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Abstract— This paper focuses on the problem of developing
control laws to solve theTime-Coordinated 3D Path-Following
task for multiple quadrotor UAVs in the presence of time-
varying communication networks and spatial and temporal
constraints. The objective is to enable a fleet of quadrotors
to track predefined spatial paths while coordinating to achieve
synchronization in both time and heading. One scenario is a
symmetric exchange of position by four quadrotors initially
positioned in four corners of a square room. When the mission
starts, every quadrotor is required to execute collision free
maneuvers and arrive at the opposite corner at the same desired
instant of time. In this paper, the time-coordination task is
solved by adjusting the second derivative of the coordination
variable along the desired paths. Conditions are derived under
which the coordination and path-following errors converge to
a neighborhood of zero. Flight test results are presented to
validate the theoretical findings.

I. I NTRODUCTION

Avoiding harm’s ways requires the employment of in-
telligent autonomous vehicles. This, along with recent ad-
vances in miniature technology, brings a global spotlight
on the development of Unmanned Aerial Vehicles (UAVs).
Currently, the use of UAVs plays a crucial role in pre-
venting exposure of human beings to uncertain and hostile
environments, therefore avoiding any danger to the lives of
operators. For instance, after being struck by the biggest
recorded earthquake and a devastating tsunami, Japan has
been fighting a potential nuclear catastrophe by deploying
UAVs in situations where the presence of human operators
was hazardous.

From a design point of view, and with a slight abuse of
terminology, UAVs can be classified in two main categories:
fixed-wings and rotatory-wings. Compared to the fixed-wings
–which cannot freely move in any direction (rotate) or
hold a constant position–, rotorcrafts can be deployed in
a much wider variety of scenarios. Among rotatory-wings
aircraft, quadrotors play an important role in research areas
as prototypes for real-life missions, including monitoring and
exploration of small areas.

A quadrotor consists of four blades, whose motion control
is achieved by adjusting the angular rate of one or more
rotor discs. Control of quadrotors is quite challenging and
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has been addressed in many recent publications. To mention
a few, in [1] and [2] a stabilization and control algorithm
is developed using Lyapunov stability theory. In [3] and [4]
PD2 and PID architectures are compared with LQR based
control theory. Backstepping control is proposed in [5],
while in [6] and [7] a visual-based feedback control law is
presented using camera measurements for pose estimation.
Fuzzy-logic control techniques are proposed in [8]. Intelli-
gent control, based on neural networks, is introduced in [9]
to achieve vertical take-off and landing. Integral slidingmode
and reinforcement learning control are presented in [10]
as solutions for accommodating the nonlinear disturbances
for outdoor altitude control. Finally, in [11] a trajectory-
tracking control algorithm is formulated using the Special
Orthogonal groupSO(3) for attitude representation, leading
to a simple and singularity-free solution for the trajectory
tracking problem.

Cooperation between multiple unmanned vehicles has also
received significant attention in the control community in
recent years. Relevant work includes spacecraft formation
flying [12], UAV control [13], [14], coordinated control
of land robots [15], and control of multiple autonomous
underwater vehicles [16], [17]. However, much work remains
to be done to overcome numerous critical constraints. For
example, one of the crucial problems is the presence of time-
varying communication networks that arise due to temporary
loss of communication links and switching communication
topologies [18], [19].

Motivated by these challenges, we address the problem
of Time-Coordinated 3D Path-Following(TCPF), where a
set of quadrotor UAVs are requested toconverge to and
follow desired prespecified paths under stringent temporal
constraints. In the solution adopted, the path-following (PF)
and time-coordination (TC) problems are almost decoupled.
At the PF level, we assume there exists a control law capable
of steering a quadrotor along its assigned path. At the TC
level, the synchronization problem is solved by adjusting
the commanded position and velocity of the quadrotors
involved in the mission, thus obtaining –indirectly– vehicle
coordination. Figure1 captures the key concept described
above.

This paper is organized as follows. In SectionII , we
define the PF and TC control problems, and present stability-
related properties that the PF closed-loop system must sat-
isfy. Then, a formal definition of the TCPF problem is
given. In SectionIII we propose a solution for the TC prob-
lem. SectionIV formulates a PF algorithm that enables an
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Fig. 1. TCPF Control Scheme.

AR.Drone quadrotor to follow a desired path, and shows that
the convergence properties of the TCPF system hold for this
particular vehicle. SectionV presents and discusses flight
tests results that illustrate the effectiveness of the proposed
PF and TC algorithms. Finally, SectionVI contains the main
conclusions.

II. PROBLEM FORMULATION

A. 3D Path-Following for a single quadrotor

Let I denote an inertial reference frame, and
let xi(t) ∈ R

3 be the position of the center of mass
of the ith quadrotor in this inertial frame, resolved inI.
Also, let Bi = {~b1, ~b2, ~b3} denote the body frame with its
origin located at the center of mass of theith quadrotor;
vector~b3 is normal to the plane defined by the centers of the
four rotors –pointing upwards in non-inverted flight–, while
vectors~b1 and~b2 lie in this plane, with~b1 pointing out the
nose and~b2 completing the right-hand system. Further, let
xd,i(γi) ∈ R

3 be a desired path parameterized byγi, and
assume that

∥

∥

∥

∥

∂xd,i

∂γi

∥

∥

∥

∥

≤ vdmax,i , (1)

for some0 < vdmax,i < vmax, wherevmax is the maximum
operational speed of the quadrotors. The choice of the
parameterizing variableγi will be discussed later.

Then, we can define the position error vector as

ex,i = xd,i(γi)− xi ∈ R
3 (2)

and the velocity error vector as

ev,i =
∂xd,i(γi)

∂γi
γ̇i − ẋi = ẋd,i(γi)− ẋ ∈ R

3 . (3)

Additionally, similar to [11], define the errors

eR̃,i =
1

2

(

R⊤
d,iRi −R⊤

i Rd,i
)∨

, (4)

eΩ,i = Ωi −R⊤
i Rd,iΩd,i , (5)

whereRi ∈ SO(3) and Ωi ∈ R
3 are, respectively, the ro-

tation matrix from the body-fixed frameBi to the inertial
frameI and the angular velocity of theith quadrotor in the

body-fixed frameBi; Rd,i ∈ SO(3) represents the desired
attitude of theith quadrotor with respect to the inertial frame
and is generally expressed as a function of the position and
velocity errors,ex,i and ev,i, as well as the desired head-
ing ψd,i; Ωd,i satisfiesS(Ωd) = R⊤

d Ṙd; while the operators
(·)∨ andS(·) denote theveeandhat maps [11].

With the above notation, we define the path-following
generalized error vector

xPF,i =
[

e⊤x,i , e
⊤
v,i , e

⊤

R̃,i
, e⊤Ω,i

]⊤

∈ R
12 . (6)

The dynamics of theith vehicle’s PF error vector can be
modeled as

ẋPF,i = fi(xPF,i, ui) , (7)

wherefi(·) is a general nonlinear vector map andui is the
control signal vector. Then, the PF control problem can be
defined as:

Problem 1 (Path-Following Problem):Consider the
ith quadrotor UAV and a given trajectoryxd,i(γi)
satisfying (1). We say that a controllerui(t) solves the
PF control problem if the generalized PF error vectorxPF,i
with the dynamic described in (7) satisfies

‖xPF,i(t)‖ ≤ k‖xPF,i(0)‖e
−λPF t ,

for some parameterk > 0, rate of convergenceλPF > 0, and
domain of attraction

D = {xPF,i ∈ R
12 : ‖xPF,i‖ ≤ r} , r > 0 .

Assumption 1:We assume that there exists a control law
ui(t) that solves the PF problem defined in Problem1.

B. Time-Coordination

We now address the TC problem of a fleet ofn quadrotor
UAVs. As will become clear, this problem will be solved
by adjusting –for each vehicle– the second derivative of the
parameterizing variableγi(t).

As described earlier, the desired path assigned to each
vehicle is parameterized by a variableγi, i = 1, . . . , n. The
choice of the parameterγi is such that, ifγi(t)− γj(t) = 0,
∀i, j ∈ {1, . . . , n}, i 6= j and γ̇i(t) = 1, ∀i ∈ {1, . . . , n},
at some timet, then all the vehicles are synchronized and
evolve at the desired speed.

To achieve synchronization, the coordination variablesγi
have to be exchanged among the quadrotors over a sup-
porting communications network. Using tools from graph
theory, we can model the information flow as well as the
constraints imposed by the communication topology. We start
by assuming that theith UAV communicates only with a
neighboring set of vehicles, denoted byNi. We also assume
that the communication between two UAVs is bidirectional
with no delays. The reader is referred to [20] for key concepts
and details on algebraic graph theory.

Following the notation used in [21], we now let
L(t) ∈ R

n×n be the Laplacian of the graphΓ(t).
Let Q ∈ R

(n−1)×n be a matrix such thatQ1n = 0,
QQ⊤ = In−1, and definēL(t) = QL(t)Q⊤; it can be shown



that L̄ ∈ R
(n−1)×(n−1) has the same spectrum as the Lapla-

cianL(t) without the eigenvalueλ1 = 0. Finally, we letL̄(t)
satisfy the persistency of excitation (PE) assumption:

∫ t+T

t

L̄(τ)dτ ≥ µIn−1 . (8)

Next, letting γ(t) = [γ1(t), . . . , γn(t)]
⊤

and γ̇(t) = [γ̇1(t), . . . , γ̇n(t)]
⊤, we define the coordination

error vectors

ξ(t) = Qγ(t) ∈ R
n−1 , (9)

z(t) = γ̇(t)− 1n ∈ R
n . (10)

From the definition ofQ it follows that, if ξ(t) = 0n,
thenγi − γj = 0, ∀i, j ∈ {1, . . . , n}. Note that convergence
of z(t) to zero implies that the individual parameterizing
variablesγi(t) evolve at the desired rate 1.

With the above notation, the coordination problem can
now be defined as:

Problem 2 (Time-Coordination Problem):Given a set of
n 3D desired trajectoriesxd,i(γi), design feedback control
laws for γ̈i for all vehicles such that the coordination
error vectorsξ and z, defined in (9) and (10) respectively,
converge exponentially to a neighborhood of zero with rate
of convergenceλTC > 0.

C. Time-Coordinated 3D Path-Following

Considering the PF and TC problems described above, we
can now define the combined TCPF control problem for a
fleet of quadrotor UAVs.

Problem 3 (Time-Coordinated Path-Following Problem):
Consider a set ofn quadrotor UAVs and a set of
n 3D desired trajectoriesxd,i(γi). Assume the quadrotors can
communicate over a communications network satisfying (8).
Design feedback control lawsui(t) and γ̈i(t) such that

1) for each vehicle, the generalized PF error vec-
tor xPF,i(t) defined in (6) converges to a neighborhood
of zero;

2) the coordination error vectors defined in (9) and (10)
converge exponentially to zero.

III. T IME-COORDINATED 3D PATH-FOLLOWING:
MAIN RESULT

To solve the TCPF problem, we let the evolution ofγi(t)
be given by

γ̈i = −b(γ̇i − 1)− a
∑

j∈Ni

(γi − γj)− d ᾱi(xPF,i) ,

γi(0) = 0 , γ̇i(0) = 1 ,

wherea, b, d are positive coordination control gains, while
ᾱi(xPF,i) is defined as

ᾱi(xPF,i) =
ẋ⊤d,iex,i

‖ẋd,i‖+ δ
+

ẋ⊤d,iev,i

‖ẋd,i‖+ δ
,

with δ being a positive design parameter. The dynamics of
γ(t) can be written in compact form as

γ̈ = −bz − aLγ − dᾱ(xPF ) , γ(0) = 0n, γ̇(0) = 1n ,
(11)

where

xPF = [x⊤PF,1, . . . , x
⊤
PF,n]

⊤ ∈ R
12n ,

ᾱ(xPF ) = [ᾱ1(xPF,1), . . . , ᾱn(xPF,n)]
⊤ ∈ R

n .

Then, the Lemma below states the main result of this
paper:

Lemma 1:Consider a set ofn quadrotor UAVs and a set
of n 3D desired trajectoriesxd,i(γi). Givenn PF algorithms
satisfying Assumption1 and the coordination control law
described in (11), then there exist control gainsa, b, d, andδ
that solve the TCPF control problem3. In particular, it can be
shown that the vectorxTCPF = [x⊤PF , ξ

⊤, z⊤]⊤ converges
exponentially fast to a neighborhood of zero with rate of
convergence

λ = min(λPF , λTC) , (12)

where
λTC <

µ

2T (1 + n2T )2
, (13)

and with domain of attraction

Dc ,
{

xTCPF ∈ R
14n−1 : ‖xPF,i‖ ≤ r

}

. (14)

Proof. An outline of the proof is given in the Appendix.�
Remark 1:The rate of convergenceλPF depends on the

properties of the adopted PF control law. If the PF control
law has a rate of convergence greater thanλTC , then the rate
of convergence of the TCPF system is equal to the rate of
convergence of the TC algorithm.

Remark 2:Note that the rate of convergence of the TC al-
gorithm strictly depends on the quality of the communication
network (parametersµ andT ).

IV. I LLUSTRATIVE EXAMPLE : TCPFWITH AR.DRONES

To test the performance of the algorithm presented in the
previous section, we adopted the flying robot architecture
realized by Parrot AR.Drone company. To this end, we first
developed a PF algorithm that satisfies the conditions de-
scribed in SectionII and that uses the control input provided
by the AR.Drone autopilot, which accepts control commands
for linear velocity along the inertial vertical channelż, Euler
anglesθ andφ for the horizontal motion, and yaw ratėψ.
Next, we reformulate the PF problem presented in SectionII
for this particular platform, and derive a PF algorithm based
on simple linear control.

A. PF Error Dynamics

For simplicity, we write separately the horizontal and
vertical motions:

x = [(Πx)⊤, e⊤3 x]
⊤ ,

v = [(Πv)⊤, e⊤3 v]
⊤ ,



wherev = ẋ, while Π ande3 are defined as

Π =

[

1 0 0
0 1 0

]

, e3 =





0
0
1



 .

Therefore, the dynamics of the quadrotor can be written as
follows:

H :

{

Πẋ = Πv

Πv̇ = Π f
m
Re3

V :

{

e⊤3 ẋ = e⊤3 v

e⊤3 v̇ = e⊤3
f
m
Re3 − g

(15)

whereR can be expressed in terms of the Euler angles as:

R = RφRθRψ

=





cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ



 .

Since the AR.Drone autopilot is designed to operate using
small angle commands inφ and θ, we can linearize the
dynamics in (15) to obtain:

H :

{

Πẋ = Πv

Πv̇ = f
m

[

cψ −sψ
sψ cψ

]

[

θ
−φ

]

V :

{

e⊤3 ẋ = e⊤3 v

e⊤3 v̇ = f
m

− g

(16)

Next, define the horizontal position and velocity errors as

exxy
= Π(xd − x) , (17)

evxy
= Π(ẋd − ẋ) . (18)

Similarly, define the vertical position and velocity errorsas

exz
= e⊤3 (xd − x) , (19)

evz = e⊤3 (ẋd − ẋ) . (20)

Also, let eR̃ be defined as in (4) with Rd = RφRθRψd
. This

implies that

R⊤
d R = R⊤

ψd
R⊤
θ R

⊤
φRφRθRψ

= R⊤
ψd
Rψ

=





c(ψd − ψ) s(ψd − ψ) 0
−s(ψd − ψ) c(ψd − ψ) 0

0 0 1



 ,

thus leading to

eR̃ =





0
0

−s(ψd − ψ)



 .

Ignoring the first two components ofeR̃, we define

eψ = −s(ψd − ψ) ∈ R .

If we now consider small heading deviations with respect to
the desired valueψd, theneψ can be approximated by

eψ = ψ − ψd . (21)

Finally, define the generalized PF error vector as

x∗PF = [e⊤xxy
, exz

, e⊤vxy
, eψ]

⊤ ∈ R
6 (22)

Notice that, in contrast to the general formulation in Sec-
tion II , the generalized error vector defined here does not
consider the error statesevz and eΩ. This is due to the
fact that these two error signals are directly controlled by
the AR.drone autopilot, ensuring their convergence to a
neighborhood of zero.

With this in mind, we can now write the PF error dynamics
as



















ėxxy
= evxy

,

ėvxy
= Πẍd − (e⊤3 v̇ + g)

[

cψ −sψ
sψ cψ

]

u1 ,

ėxz
= e⊤3 ẋd − u2 ,

ėψ = u3 − ψ̇d ,

(23)

where
u1 =

[

θ
−φ

]

, u2 = e⊤3 v , u3 = ψ̇

are the command signals accepted by the AR.drone autopilot.

B. PF Control Law

Before we define the PF control law for the AR.drone
quadrotor, we make the following assumption.

Assumption 2:The PID controller of the AR.drone au-
topilot responsible foṙz control is tuned to ensure that

e⊤3 v̇ + g > 0 .

With this assumption, we can now define the control inputs
u1, u2, andu3 as

u1 =
1

(e⊤
3
v̇+g)

[

cψ sψ
−sψ cψ

]

(Πẍd + kpexxy
+ kdevxy

) ,

u2 = e⊤3 ẋd + kzexz
,

u3 = ψ̇d − kψeψ ,

(24)

wherekp, kd, kz , andkψ are positive control gains. Then, it
can be shown that the origin of the PF error dynamics (23) is
(locally) exponentially stable. The next lemma summarizes
this result.

Lemma 2:Consider an AR.drone quadrotor and a desired
path xd(γ). Let the command signals of the AR.drone
autopliot be given by (24) and assume‖ẋd‖ ≤ vmax. Then,
for anyλ∗PF > 0, there exist control gainskp, kd, kz, andkψ
such that the error vector defined in (22) satisfies

‖x∗PF (t)‖ ≤ k‖x∗PF (0)‖e
−λ∗

PF t

within some domain of attraction

D = {x∗PF ∈ R
6 : ‖x∗PF ‖ ≤ r∗} , (25)

where the linearization of the quadrotor dynamics is valid.

Proof. The proof of this result is omitted due to space
limitations. �

Corollary 1: Consider a set ofn AR.Drone quadrotors
and a set ofn 3D desired trajectoriesxd,i(γi). Given
n PF algorithms proposed in Lemma2 and the coordination
control law described in (11), there exist control gainsa, b,



d, andδ that solve the TCPF control problem3 with rate of
convergence

λ = min(λ∗PF , λTC) ,

whereλ∗PF is defined in Lemma2 and

λTC <
µ

2T (1 + n2T )2
,

and with domain of attraction

D∗
c =

{

xTCPF ∈ R
8n−1 : ‖xPF,i‖ ≤ r∗

}

. (26)

Remark 3:The boundr∗ in (25) for which the lineariza-
tion of the quadrotor dynamics is valid will depend on the
choice of the control gainskp, kd, kz , and kψ. A relation
between these control gains andr∗ can be obtained from the
control laws in (24).

V. FLIGHT TEST RESULTS

In this section, we present flight tests results of two
AR.Drone quadrotors that are tasked to follow circular,
planar paths of radius2 m at a constant speed, while
synchronizing both their phase-on-orbit and their headings.

To solve this problem, we use the PF algorithm described
in the previous section and the coordination control law
proposed in SectionIII . Figure 2 presents the results of
this experiment. In particular, Figure2a shows the desired
orbit (black) and the actual trajectories of the two quadro-
tors (blue and red). Since the two UAVs are tasked to
follow the same orbit, a phase-on-orbit separation is required
between the two vehicles to avoid collision. This separation
is specified online from the ground station, and it varies
according to mission requirements. The desired phase-on-
orbit separation, along with the actual phase separation
between the two UAVs, is shown in Figure2b. In this
particular scenario, the UAVS are initially required to keep
a 180-deg phase separation; at approximatelyt = 94 s, the
required phase separation goes down to90 deg; the two
quadrotors keep this configuration for about14 s, when the
required phase separation goes back to180 deg; finally, in
the last part of the experiment, the UAVs are required to keep
a phase separation of270 deg.

The performance of the PF algorithm is illustrated in
Figure2c for both quadrotors. As can be seen in the figure,
the PF algorithm is able to steer the quadrotors along the
circular paths. Note that the deviations appearing at times94,
112, and 123 s are due to the sudden changes in desired phase
separation. Finally, Figure2d shows the convergence ofγ̇1
and γ̇2 to the desired rate 1, as well as the convergence of
the coordination errors to a neighborhood of zero.

VI. CONCLUSION

This paper addressed the problem of steering a fleet of
quadrotor UAVs along predefined spatial paths, while coor-
dinating with each other according to mission requirements.
Cooperative control is achieved in the presence of time-
varying communication networks, and stringent temporal
constraints. The constraints include collision-free maneuvers
(generated off line) and simultaneous arrival at the desired
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Fig. 2. Flight test results with two AR.Drone UAVs.

locations. The proposed solution solves the time-coordination
problem under the assumption that a path-following algo-
rithm –meeting certain stability conditions– is given. The
synchronization task is accomplished by adjusting the de-
sired position and velocity of each vehicle. The exponential
convergence of the time-coordination error is proven using
Lyapunov theory. An illustrative example is presented to
validate the convergence of the algorithm. To this end, an ad-
hoc path-following algorithm is formulated and implemented
for two AR.Drone quadrotors. The results obtained validate
the theoretical findings.
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APPENDIX

SKETCH OF THE PROOF OFLEMMA 1
Assuming that the PF system (7) satisfies Assumption1, and

following the same argument as in [22, Theorem 4.14], there exists
a Lyapunov function satisfying

c1||xPF ||
2 ≤ VPF ≤ c2||xPF ||

2
, V̇PF ≤ −c3||xPF ||

2
. (27)

In addition, consider the system

φ̇(t) = −L̄φ(t) . (28)

Since the matrixL̄ satisfies the PE condition in (8), we can use
the result in [23, Lemma 5] to conclude that the system in (28)
is GUES (global uniformly exponentially stable), and that the
following bound holds:

||φ(t)|| ≤ kλ||φ(0)||e
−γλt

with kλ = 1 and γλ ≥ γ̄λ = µ

T (1+n2T )2
. This, together

with [23, Lemma 1] or a similar argument as the one in [22,
Theorem 4.14], imply that there exists a continuosly differentiable,
symmetric, positive definite matrixPc(t) that satisfies the following
inequalities:

0 < c̄1I ,
c̄3

2n
I ≤ Pc(t) ≤

c̄4

2γλ
I , c̄2I

Ṗc − L̄Pc − PcL̄ ≤ −c̄3I .

(29)

Next, introducing the transformation

χ(t) = bξ +Qz ,

the time coordination states can be redefined asxTC = [χ⊤, z⊤]⊤,
with dynamics

{

χ̇ = − a
b
L̄χ+ a

b
QLz −Qᾱ(xPF )

ż = −(bI − a
b
L)z − a

b
LQ⊤χ− ᾱ(xPF ) .

(30)

At this point, we choose a Lyapunov candidate function

V = VPF +
1

2
χ
⊤
Pcχ+

β1

2
||z||2 , (31)

where β1 > 0, and VPF and Pc were introduced above. After
some mathematical computations, and using (27), (29), and (30),
the derivative of the Lyapunov function becomes:

V̇ ≤−

(

c3 − (β1 + c̄2)d
vdmax

vdmax + δ

)

||xPF ||
2

−

(

c̄3

2
− 2c̄2d

vdmax

vdmax + δ

)

||χ||2

− β1

(

b− n− 2d
vdmax

vdmax + δ

)

||z||2

+ χ
⊤(PcQL− β1QL)z .

At this point, one can show that there existb, d, δ, c̄2, and c̄3 such
that

V̇ ≤ −2λV ,

‖γ̇‖∞ ≤
vmax

vdmax
,

whereλ was defined in (12). The second bound above is required
to show feasibility of the commanded speed profile. This completes
the proof. �
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