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Abstract— We provide an explicit formula for the second-
order-optimal nonlinear filter for state estimation of systems
on general Lie groups with disturbed measurements of inputs
and outputs. Optimality is with respect to a deterministic
cost measuring the cumulative energy in the unknown system
disturbances (minimum-energy filtering). We show that the
resulting filter will depend on the choice of affine connection,
thus encoding the nonlinear geometry of the state space. For
the case of attitude estimation, where we are given a second
order (dynamic) mechanical system on the tangent bundle of
the special orthogonal group SO(3), and where we choose the
symmetric Cartan-Schouten (0)-connection, the resulting filter
has the familiar form of a gradient observer combined with a
matrix Riccati differential equation that updates the filter gain.

I. INTRODUCTION

The problem of state estimation from disturbed measure-
ments of inputs and outputs is one of the basic problems in
system theory and has been studied in many different mod-
elling frameworks. Arguably the most prominent approach
is via stochastic system models, where the disturbances
are modelled as stochastic processes and optimal or sub-
optimal solutions are sought that minimize some measure of
expected error. The resulting algorithms range from the fa-
mous Kalman filter and its various nonlinear generalizations
(Extended Kalman Filter (EKF), Unscented Filter (UF)) to
particle filters (PF) and other more specialized approximation
schemes. An alternative approach to state estimation treats
the disturbances as unknown deterministic signals and seeks
to optimize some measure of size or “badness” of these
signals. The most prominent techniques in the latter domain
are H°°-filtering and minimum-energy filtering, the topic of
this paper.

Minimum-energy filtering was first proposed by
Mortensen [1] and further developed by Hijab [2]. It
is known that the minimum energy-filter for linear systems
coincides with the Kalman filter [3]. Krener [4] recently
proved exponential convergence of minimum-energy
estimators for uniformly observable systems in R".
Ongoing research in the area is aimed at generalizing
minimum-energy filters to systems whose state evolves on
a differentiable manifold such as a Lie group. Aguiar and
Hespanha [5] provided a minimum-energy estimator for
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systems with perspective outputs that can be used for pose
estimation, a problem with state space SE(3), the special
Euclidean group. Their approach uses an embedding of
SE(3) in a matrix vector space and is hence not intrinsic
with respect to the geometry of the state space. This means
that filter estimates need to be projected back onto SE(3),
potentially resulting in suboptimal performance of the filter.
Coote et al. [6] derived a near-optimal minimum-energy
filter for a system on the unit circle and provided an
estimate for the distance to optimality, a result generalized
by Zamani et al. [7] to systems on the special orthogonal
group SO(3) with full state measurements. In a paper
published last year, Zamani [8] provided a second-order-
optimal minimum-energy filter for attitude estimation (state
space SO(3)) from vectorial measurements, resulting in a
filter that can be interpreted as a geometric correction to the
Multiplicative Extended Kalman Filter (MEKF) [9].

In this paper we provide an explicit formula for a second-
order optimal minimum-energy filter for systems on general
Lie groups with vectorial outputs. The resulting filter takes
the form of a gradient observer coupled with an operator Ric-
cati differential equation that updates the filter gain. The filter
explicitly depends on the choice of affine connection on the
state space, thus encoding its nonlinear geometry. We provide
a worked example, applying the developed theory to the
case of attitude estimation given a second order (dynamic)
system model on the tangent bundle of the special orthogonal
group SO(3) and vectorial measurements. The gain equation
specializes to a perturbed matrix Riccati differential equation
in this case. We choose the usual symmetric Cartan-Schouten
(0)-connection on SO(3) for illustration, but different choices
would be possible, resulting in different gain equations.
To the best of our knowledge, this is the first such filter
published for a (second-order) mechanical system.

This paper is divided in six sections, including this intro-
duction and the conclusion section. Mathematical prelimi-
naries are given in Section II. In Section III, we formulate
the problem of minimum-energy filtering for systems on Lie
groups. The explicit expression for the second-order-optimal
filter, the filter that agrees up to second order terms with the
optimal minimum-energy filter, and its derivation are detailed
in Section IV. A worked example is discussed in Section V.

II. NOTATION AND MATHEMATICAL PRELIMINARIES

We begin by establishing the notation used throughout
this paper. The basic notation and methodology is fairly
standard within the differential geometry literature and we
have attempted to use traditional symbols and definitions
wherever feasible. We refer the reader to the books [10], [11],
[12] for a review on differentiable manifolds and covariant
differentiation and to [13], [14], [15] for a review of the
theory of Lie groups and Lie algebras. Many of these topics



are also covered in [16] and [17]. The following symbols

will be used frequently:

G

a connected Lie group

n the dimension of the group G

g, h elements of G

g the Lie algebra associated with G

XY elements of the Lie algebra g

[ ] the Lie bracket of g

g* the dual of the Lie algebra g

I an element of g~

L,:G—=G left translation Lyh = gh

ThLg the tangent map of Ly at h € G

gX shorthand for T.Ly(X) € T,G

() duality paring (u, X) = p(X)

% finite dimensional vector space

f:G—=V differentiable map

d f(g) differential of f at g, d f(g): T,G — V
identifying T'r o)V with V'

d, da, differentials with respect to individual
arguments of a multiple argument map

VxY covariant derivative

wigxXg—g
w§:9—>g
wy:g—4g
wx:g" =g
wy g—g"
wy gt —g"

(X and Y are vector fields on G)
connection function associated with V
wx (Y) =w(X,Y)

wy (X) = wx(Y)

<W§(_(H)7 Y> = <:u‘7 wx Y>

(Wi (X),Y)=(wx (n),Y)=(n,wx Y)

(wWy ™ (1), X) = (p, wy X)=(p,wx Y)

T(X,Y)eg torsion function associated with w
Tx:g—g¢ partial torsion function TxY = T(X,Y)
Hess f(g) Hessian operator of a twice differentiable
function f: G — R (oramap f: G = V)
(#)": £(W,U)  Exponential functor (-)" applied to a
— £(W,V) linear map ¢: U — V

Dual and symmetric maps. We will use the canonical
identification of the Lie algebra g with its bidual g** allowing
us to treat the dual ¢*: g** — g* of a linear map ¢: g —
g* again as a map ¢*: g — g*. We can hence call ¢
symmetric (with respect to the duality pairing) if ¢ = ¢*.
This idea extends to arbitrary linear maps between a (finite-
dimensional) vector space and its dual, for example the
Hessian operator defined below.
Connection function. A left-invariant affine connection V
on G is fully characterized by its bilinear connection function
w: g x g — g through the identity V x(gY) = gw(X,Y)
[18].
Swap operator. The connection function w allows us to
introduce a convenient operator calculus that we will use
extensively in the derivation of our filter. Other than the
partial connection functions wx, wy, W, WZ:’ and wy*
defined in the notation table above, thinking of the ’swap’ =
and ’dual’ * operations as formal operations, we can close
off the calculus with the two additional operators w*=* and
w=*=, defined in the obvious way, which turn out to be
equal. This yields identities like w*=*= = w=*. We will
use this latter identity at one point in the filter derivation.
Hessian operator. Given a twice differentiable func-
tion f: G — R we can define the Hessian op-
erator Hess f(g): T,G — T,G at a point g €
G by Hessf(g)(9X)(gY) = d(df(g)(gY))(gX) —
df(g) (VgX(gY)) for all gX,gY € T,G [19]. Here,
d(d f(9)(gY)): T,G — R is shorthand for the differential
of the function g — d f(g)(gY") at the point g € G.

The dual Hessian operator is also a map

(Hess f (g))*: 1,G — T;G since we identify the
bidual T7*G with T,G. Note that the Hessian operator is
not always symmetric (in the sense defined above). It is,
however, symmetric at any critical point of the function
f since d f(g) = 0 causes the second, potentially non-
symmetric term in the definition of the Hessian operator to
vanish. This term, and hence the Hessian operator, is always
symmetric if the connection V is symmetric [19].

The concept of a Hessian operator naturally extends

to vector-valued twice differentiable maps f: G — V.
The Hessian operator at a point ¢ € G is then a map
Hess f(g): T,G — £(T,G,V), where £(T,G,V) denotes
the set of linear maps from 7,G to V. The Hessian operator
is defined component-wise with respect to a basis in V' [19].
It is easy to check that the resulting operator is independent
of the choice of basis.
Exponential functor. Given a linear map ¢: U — V and a
third vector space W, the exponential functor (-)"V lifts the
map ¢ to the linear map ¢" : £(W,U) — £(W, V) defined
by ¢"(n) = pomn.

III. PROBLEM FORMULATION

In this section, we introduce the problem of minimum-
energy state estimation for systems on Lie groups. The
section concludes with a statement of the main result of the
paper.

Consider the deterministic system on a Lie group G
defined by

g(t) = g(t)(A(g(t), u(t),t) + Ba(t)),  g(to) =go (1)

with state g(¢) € G, input u(t) € R™ a known exogenous
signal, nominal (left-trivialized) dynamics A\: G xR xR —
g, and unknown model error 6(t) € R?. The known map
B :R? — g is linear and gy € G, the initial condition at the
initial time ¢y € R, is unknown. After a choice of basis for g,
the model error space R? can be taken to be the Lie algebra
g or, alternatively, a vector space of smaller dimension. This
latter case will be illustrated in Section V.

The two main applications that motivate our work are
the kinematics and dynamics of mechanical systems. In the
case where just the kinematics of a mechanical system are
considered, the left-trivialized dynamics are simply the sys-
tem velocity A(g,u,t) = u leading to the classical nominal
left-invariant kinematics ¢ = gu [20], [21]. In this case the
system ‘input’ is the measured velocity and the model error
0 is best thought of as measurement error associated with
inexact measurement of the velocity.

In the case of a dynamical mechanical system then G =
TC is the tangent bundle of a smaller Lie-group C' that is a
representation of the configuration space of the mechanical
system [16], [17]. In this case the model error § is an
additive term that includes unmodeled dynamics as well
as acceleration measurement error and only applies to the
dynamics that model the evolution of the velocity of the
system and not to the kinematics. This property can be
incorporated into (1) by suitable choice of the linear operator
B and the dimension d of the model error space R?. Section
V provides an example of the second case while the first case



has been considered in a number of prior works including
(81, [9].

The known measurement output, denoted by y € RP, is
related to the state g through the nominal output map h: G x
R — RP as

y(t) = h(g(t),t) + De(t) (2)

where ¢ € RP is the unknown measurement error and
D: RP — RP is an invertible linear map.

In the minimum energy filtering approach, both the ‘error’
signals, § and e, are modeled as unknown deterministic
functions of time. Along with the unknown initial condition
go these three signals are the unknowns in the filtering
problem. Given measurements y(7) and inputs u(7) taken
over a period T € [to, ] then there are only certain possible
unknown signals (§(7),e(7),g0) for 7 € [to,t] that are
compatible with (1) and (2). Each triple of compatible
unknown signals corresponds to a separate state trajectory
g(7). The principle of minimum energy filtering is that the
‘best’ estimate of the state is the trajectory induced by the set
of unknown signals (d, &, go) that are ‘smallest’ in a specific
sense. To quantify the concept of small it is necessary to
introduce a cost functional, typically a measure of energy in
the unknown error signals ¢ and ¢, along with some form of
initial cost (initial “energy”) in go, leading to the terminology
of minimum energy filtering.

Define two quadratic forms

R:RI SR, Q:RF - R (3)

that measure instantaneous energy R(4(7)) and Q(e(7)) of
the error signals. Let @ > 0 be a non-negative scalar and
define an incremental cost [: R? x R? x R x R — R by

1(6,e,t,7) :=1/2e1=7) (R(0) + Q(e)). 4)

The constant « is the discount rate, the rate at which
old information in the incremental cost is discounted and
forgotten. In addition, we introduce a cost m: GxRxR — R
on the initial condition gg.

m(go,t,to) = 1/2 eI mq(go), )

where mg: G — R is a bounded smooth function with a
unique global minimum on G. The initial cost mg can be
thought of as encoding the a-priori information about the
state at time . It is a necessary part of the development and
cannot be ignored since it provides a boundary condition for
the Hamilton-Jacobi-Bellman equation used in the derivation
of the minimum energy filter in Section IV.
The cost functional that we consider is
t
J(0,€,90;t,to) = m(go,t,to)+/l((5(7’),€(7’),t,7’)d7’. (6)
to
Note that J depends on the values of the signals ¢ and
¢ on the whole time interval [to,t]. In order that the cost
functional is well defined we will assume that all error
signals considered are square integrable.
Consider a time-interval [tp,t] and let g(¢) denote the
filter estimate, at the terminal time ¢, for the minimum

energy filter. That is g(t) := G0 (t) is the final value of

the state trajectory g[*to 4 that is associated with the signals

(0*,e*, g¢) that minimize the cost functional (6) on [to, ¢] and
are compatible with (1) and (2) for given measurements y(7)
and inputs u(7), 7 € [to, t]. Note that this correspondence of
g(t) and Ito.1) (t) will only necessarily hold at the terminal
condition, and indeed, in general g7, (1) # g(7) for T # t.
That is the minimum energy filter can only be posed on the
whole interval [tg,t] since this is the domain of definition
of the cost functional. Nevertheless, it is not necessary
to resolve the whole optimization problem for each new
time ¢ since the Hamilton-Jacobi-Bellman (HJB) equation
provides a model for the evolution of the solution of the
filter equation, in terms of the value function associated
to the cost functional, with changing terminal condition.
Finding a suitable solution to the HJB equation is known
to be difficult, and indeed expected to yield an infinite
dimensional evolution equation for the value function. In the
remainder of the paper we go on to show how a second
order approximation to the filter equation can be derived
by using Mortensen’s approach to approximating the Taylor
expansion of the value function at the terminal condition
of the filter [1]. Taking a second order approximation of the
value function yields what we term the second-order-optimal
minimum-energy filter equations.

In order to write down the filter equations it is necessary
to associate gain operators with the quadratic forms R and
Q that appear in the incremental cost (4). Let R: R x R? —
R resp. Q: R? x R? — R be the (unique) symmetric
positive definite bilinear forms associated with R resp. Q,
ie. R(6,0) = R(0) for all 6 € R and Q(s,e) = Q(e)
for all ¢ € RP. The duality pairing (-,-) can then be used
to uniquely define symmetric positive definite linear maps
R:R? — (RY)* and Q: R? — (RP)* from the bilinear
forms R and Q by

(R(X1), X2) = R(X1, X2), (Q(y1),v2) = Qy1,y2) (1)
for all X1, X, € R? and y1, 72 € RP, respectively.

IV. THE FILTER AND ITS DERIVATION

This section presents the second-order-optimal filter and
details how to obtain it, revisiting the optimal estimation
problem, its corresponding optimal Hamiltonian and the
associated Hamilton-Jacobi-Bellman (HJB) equation.

A. The second-order-optimal filter equations

Assume that the error terms § and ¢ are square integrable
deterministic functions of time and adopt the shorthand
notation h;(g) and (g, ) for h(g(t),t) and A(g(¢),u(t),t),
respectively. For ease of presentation, we drop the explicit
dependence on time of the input, output, state, and error
signals from our notation. The following theorem is the main
result of this paper.

Theorem 4.1: Consider the system defined by (1) and (2)
along with the energy cost functional (6) with incremen-
tal cost (4) and initial cost (5). The second-order-optimal
minimum-energy filter in the sense descibed in Section III
is given by

g'9=MGw) + K)r(@),  Glto) =Go, B



where K (t): g* — g is a time-varying linear map satisfying
the operator Riccati equation (11) given below,

Jo = argmin mg(g), 9
geG

and the residual .(g) = r(g,t) € g* is given by

n@=T.83] (07D (- 1u(@)od (@) (10

The second-order-optimal symmetric gain operator
K(t): g+ — g satisfies the perturbed operator Riccati
equation
K=—a K+ AoK + KoA* — KoEoK + BoR 'oB*
1D
with initial condition K(ty) = X, ' where the operators
Xo:g—g* A(t): g — g, and E(t): g — g* are given by
Xo = TGLZOO Hess mo(go)oTeLy,, (12)
At) = d1 Ae(g,u)oTeLy — ady, (g.u) = Try gy, (13)

*
—wgroK — Kowl,,

nd
' , T,G
E(t) = —TeLgoK(D’l) 0QoD " (y — ht(g))) o (14)
Hess hy(9)— (d h(g)) o (D) 0QoD"od ht(g))} oT.Lyg,

w is the connection function and Kr is shorthand notation
for K r:(9). O

A coordinate version of the operator statement of the
Riccati equation can be obtained by choosing bases for g,
R?, and RP. We provide a worked example in Section V. In
the remaining part of this section, we prove Theorem (4.1).

B. The optimal estimation problem

The minimum-energy estimation problem stated in
Section IIl is to find the state-control trajectory pair
(95i0.0(7): 6 41(T))s T € [to, 1], that solves

min m(g(tg),t,t0) +
oS ) mlg(to), b, to)

t (15)
/t l (6(7),D_1(y(7') — h(g(T),T)),t,T) dr
subject to the dynamic constraint
g(t) = g(t)(\g(t), u(t),t) + Bé(t)) (16)

with free initial and final conditions. Here, u(7) and y(7)
are known for 7 € [to, t].

Note how the control input in the above optimal estima-
tion problem is the model error § while the applied input
u is simply a known function of time. As we show in
the following, the above rewriting of the minimum-energy
estimation problem allows to easily compute the associated
optimal Hamiltonian, which is then used to obtain the explicit
expression for the Hamilton-Jacobi-Bellman (HJB) equation.
A suitable truncation of the HJB equation will then lead to
the second-order-optimal filter presented at the beginning of
this section.

We denote by V(g,t) the minimum energy value among
all trajectories of (16) within the interval [to, t] that reach the

state g € G at time ¢. The optimal estimate g(¢) is therefore
equal to

9(t) = gj1, 1 (t) = argmin V(g, 1),
geG
fort € [tg,00) and V (g, t9) = m(g, to, to). The key observa-
tion in [1] is that if we assume V (g, t) to be differentiable in
a neighborhood of the optimal estimate g(¢) then, as V' (g,t)
attains its minimum at g(¢), we must have

d, V(g(t), 1) =0 amn

for ¢ > to. Assuming that V(g,¢) is smooth, the above
expression can be further differentiated with respect to time
obtaining a set of necessary conditions (actually, a set of
differential equations) that fully characterize the optimal
filter. Unfortunately, such a program has the drawback that
we obtain an infinite number of conditions and therefore, for
practical application, the optimal filter has to be truncated
after a certain order, obtaining a suboptimal filter. However,
such filters have shown promising performance for systems
on SO(3), outperforming established nonlinear filters such
as the Multiplicative Extended Kalman Filter (MEKF) [9],
see also [22].

The simplest optimal filter is that obtained by truncating
the series expansion at the second order. This requires only
two differentiations of (17). It is worth recalling that for lin-
ear dynamics and quadratic cost, the minimum-energy filter
obtained in this way is actually optimal and its equations are
equivalent to the Kalman-Bucy filter [3].

C. The optimal Hamiltonian

Aiming for the Hamilton-Jacobi-Bellman (HJB) equation
associated with the optimal estimation problem (15)-(16), in
this subsection we derive the optimal Hamiltonian. Special
care has to be taken in obtaining such a function because the
system dynamics evolves on a smooth manifold and not, as
would be more common, on the vector space R™. We refer
to [23] for a review of optimal control theory on smooth
manifolds (and, in particular, on Lie groups).

Given the estimator vector field (16) and incremental cost
(4), the (time-varying) Hamiltonian H : T*G X RExR - R
is given by

A(p,3,1) =5 (R(5) + QD (u(0) — h(g,1))
+(p.—g(Mg,u(t),t) + Bs)),  (18)

where g is the base point of p € TG C T™*G. The optimal
filtering problem (15)-(16) can be thought of as a standard
optimal control problem which is solved backward in time.
This justifies the presence of the minus sign in the pairing
between the state dynamics and the Lagrange multiplier p
on the right hand side of (18). In this way, one interprets the
function m in (15) as the terminal cost and the minimum
energy V(g,t) as the cost-to-go.

As typical for optimal control problems defined on Lie
groups [23], the cotangent vector p € TG can be identified
via left translation with the element 1 € g*, defined as yu =
T.Ly(p). Using (g,1) € G x g* in place of p € T*G in



(18), one obtains the left-trivialized Hamiltonian H~: G x
g* x R? x R — R defined as

(g, 11,6,8) = e~ (R(3) +
QD (u(t) = hlg. ) = (1. g, u(t). 1) + Bo).

We are now ready to compute the left-trivialized optimal
Hamiltonian that characterizes the optimal estimation prob-
lem (15)-(16).

Proposition 4.2: The left-trivialized optimal Hamiltonian
H7: Gxg*"xR — R associated with the optimal estimation
problem (15)-(16) is given by

— 1 a(t— — *
H™ (g, t) = =57, Bo R™" 0 B* ()

+ %e‘a“‘t“)Q(D‘l(y(t) — h(g,1)) = {1, A(g, u(t), 1))

Proof: The vector field g(A(g,u(t),t) + BJ) given in
(16) is linear in §, while the incremental cost [(d,e,t,7)
given in (4) is quadratic in 4. It is straightforward to see
that the unique minimum 6°P*(g, 1, ) of the left-trivialized
Hamiltonian (19) with respect to § is attained at

Lo B*(u).

(19)

(20)

arg minﬁ[‘(g, W, 0,t) = et=to) . R 2D
5

Substituting §°P! into the left-trivialized Hamiltonian (19),

the result follows. |

D. The left-trivialized HIB equation and the structure of the
optimal filter

The Hamilton-Jacobi-Bellman equation associated with
the optimal control problem (15)-(16) is given by

0
av(gat) -

with initial condition V(g,ty) = ml(g,to,to).
H:T*G x R — R is the optimal Hamiltonian.

The presence of the minus sign in (22) is justified,
as mentioned in the previous subsection, by the fact that
the energy V'(g,t) should be thought of as the cost-to-go
associated with the minimization of the cost functional in
the interval [to, ¢] while evolving the dynamics backwards in
time, starting with g as final condition.

Equation (22) can be written in terms of the left-trivialized
Hamiltonian as

0

§V(g7t) — g,1)),t) = 0.

The minimum energy estimator defines the estimate of the
state at time ¢ as the element g € GG that minimizes the value
function V'(g,t), that is

H(d1V(g,t),t) =0 (22)

Here,

H~ (g, TeL}(dy V( (23)

g(t) ;== argmin V' (g,t). (24)

geqG

Assuming differentiability of the value function in a neigh-
borhood of the minimum value, we obtain the necessary
condition

d, V(g(t),t) =0

for all ¢ > 0. Differentiating with respect to time it follows
that

(25)

0

Hessy V(3(8),) (§(8)) + (V) (3(8).1) = 0
G — T2, G is the

for ¢ > 0. Here, Hess; V(g(¢),t): T, 5
Hessian operator, see Section II. Smce 6tV GxR >R
satisfies the HIB equation (23), we have

& (D V)0,1) =dy H (g, (9. 0),0)+

(26)

(27)
dy H (g, (g, 1), t) o di p(g, 1),
where 1 : G x R — g* is defined as
p(g,t) := TeLy(d1 V(g,1))- (28)
Using (25) this yields
[ - .
d2 Hﬁ(g(t)a 07 t) o dl /L(g(t)a t)
NOW’d()TLH V(g,t)
,t) =T,L" o Hess AR
11(g p 1V(g 30)

WT,Ls(dy (gt Lo Lyt

See Section II for the meaning of the second term. But then

dy p(g(t),t) = TeLj ;) o Hess1 V(g(2),t) 31
since the second term vanishes due to (25). Define
Z(g,t): g — g* as

Z(g,t) :==T.L, oHess; V(g,t) o Tc L, (32)
then we can rewrite
dy H(4(1),0,¢) ody u(g(t), 1) 0 Te Ly =
dy H™(9(1),0,t) 0 Z(§(t),t) = (33)
Z(g(t),t)"(d2 H™ (4(t),0,t))
and similarly
di H (§(t),0,t) o Te Ly =
HG0,0,0 2 ol o
g(t) (dl ( (t)707t))
Moreover,
Hess, V(§(t), ¢ ( ) o T.Ly =
T, L%, o Hess; V(3(t), )( (t)) - (35)

Z(g().) (5 79(1))
Using (29), (33), (34) and (35), equation (26) can be rewrit-

ten as '
Z(g(t),t) (g(t)—lg(t)) _
—TeLy) (di H(3(1),0,1))
— Z(g(t),t)*(d2 H(9(t),0,1))

for ¢ > 0. By equation (25), the point §(t) € G is a
critical point of the value function, and hence the Hessian
Hess; V(g(t),t) is symmetric, see Section II. By equa-
tion (32) then Z(g(t),t) is symmetric, i.e. Z(g(t),t) =
Z(g(t),t)*. Here we have used the identification of the
bidual g** with g. Assuming further that Hess; V(§(¢),t)

(36)



and hence Z(g(t),t) is invertible, then equation (36) is
equivalent to

9t 1g(t) = —da H(g(t ) 0,%) (37)
— Z(§(t), )" o To Ly (d1 H™ (§(1),0,1)).

In the following, we adopt the shorthand notation h;(g) and
Ae(g,u) for h(g(t),t) and A(g(t),u(t),t), respectively, and
drop the explicit dependence on time of signals from our

notation where convenient. From (20),
dy H™ (g, p1,t) = — e*""") . Bo R™' 0 B*(p) (38)
- >\t (ga u)

and
dy H (g, pu, t) = —e~@(tt0) ((Dfl)* 0oQoD™!
(v = he(9)) ) o dhelg) = podi he(g, ). (39)
We obtain
dgHi(g,()?t) =

— (g, u) (40)

and

dy H™(§,0,t) = —e—t=to) . ((D—l)* 0oQoD!

(y— ht(jj))> odh(3). (41)

Here we have again used the identification of g with
its bidual g**, allowing us to interpret the differential
ds H(§(t),p,t): g* — R as an element of g. Defining

n(@ = r(@.1) € g° by
@)=L (D7) 5 QoD (- (@) o @]

we can then write (37) as

GG =M(G,u) + e 1) Z(G, 1) Ty ().

Compare this to equations (8) and (10) in Theorem 4.1,
noting that e=*(*~*) . Z(§(t),t)~" maps g* to g. Since the
integral part of the cost (6) vanishes at the initial time t = ¢,
the initial condition for the optimal filter is as in (9).

(43)

E. Approximate time evolution of Z

Ideally, one would like to compute a differential equation
for Z(g(t),t) so that coupling it with (43) one obtains the
optimal filter for (1)-(2). Unfortunally, it is well known —
in the flat case — that such an approach is going to fail as
Z satisfies an infinite dimensional differential equation, the
linear dynamics with quadratic cost being one of the most
important exceptions [1]. For this reason, in the following
we compute an approximation of the time evolution of
Z(g,t) along the optimal solution G(t) by neglecting the
third covariant derivative of the value function V. Such
an approximation is denoted by X(g,t). In the case of
linear dynamics with quadratic cost the value function is
itself quadratic, meaning that its third derivative is zero and
X(g,t) = Z(g,t) in that case. In the general Lie group case,
we have the following result.

Proposition 4.3: X(t) := X(g(t),t) € £(g,g*) fulfills
the operator Riccati equation

X=eoll7t). g A*0X - XoA (44)
—etlt7t) . X o BoR 0B o X,  X(t)) =X

with
Xo = T.Lj;, o Hess mo(go) o TeLy,, (45)
Alt) = —wjo1y + Wy (50 T di A(g,u) o Te Ly, (46)
S(t) = —TeLjo (47)

(D7) 0Qon ' (y- ht(g)))T§Go Hess by (§)+
— (dh(@) o (D7) 0 QoD 0dhi(g)) 0 TuLy,

and go as in (9).
Proof: From (32), setting g = §(t), we get

d, . d
2.1 = a —(T.L}yy o Hessy V(§(t),t) 0 TeLg(ry)
=w? 1 0Z(g(t),t) + Z(§(t),t) owyr +
a A~
TeLjey © 5y (Hessi V)(9(t),2) o TeLg(ry+
h.o.t., 48)

where the higher order terms (h.o.t.) will be neglected to
obtain a finite dimensional approximation to the (infinite
dimensional) optimal filter. See Section II for the mean-
ing of the operators w and w*. The partial time deriva-
tive commutes with covariant differentiation on G, so we
can use equation (27) to compute %(Hessl )(g(t),t) =
Hess; (£V)(§(t), ). We start by rewriting equation (27) into
the following form,

dl(%v)(gat) =d, H_(gnu(g’t)?t)"" 49)
(dl /'L(gﬂt))*(dQ H™ (g,u(g,t),t))

By Eq. (30) and using the operator calculus from Section II,

(di u(g,t))" (W) = (Hess; V(g,t)) o T.Ly(W)+

T,Li-s 0w (T.Li(d1 V(g, 1)),

for W € g** ~ g. Combining this with equation (49) we
arrive at
0 _
di(5;V)(g:) = di H™ (g, (9, 1), 1)+

(Hess1 V (g, t))* oT.Ly(d2 H™ (g, (9,t),t))+
TgL:;71 o W(‘i*H,(gvu(g’t)’t) (TEL;(dl V(97 t))) .
Then

%(Hessl V) (g(¢),t) = Hessl(%V)(f](t),t) =
Hess; H™(§,0,t) + da(dy H7)(g,0,t) ody (g, t)+

Hess1 V/(g,t) o TeLg owg, (5.0, °TgLs—1+

Hess) V(g,1) o TeLg o di(da H™)(g,0, 1)+

Hessy V(§,t) o TeLy o Hesso H™(g,0,t) odq (g, t)+

TyLly- wd2 H-(5.0.) oT.L; o Hess; V(g,t)+

h.o.t.

H—N

(50)



Here we have used equation (25) and the fact that the
Hessian operator at a critical point is symmetric. Combining
equations (48), (50) and (31) and neglecting higher order
terms, we arrive at

< 2(5(0),1) ~

w2719; oZ(g,t) + Z(g,t) o Wyo1g+

TeLj o Hessy H™(g,0,t) o T Ly+

T.Ljoda(dy H™)(g,0,t) 0 Z(g,t)+
W, - (5.0, °2(9:1) + Z(§: ) owg, - 5.0+
Z(g,t)ody(d2 H™)(g,0,t) o T, L+

Z(g,t) o Hesso H (§,0,t) 0 Z(g,t).

61V

Differentiating equation (39) we obtain
Hess; H™(§(t),0,t) = —e~(t=t0)
* TyG
. ((D_l) OQOD_I(y—ht(ﬁ))) o Hess hy(g)
+e ) (dhy(g)) o (DY) 0 Qo D7 od hy(g),

where (-)79¢ is the exponential functor, see Section II. Also,
from (39) and (38),

da(dy H™)(§(t),0,t) = (di(d2 H)(§(t),0,1))"

(52)

. (53)
= —(d1 A(g(), u(®),1)) ",
and differentiating (38) yields
Hessy H™(§(t),0,t) = —e®t~%) . Bo R™1 0 B*. (54)
Using (51)-(54) and (40) it is straightforward to show that

d
20,0 = eet=to) . .§ _ A* o Z(§,t) — Z(§,t) 0o A

— eo(t=to) | Z(g,t)o BoR ' o B* 0 Z(g,1),

with S(¢) and A(t) as in (47) and (46), respectively. As we
neglect the third order derivative of V, the above equation
is only an approximation of %Z (g(t),t). To highlight this
fact, in (44), we write X instead of Z. The formula (45)
for the initial condition follows immediately from the initial
condition for the HJB. This completes the proof. [ ]

It remains to prove Theorem 4.1 stated in Section III. To
this end, note that in (43) the inverse of the matrix X is
required. It is however unnecessary to compute the inverse
of X. Indeed, defining K(t) := e (=) X~1(¢), with
X (t) satisfying (44), the near optimal filter can be computed
from Proposition 4.3, equation (43) and a straightforward
application of the well known formula for the derivative of
the inverse of an operator.

V. A WORKED EXAMPLE

In this section, we detail a second-order-optimal filter for
the rotational dynamics of a rigid body subject to external
torques, assuming some directional measurements are avail-
able.

We represent the orientation of a rigid body in space by
the rotation matrix R € SO(3) that encodes the coordinates
of a body-fixed frame {B} with respect to the coordinates
of an inertial frame {A}. We denote by I the inertia tensor,

by € the angular velocity, and by 7 the applied external
torque, all of them expressed in the body-fixed frame {B}.
The rotational dynamics of a rigid body evolves on TSO(3),
the tangent bundle of the special orthogonal group SO(3). It
is a standard practice to identify 7'SO(3) with SO(3) x R3
via left translation [14] and write the rotation dynamics as

R'R = Q%,
Q=1"(IQ)*Q+7),

(55)
(56)

with (R, Q) € SO(3) x R3.

We consider the nonlinear filtering problem of reconstruct-
ing the attitude matrix R and the angular velocity of the
rigid body assuming to have rwo (possibly time-varying)
reference direction measurements @; and dy € S? corrupted
by measurement noise (S? denotes the 2-sphere of unit norm
in the inertial reference frame {A}). Typical examples of
reference directions are the magnetic or gravitational fields
at the location in which the system is operating.

As measurement output model, we employ

o ] - [ v o

where ¢ represents the unknown measurement error. Equa-
tion (57) has the structure of (2), where, for ease of presen-
tation, we assume that D equals the identity.

As error model for the dynamics, we choose

R'R = (Q)%,
Q=T"(IN*Q+7) +4.

(58)
(59)

Equations (58)-(59) are a particular case of (1) where § € R3
and B : R3 — R? x R3, § — (0,9).

We assume that the optimal filtering problem is posed in
terms of the minimization of cost functional (6) with the
quadratic incremental cost (4). Without loss of generality and
for ease of presentation, in (4) we assume that the quadratic
form Q is block diagonal, while no additional conditions are
imposed to the quadratic form R other than being strictly
positive definite. As done in (7), the quadratic forms Q and
‘R are specified in terms of two symmetric positive definite
linear maps @) and R. As mentioned, for the linear map )
we will assume a block diagonal structure. Namely, we take

R EDE! 0
Q—[ ; ]

qal3x3 (60)

with ¢ and g strictly positive constants.

By choosing different group operations, we can assign to
tangent bundle 7'SO(3) ~ SO(3) x R? different Lie group
structures. Here, we follow the approach detailed in, e.g.,
[24], [25] and select the product group structure, that is,
for (R,X) and (S,Y) € SO(3) x R?, we define the group
product as

R,X)-(S,Y)=(RS,X+Y). (61)
The Lie algebra of the product group SO(3) x R3 is the
product algebra s0(3) x R3 ~ R3 x R? (here, R? is the
Lie algebra of R? with the cross product Lie bracket). Given



(¢F, ¢ and (€7, £%) € R? x R3, the adjoint representation
of the Lie algebra R? x R? onto itself is simply given by

ad(cr cay(E7,€7) = (¢ x €7,0).

In matrix form, ad(¢r ¢o) is represented by the 6 x 6 matrix

R\ X 0

(62)

(63)

A (left-invariant) connection has to be chosen to derive
the second order optimal filter on a Lie group. Here, as
done in [24], [25], we make use of the symmetric (0)
Cartan-Schouten connection, characterized by the connection
function

w® = Lo, (64)
2

Proposition 5.1: The second order optimal filter for the
system (55)-(55) with dynamics error model (58)-(59), mea-
surement output model (57), and incremental cost (4) with
block diagonal structure given by (60) is given by

(65)
(66)

ﬁTﬁ, = (ﬁ 4+ K11 TR =+ K12 T‘Q)X
Q, =1 ((IQ)*Q + 7) + Ko 77 + Koo 1%,

where the residual r; = (rf;7?) and the optimal gain K =
(Klla K12; K217K22) are giVCD below. Let

&1 = RT&l, and dg = RTCDLQ.
The residual r; is given by
T = re
t= 10

while the gain K is the solution of the perturbed Riccati
equation (11) where, due to the choice of the (0) connection,

_ [—q1(@1 x a1)0— gz2(az x az)} .67

a- | ! 68
o 1t [(HQ)X —fml]. ’ (68)
E= _Zle_ql' (@) e +aiaj)/2 0 ] (69)
L 0 03x3]
Cipe_ |03xs 0
BRB = R—l]’ and (70)
i R [9AP
Wier = 1/2(K117“ + Ko7 ) 0 . 1)
0 03x3

The reported filter equations result from straightforward
application of the theory presented in this paper. Space lim-
itations prevent us to provide the explicit derivation of these
formulas, as well as numerical simulations and comparisons
with other existing schemes.

VI. CONCLUSIONS

We provided an explicit formula for the second-order
optimal minimum-energy filter for systems on Lie groups
with vectorial measurements. We showed in an example how
to use this formula to derive minimum-energy filters for
(second-order) mechanical systems.
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