the trajegtor
L , _ . tracking problem.

Av0|d|ng harm's ways _requwes_the employment of in- Cooperation between multiple unmanned vehicles has also
telligent autonomous vehicles. This, along with recent agy eived significant attention in the control community in
vances in miniature technology, brings a global spotlightycent years. Relevant work includes spacecraft formation
on the development of Unmanned Aerial \(eh|cles .(UAVS)fIying [12], UAV control [13], [14], coordinated control
Currently, the use of UAVs plays a crucial role in pré-o¢ 150 robots [15], and control of multiple autonomous
venting exposure of human beings to uncertain and hostil, joryater vehicles [16], [17]. However, much work remains
environments, therefore avoiding any danger to the lives ¢ e gone to overcome numerous critical constraints. For
operators. For instance, after being struck by the biggeslampie, one of the crucial problems is the presence of time-
recorded earthquake and a devastating tsunami, Japan Pag;ing communication networks that arise due to temporary
been fighting a potential nuclear catastrophe by deployingss of communication links and switching communication
UAVs in situations where the presence of human operat0{3p0|ogies [18], [19].

was hazardous. _ , , Motivated by these challenges, we address the problem
From a design point of view, and with a slight abuse of¢ Time-Coordinated 3D Path-FollowingTCPF), where a
terminology, UAVs can be classified in two main categoriesig; of quadrotor UAVs are requested tonverge to and
fixed-wings and rotatory-wings. Compared to the fixed-wingg|jow desired prespecified paths under stringent temporal
—which cannot freely move in any direction (rotate) Ofcqnsiraints In the solution adopted, the path-following (PF)
hold a constant position—, rotorcrafts can be deployed igng time-coordination (TC) problems are almost decoupled.
a much wider variety of scenarios. Among rotatory-wing$\t the PF level, we assume there exists a control law capable
aircraft, quadrotors play an important role in researclaire ot gieering a quadrotor along its assigned path. At the TC
as prototypes for real-life missions, including monitgrand  |gye|  the synchronization problem is solved by adjusting
exploration of small areas. . the commanded position and velocity of the quadrotors
A quadrotor consists of four blades, whose motion contrgglved in the mission, thus obtaining —indirectly— veaic

is achieved by adjusting the angular rate of one or morgordination. Figurel captures the key concept described
rotor discs. Control of quadrotors is quite challenging angpgyve.

) ) This paper is organized as follows. In Sectitih we
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body-fixed frameB;; Rq; € SO(3) represents the desired

Quadrotors attitude of theith quadrotor with respect to the inertial frame
bath ﬂ w | B and ig generally expressed as a function of the_position and
Generation |, (7 PF; —'@@ o yelocny errors,e%,i.and ev,i, as well as t_he desired head-
o ing ta.;; Qa,; satisfiesS(Q4) = R} Rq; while the operators
] PE ()Y andS(-) denote theveeand hat maps [11].

B - errors With the above notation, we define the path-following

CerTETR generalized error vector

.
Vi ¥ Tpri = eli , eL , eE . egﬂ} cR2, (6)
Network )
Exc:?nge The dynamics of theth vehicle’'s PF error vector can be
modeled as

Tpri = fi(TPFi, Us 7
Fig. 1. TCPF Control Scheme. ! fz( " 1)7 0

where f;(-) is a general nonlinear vector map aadis the

control signal vector. Then, the PF control problem can be
AR.Drone quadrotor to follow a desired path, and shows thafefined as:
the convergence properties of the TCPF system hold for this Problem 1 (Path-Following Problem)Consider the
particular vehicle. Sectiov presents and discusses flightith quadrotor UAV and a given trajectoryrq ; (7;)
tests results that illustrate the effectiveness of the @sed satisfying (). We say that a controller;(t) solves the
PF and TC algorithms. Finally, Sectiafi contains the main PF control problem if the generalized PF error vectplr ;
conclusions. with the dynamic described irv) satisfies

Il. PROBLEM FORMULATION lzpri(t)| < kl|lzpri(0)|le™*7F?,

A. 3D Path-Following for a single quadrotor for some parametdr > 0, rate of convergencepr > 0, and
Let 7 denote an inertial reference frame, antjomain of attraction

let z;(t) € R® be the position of the center of mass

of the ith quadrotor in this inertial frame, resolved ih D={zpri €RY : |zprall <7}, r>0.

Also, let B; = {b1, bs, b3} denote the body frame with it Assumption 1:We assume that there exists a control law
origin located at the center of mass of the quadrotor; () that solves the PF problem defined in Problém
vectorbs is normal to the plane defined by the centers of the

four rotors —pointing upwards in non-inverted flight—, véhil B. Time-Coordination

vectorsl;lqand by lie !n this plgne, Withgl pointing out the We now address the TC problem of a fleetio§uadrotor
nose ancb; completing the right-hand system. Further, lefyays. As will become clear, this problem will be solved

r4i(7i) € R® be a desired path parameterized y and by adjusting —for each vehicle— the second derivative of the
assume that 0 parameterizing variable; (t).
H 67»71 < Vdmax,i s (1) As described earlier, the desired path assigned to each
! vehicle is parameterized by a variablg i = 1,...,n. The
for somel < vamax,i < Vmax, Whereéuvyay is the maximum  choice of the parametey; is such that, ify;(t) — v;(¢) = 0,
operational speed of the quadrotors. The choice of thg j ¢ {1,...,n}, i # j and<;(t) = 1, Vi € {1,...,n},
parameterizing variable; will be discussed later. at some timet, then all the vehicles are synchronized and

Then, we can define the position error vector as evolve at the desired speed.

To achieve synchronization, the coordination variables
have to be exchanged among the quadrotors over a sup-
and the velocity error vector as porting communications network. Using tools from graph
theory, we can model the information flow as well as the

€oi = Tai(vi) — zi € R )

- M Y — @i = q,4(vi) —4 € R®.  (3) constraints imposed by the communication topology. We star

7 i by assuming that théth UAV communicates only with a
Additionally, similar to [11], define the errors neighboring set of vehicles, denoted y. We also assume
1, . y that the communication between two UAVs is bidirectional
€Ri= 5 (RyRi — R/ Ras) ", (4)  with no delays. The reader is referred to [20] for key consept
coi = Qi — R;er,iQd,ia ) and details on algebraic graph theory.

Following the notation used in [21], we now let
where R; € SO(3) and ©; € R?® are, respectively, the ro- L(t) € R"*" be the Laplacian of the graphl'(t).
tation matrix from the body-fixed fram8; to the inertial Let Q € R(»~D*" pe a matrix such thatQ1, =0,
frameZ and the angular velocity of thiah quadrotor in the QQT = I,,_1, and definel(t) = QL(t)QT; it can be shown



that L € R(»~1*(»=1) has the same spectrum as the Laplawith § being a positive design parameter. The dynamics of
cian L(t) without the eigenvalug; = 0. Finally, we letL(¢)  ~(¢) can be written in compact form as

satisfy the persistency of excitation (PE) assumption: B - )
§ = —bz—aly—da(zpr), 7(0)=0,, ¥(0)=1,,

vt (11)
/t L(r)dr > plp 1 . ®)  where
Next, letting y(t) = [ (¢),... 7%(75)]T IPF = [szaF,l, . ,szaF,n]T S R12n7
and4(t) = [31(t), ..., 7. (t)] T, we define the coordination  a(zpr) = [a1(zpr1), ... 0m(zpra)]T  €R".

error vectors ) )
Then, the Lemma below states the main result of this

£(t) = Qv(1) eR™1, (9) paper:
() =4(1t) -1, €R". (10) Lemma 1:Consider a set oh quadrotor UAVs and a set
of n 3D desired trajectories, ;(v;). Givenn PF algorithms
From the definition of@ it follows that, if £(t) =0,, satisfying Assumptionl and the coordination control law
thenv; —~; =0, Vi,j € {1,...,n}. Note that convergence described in11), then there exist control gains b, d, ands
of z(t) to zero implies that the individual parameterizingthat solve the TCPF control problednin particular, it can be
variablesy;(t) evolve at the desired rate 1. shown that the vectotrcpr = (25,7, 2"]T converges
With the above notation, the coordination problem cagxponentially fast to a neighborhood of zero with rate of
now be defined as: convergence
Problem 2 (Time-Coordination ProblemiGiven a set of A=min(Apr, Arc), (12)
n 3D desired trajectories, ;(v;), design feedback control
laws for 4; for all vehicles such that the coordinationWhere L
error vectors¢ and z, defined in 9) and (L0) respectively, Arc < ma (13)

converge exponentially to a neighborhood of zero with rate _ _ )
of convergencé\r¢ > 0. and with domain of attraction

D. 2 RMmL il <r}. 14
C. Time-Coordinated 3D Path-Following {I_TCPF < . H?CPF’ .” - T} (. )
o ] Proof. An outline of the proof is given in the Appendik]
Considering the PF and TC problems described above, Wegemark 1: The rate of convergenckp depends on the
can now define the combined TCPF control problem for 8,qnerties of the adopted PF control law. If the PF control
fleet of quadrotor UAVs. law has a rate of convergence greater thap, then the rate

Problem 3 (Time-Coordinated Path-Following Problem): of convergence of the TCPF system is equal to the rate of

Consider a set ofn quadrotor UAVs and a set of convergence of the TC algorithm.

n 3D desired trajectories; ;(7;). Assume the quadrotors can Remark 2:Note that the rate of convergence of the TC al-
communicate over a communications network satisfy)g ( gorithm strictly depends on the quality of the communiaatio
Design feedback control laws; () and+;(¢) such that network (parameters and7’).

1) for each vehicle, the generalized PF error vec-

. . . IV. ILLUSTRATIVE EXAMPLE: TCPFwWITH AR.DRONES
torzpr;(t) defined in §) converges to a neighborhood

of zero; To test the performance of the algorithm presented in the
2) the coordination error vectors defined #) @nd (L0) Previous section, we adopted the flying robot architecture
converge exponentially to zero. realized by Parrot AR.Drone company. To this end, we first
developed a PF algorithm that satisfies the conditions de-

I1I. TIME-COORDINATED 3D PATH-FOLLOWING: scribed in Sectiol and that uses the control input provided
MAIN RESULT by the AR.Drone autopilot, which accepts control commands

) for linear velocity along the inertial vertical channglEuler
To solve the TCPF problem, we let the evolutiomeft)  angless and ¢ for the horizontal motion, and yaw raié.

be given by Next, we reformulate the PF problem presented in Sedtion
. . _ for this particular platform, and derive a PF algorithm lzhse
Yi=-bti—1)—a zj\; (v =) — dai(wpra), on simple linear control.
JEN;
7:(0) =0, 4(0)=1, A. PF Error Dynamics

For simplicity, we write separately the horizontal and

wherea, b, d are positive coordination control gains, while " .
vertical motions:

a;(zpr;) is defined as

- xllezz ilieu,i
lEaill +6 ° ldaall +0°

a;(xpri)



wherev = %, while II andes are defined as

0
100
H_[O 1 o]’ 63_(1)

Finally, define the generalized PF error vector as

ey, ey €RE

Vay

(22)

* 7, T
Tpp = [em,y ) Ca s

Notice that, in contrast to the general formulation in Sec-
tion I, the generalized error vector defined here does not

Therefore, the dynamics of the quadrotor can be written 8% sider the error states, and eg. This is due to the

follows:
2 - H:{c = va
o = I~ Res

v Ji=ejqv
T T

e3b:e3%Reg—g

(15)

where R can be expressed in terms of the Euler angles as:

R = RgRyRy
ey

s
—s6

spsbch — cpsi
spslsi) + copcp
spch

cosbcp + spsi
cpslsy — sopc
coct

fact that these two error signals are directly controlled by
the AR.drone autopilot, ensuring their convergence to a
neighborhood of zero.

With this in mind, we can now write the PF error dynamics
as

éIa:y Cogy >
€oyy, = Ha:d—(egv—i—g){zw i ]ul, (23)
€y, = e;,r:'cd —uz,
e’L/J = usz— z/Jd )
where
- .
Uy = [f)¢] ; Uz =e3v, uz=1

Since the AR.Drone autopilot is designed to operate usirgre the command signals accepted by the AR.drone autopilot.

small angle commands i and 6, we can linearize the
dynamics in {5) to obtain:

Iz =Ilv
H:{m—% [0 ] 12%)

V- gi:e;v
=59

(16)

B. PF Control Law

Before we define the PF control law for the AR.drone
guadrotor, we make the following assumption.

Assumption 2:The PID controller of the AR.drone au-
topilot responsible fog control is tuned to ensure that

es0+g>0.

Next, define the horizontal position and velocity errors as With this assumption, we can now define the control inputs

=I(zg — ),

Cop, = (i — ).

(17)
(18)

€1,y

Similarly, define the vertical position and velocity erras
(19)
ey, = €3 (£g — ). (20)

Also, letey, be defined as ind) with Ry = RyRgRy,. This
implies that

RyR =R, Rj R RyRyRy

€y, = e;,r(:cd —x),

= R}, Ry
c(a—v)  s(a—1) 0
= |—s(Wa—7) c(Wa—1) 0Of,
0 0 1
thus leading to
0
eé = 0
—s(Ya — )
Ignoring the first two components ef;, we define
ey = —s(a—¢) €R.

If we now consider small heading deviations with respect to

the desired value)y, thene,, can be approximated by

ey =1 — . (21)

u1, uz, andus as

Uy = m |:_c;/1w zﬁjl (Hl’d + kpe%y + kdevmy)a

Uy = e;,r:'cd + k.eq, (24)

uz = g — kyey,
wherek,, kq, k., andk,, are positive control gains. Then, it
can be shown that the origin of the PF error dynami {s
(locally) exponentially stable. The next lemma summarizes
this result.

Lemma 2:Consider an AR.drone quadrotor and a desired
path z4(v). Let the command signals of the AR.drone
autopliot be given by44) and assumé || < vmax. Then,
for any \}; . > 0, there exist control gains,, kq, k-, andky,
such that the error vector defined B2} satisfies

25 < kllzpr(0)]le e
within some domain of attraction
D ={zpp €R® : |lzppl <r*}, (25)

where the linearization of the quadrotor dynamics is valid.

Proof. The proof of this result is omitted due to space
limitations. O

Corollary 1: Consider a set ofr AR.Drone quadrotors
and a set ofn 3D desired trajectoriescq ;(v;). Given
n PF algorithms proposed in Lemn2aand the coordination
control law described inl{), there exist control gains, b,



d, and¢ that solve the TCPF control problegnwith rate of
convergence
A=min(App, Arc),
where\} . is defined in Lemma and
_
2T (1 +n2T)2’
and with domain of attraction

Aro <

D; = {zrcpr € R lzpral <r*} . (26)
Remark 3:The boundr* in (25) for which the lineariza-
tion of the quadrotor dynamics is valid will depend on the

choice of the control gaing,, k4, k., and k. A relation
between these control gains aridcan be obtained from the
control laws in R4).

Y, degrees

V. FLIGHT TEST RESULTS

In this section, we present flight tests results of two
AR.Drone quadrotors that are tasked to follow circular,
planar paths of radiu2 m at a constant speed, while
synchronizing both their phase-on-orbit and their heagling

To solve this problem, we use the PF algorithm described
in the previous section and the coordination control law
proposed in Sectionll. Figure 2 presents the results of
this experiment. In particular, Figurga shows the desired
orbit (black) and the actual trajectories of the two quadro-
tors (blue and red). Since the two UAVs are tasked to
follow the same orbit, a phase-on-orbit separation is regui
between the two vehicles to avoid collision. This separatio
is specified online from the ground station, and it varies
according to mission requirements. The desired phase-on-
orbit separation, along with the actual phase separation
between the two UAVs, is shown in Figurgb. In this
particular scenario, the UAVS are initially required to gee
a 180deg phase separation; at approximately 94 s, the
required phase separation goes downdtodeg; the two
guadrotors keep this configuration for abddts, when the
required phase separation goes back &0 deg; finally, in
the last part of the experiment, the UAVs are required to keep
a phase separation af0 deg.

The performance of the PF algorithm is illustrated in
Figure 2c for both quadrotors. As can be seen in the figure,
the PF algorithm is able to steer the quadrotors along the
circular paths. Note that the deviations appearing at t@des
112, and 123 s are due to the sudden changes in desired phase
separation. Finally, Figurgd shows the convergence 6f

PFerrors, m
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(d) Coordination errors.

Fig. 2. Flight test results with two AR.Drone UAVSs.

and+, to the desired rate 1, as well as the convergence ications. The proposed solution solves the time-cootitina

the coordination errors to a neighborhood of zero.

VI. CONCLUSION
This paper addressed the problem of steering a fleet

problem under the assumption that a path-following algo-
rithm —meeting certain stability conditions— is given. The
synchronization task is accomplished by adjusting the de-
sifed position and velocity of each vehicle. The exponéntia

quadrotor UAVs along predefined spatial paths, while cooconvergence of the time-coordination error is proven using
dinating with each other according to mission requirementkyapunov theory. An illustrative example is presented to
Cooperative control is achieved in the presence of timeslidate the convergence of the algorithm. To this end, an ad
varying communication networks, and stringent tempordioc path-following algorithm is formulated and implemenhte

constraints. The constraints include collision-free mevees

for two AR.Drone quadrotors. The results obtained validate

(generated off line) and simultaneous arrival at the ddsirghe theoretical findings.
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Next, introducing the transformation
x(t) = b+ Qz,
the time coordination states can be redefinedas = [x",2"]",
with dynamics
X = —%Ex+%QLz—Qo"c(:cPF) (30)
t=—(0bI—%L)z—2LQ x — a(zpr).
1
V= Ver+ ox" Pox+ LI (31)

where 51 > 0, and Vpr and P, were introduced above. After
some mathematical computations, and usigg),((29), and @0),
the derivative of the Lyapunov function becomes:

Vd max

V S - <C3 - (/Bl + EQ)dm) ||ZL’PF||2

C3 — Vd max 2
— | = — 260 ———
(2 @ vdmax+5) ||X||
Ud max

2
= (b= 20
+x" (PQL = f1QL)z.

At this point, one can show that there exést, §, ¢2, andcs such
that

V<22V,
. Umax
oo < 22,
d max
where A was defined in12). The second bound above is required
to show feasibility of the commanded speed profile. This detep
the proof. a
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