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Superior Técnico, Torre Norte 8, Av. Rovisco Pais,

1049-001 Lisboa, Portugal.
pedro@isr.ist.utl.pt

∗∗ Department of Electrical and Computer Engineering,
Univ. of California, Santa Barbara, CA 93106-9560

hespanha@ece.ucsb.edu

Abstract: This paper addresses the problem of nonlinear filter design to estimate
the relative position and attitude of an autonomous vehicle with respect to a
desired coordinate system defined by visual landmarks using measurements from
an inertial measurement unit (IMU) and a monocular charged-coupled-device
(CCD) camera mounted on-board. We formulate the problem in the framework
of state estimation of a state-affine system with implicit outputs. Resorting to
dynamic programming, we derive a H∞ estimator which produces an estimate of
the state that is compatible with the dynamics and ensures a prescribed bound γ
on the discounted induced L2-gain from disturbances and noise to estimation error.
In our formulation we take directly into account that the measurements arrive at
discrete-time instants, are time-delayed, and may not be complete. In this way, we
can deal with usual problems in vision systems such as noise as well as latency and
intermittency of observations. The convergence of the proposed observer system is
analyzed and simulations results are presented and discussed.
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Autonomous Vehicles;

1. INTRODUCTION

The problem of estimating the position and at-
titude of a camera mounted on a rigid body
from the apparent motion of point features has
a long tradition in the computer vision litera-
ture (cf., e.g., [Matthies, Kanade and Szeliski,
1989; Jankovic and Ghosh, 1995; Soatto, Frezza
and Perona, 1996; Kaminer, Pascoal, Kang and
Yakimenko, 2001; Chiuso, Favaro, Jin and Soatto,
2002; Rehbinder and Ghosh, 2003] and references
therein). Interesting algorithms are the ones that
are filtering-like or iterative that continuously im-
prove the estimates as more data (i.e., images)
are acquired and that are robust with respect
to measurement noise. Soatto et al. [1996] for-
mulates the visual motion estimation problem
in terms of identification of nonlinear implicit
systems with parameters on a topological man-
ifold and propose a dynamic solution either in
the local coordinates or in the embedding space
of the parameter manifold. In [Rehbinder and
Ghosh, 2003], rigid-body pose estimation using
inertial sensors and a monocular camera is con-
sidered. A local convergent observer where the
states evolve on SO(3) (the rotation estimation
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is decoupled from the position estimation) is pro-
posed. In the area of wheeled mobile robots, Ma,
Kosecka and Sastry [1999] address the problem of
tracking an arbitrarily shaped continuous ground
curve by formulating it as controlling the shape
of the curve in the image plane. Observability of
the curve dynamics is studied and an extended
Kalman filter is proposed to dynamically estimate
the image quantities needed for feedback control
from the actual noisy images. An application for
landing an unmanned air vehicle using vision in
the control loop is described in [Shakernia, Ma,
Koo and Sastry, 1999]. In [Kaminer et al., 2001],
based on measurements provided by airborne vi-
sion and inertial sensors, the problem of naviga-
tion system design for autonomous aircraft land-
ing is addressed. The authors cast the problem
in a linear parametrically varying framework and
solve it using tools that borrows from the theory
of linear matrix inequalities. These results are
extended in [Hespanha, Yakimenko, Kaminer and
Pascoal, 2001] to deal with the so-called out-of-
frame events.

This paper addresses the problem of estimat-
ing the relative position and attitude of an au-
tonomous vehicle with respect to a desired coor-
dinate system defined by visual landmarks. The
measurements are provided by an inertial mea-
surement unit (IMU) and a monocular charged-



coupled-device (CCD) camera mounted on-board
that observes the apparent motion os stationary
points. More precisely, given a desired inertial
coordinate frame defined by visual landmarks {V}
and a body-fixed coordinate frame {B} whose
origin is located e.g., at the center of mass of
the vehicle. The IMU provides the vehicle’s linear
velocity v ∈ R

3, angular velocity ω ∈ R
3, and

pose (position and attitude) (p,R) ∈ SE(3) of
{B} with respect to some inertial coordinate frame
{I}. The camera attached to the vehicle sees N
points Qi ∈ R

3, i = 1, 2, . . . , N whose coordinates
expressed in {V} are assumed to be known. The
objective is to determine the position VPB ∈ R

3

and orientation V
BR ∈ SO(3) of the vehicle with

respect to the visual coordinate system {V}. It is
assumed that the position and orientation of {I}
with respect {V} are unknown.

We formulate this problem (see Section 5) in the
framework of state estimation of a system with
implicit outputs of the form

ẋ = A(x, u) +G(u)w, (1)
Ej(x, vj)yj = Cj(x, u) + vj , (2)

j ∈ I := {1, 2, . . . N}, where x ∈ R
n denotes the

state of the system, u ∈ R
m its control input,

yj ∈ R
qj its jth measured output, w ∈ R

r an
input disturbance that cannot be measured, and
vj ∈ R

pj measurement noise affecting the jth out-
put. The functions A(x, u), Cj(x, u), and Ej(x, vj)
are affine in x. The initial condition x(0) of (1)
and the signals w and vj are assumed determin-
istic but unknown. Each measured output yj is
only defined implicitly through (2) and the map
Ej(x, ·) is such that

ImageEj(x, ·) =
{
E0j(x) +

�j∑
i=1

αijEij : αij ∈ R
}

(3)
where Eij ∈ R

pj×qj and E0j(x) are affine in x.
Note that although the implicit representation (2)
is affine in x, an explicit representation would
generally be nonlinear. We call (1)–(3) a state-
affine system with implicit outputs, or for short
simply a system with implicit outputs. These type
of systems were introduced in [Aguiar and Hes-
panha, 2005] and can be seen as a generalization
of perspective systems introduced by Ghosh et al.
[Ghosh, Jankovic and Wu, 1994]. The reader is
referred to [Ghosh and Loucks, 1995; Takahashi
and Ghosh, 2001] for several other examples of
perspective systems in the context of motion and
shape estimation. The system with implicitly de-
fined outputs described in [Matveev, Hu, Frezza
and Rehbinder, 2000] and the state-affine systems
with multiple perspective outputs considered in
[Aguiar and Hespanha, 2006b] are also special
cases of (1)–(3).

In this paper, we also suppose that the mea-
surements are acquired only at discrete times t′i,
i = 0, 1, . . . , k, with t′0 < t′1 < . . . < t′k, and that
we only have access to them after a time-delay
τi. Our sequence of measurements from t′0 to time
t ≥ t′0 is therefore given by{

t′i, ȳj(ti), j ∈ Ii
}
i=0,...,k

(4)

where k is the number of arrived measurements
from t′0 to time t (i.e., tk ≤ t), ȳj(ti) := yj(t′i) =

yj(ti − τi) denotes the time-delay observed vari-
able, and ti = t′i+τi. Note that the measurements
may not be complete, that is, at time t′i only the
outputs yj ∈ R

qj with j ∈ Ii are available, where
Ii ⊆ I, and the inclusion may be strict when some
measurements are missing.

The problem under consideration is to design
an observer which estimates the continuous-time
state vector x(t) governed by (1), given the dis-
crete time-delay measurements ȳj(ti) expressed by
the output equation
Ej

(
x(ti−τi), v(ti − τi)

)
ȳj(ti)

= Cj
(
x(ti − τi), u(ti − τi)

)
+ vj(ti − τi),

(5)
Using a H∞ deterministic approach, we propose
an observer that estimates the state vector x(t)
given an initial estimate x̂0, the past controls
{u(σ) : 0 ≤ σ ≤ t} and the observations (4), and
minimize the induced L2-gain from disturbances
to estimation error. In particular, for the simple
case of τi = 0, for a gain level γ > 0, the estimate
x̂ should satisfy∫ t

0

‖x(σ)−x̂(σ)‖2 dσ ≤ γ2
(
(x(0)−x̂0)′P0(x(0)−x̂0)

+
∫ t

0

‖w(σ)‖2 dσ +
k∑
i=0

∑
j∈Ii

‖vj(ti)‖2
)

where P0 > 0, x̂0 encode a-priori information
about the state. To avoid the problem of weighting
the distant past as much as the present, we
introduce a forgetting factor λ > 0.

Over the last two decades the H∞ criterion
has been applied to filtering problems, cf., e.g.,
[Başar and Bernhard, 1995; Nagpal and Khar-
gonekar, 1991; Xie, Soh and de Souza, 1994;
Krener, 1997; Sayed, 2001; Boel, James and Pe-
tersen, 2002; Aguiar and Hespanha, 2005]. In
[Aguiar and Hespanha, 2005], a state-estimator
for (1)–(3) was designed using a deterministic H∞
approach. Given an initial estimate and the past
controls and observations collected up to time t,
the optimal state estimate x̂ at time t was de-
fined to be the value that minimizes the induced
L2-gain from disturbances to estimation error.
Closely related to H∞ filtering are the minimum-
energy estimators, which were first proposed by
Mortensen [Mortensen, 1968] and further refined
by Hijab [Hijab, 1980]. Game theoretical ver-
sions of these estimators were proposed by McE-
neaney [McEneaney, 1998]. In [Aguiar and Hes-
panha, 2006b], minimum-energy estimators were
derived for systems with perspective outputs and
input-to-state stability like properties of the es-
timation error with respect to disturbances were
presented.

In general, both minimum-energy and H∞ state
estimators for nonlinear systems lead to infinite
dimensional observers with state evolving accord-
ing to a first-order nonlinear PDE of Hamilton-
Jacobi type driven by the observations. We
present a closed-form solution that is filtering-like
and iterative-algorithm that continuously improve
the estimates as more measurements are acquired.
Under appropriate observability assumptions, we
show that the optimal state estimate converges
asymptotically to the true value of the state in the
absence of noise and disturbance. In the presence
of noise, the estimate converges to a neighborhood
of the true value of the state.



The paper is organized as follows: In Section 2
we formulate the state estimation problem using
a H∞ deterministic approach. Section 3 presents
the equations for the optimal observer and in
Section 4 we determine under what conditions
does the state estimate x̂ converges to the true
state x. In Section 5 we formulate the problem of
estimating the pose of an autonomous vehicle us-
ing measurements from an IMU and a monocular
CCD camera attached to the vehicle. The problem
is then solved by using the H∞ state-estimators
derived in the previous sections. Concluding re-
marks are given in Section 6.

This paper builds upon and extends previous
results by the authors [Aguiar and Hespanha,
2006b; Aguiar and Hespanha, 2005; Aguiar and
Hespanha, 2006c]. Due to space limitations, all the
proofs are omitted. These can be found in [Aguiar
and Hespanha, 2006a].

2. PROBLEM STATEMENT

This section formulates the state estimation prob-
lem using a H∞ deterministic approach. Consider
the system with implicit outputs (1), (5). From
(1), x(ti) satisfies
x(ti) = Φ(ti, ti − τi)x(ti − τi) (6)

+
∫ ti

ti−τi

Φ(ti, σ)
[
A(0, u(σ)) +G(u(σ))w(σ)

]
dσ,

where Φ(t, t0) is the transition matrix of system
(1) satisfying the linear time-varying differential
equation

Φ̇ = ∇A(u)Φ. (7)
In (7), ∇A(u) denote the gradient of A(x, u) with
respect to x. Since A(x, u) is affine in x, it follows
that ∇A(·) only depend on u. From (6) we obtain
x(ti − τi) = Φ−1(ti, ti − τi)x(ti) − Φ−1(ti, ti − τi)

×
∫ ti

ti−τi

Φ(ti, σ)
[
A(0, u(σ)) +G(u(σ))w(σ)

]
dσ.

Substituting this equation in (5) and exploring the
fact that Ej(x, v) and Cj(x, u) are affine functions
in x which implies that Ej(x, v)y = JEj(y, v)x+
Ej(0, v)y and Cj(x, u) = ∇Cj(u)x + Cj(0, u),
where JEj(y, v) is the Jacobian of Ej(x, v)y with
respect to x, we obtain
Ēji(x(ti), vj(ti − τi))ȳj(ti) = C̄j(x(ti), u) + v̄j(ti),

(8)
where the definitions of Ēji, C̄j(x(ti), u) and v̄j(ti)
can be found in [Aguiar and Hespanha, 2006a].

The estimation problem can now be stated as
follows:

Problem 1. Consider the continuous-time state
equation (1) together with the discrete-time im-
plicit output equation (8). For a small gain level
γ > 0, given an initial estimate x̂0, an input u
defined on an interval [0, t), and measured outputs
ȳj(ti), j ∈ Ii with i = 0, 1, . . . k, t0 := 0 ≤ t1 ≤
· · · ≤ tk ≤ t ≤ tk+1, compute the estimate x̂(t) of
the state at time t defined as

x̂(t) := arg min
z∈Rn

J(z, t), (9)

where J(z, t) is defined in (10), at the top of the
next page, P0 > 0, and λ ≥ 0 is a forgetting factor.

�

In a broad sense, for a given gain level γ >
0, the optimal state x̂ at time t is defined to
be the value for the state that is compatible
with the initial estimate x̂0, the past controls
and the observations collected up to time t, and
the dynamics of the system that ensures the
prescribed bound γ on the discounted induced L2-
gain from disturbances and noise to estimation
error. The negative of J(z, t) can also be viewed as
the information state introduced in [James, Baras
and Elliott, 1993; James, Baras and Elliott, 1994]
and interpreted as a measure of the likelihood of
state x = z at time t.

3. THE OBSERVER EQUATIONS
We propose the following observer and will shortly
show that it solves Problem 1.

a) Initial condition

t0 = 0, P (t0) = P0, x̂(t0) = x̂0 (11)

b) Dynamic equations for t ∈ [ti, ti+1), i =
0, 1, . . . , k

Ṗ (t) = −P (t)(∇A(u) + λI) − (∇A(u) + λI)′P (t)
− γ−2(P (t)G(u)G(u)′P (t) + γ2I), (12)

˙̂x(t) = A(x̂, u), (13)

with P (ti) = Pi, and x̂(ti) = x̂i.

c) Impulse equations at t = ti+1, i = 0, 1, . . . , k−1

P (ti+1) = P (t−i+1) + γ2
∑

j∈Ii+1

Ψj(ti+1), (14)

x̂(ti+1) = x̂(t−i+1) (15)

− P (ti+1)−1γ2
∑

j∈Ii+1

[
Ψj(ti+1)x̂(t−i+1) + ψj(ti+1)

]
where
Ψj(ti) :=

(
JE0j(ȳj(ti))Φ(ti − τi, ti) − ∇C̄j

)′(
I − YjiY

⊥
ji

)′

×
(
I − YjiY

⊥
ji

)(
JE0j(ȳj(ti))Φ(ti − τi, ti) − ∇C̄j

)
,

ψj(ti) :=
(
JE0j(ȳj(ti))Φ(ti − τi, ti) − ∇C̄j

)′(
I − YjiY

⊥
ji

)
×

(
I − YjiY

⊥
ji

)(
E0j(0)ȳj(ti) − JE0j(ȳj(ti))

× Φ(ti − τi, ti)

∫ ti

ti−τi

Φ(ti, σ)A(0, u(σ)) dσ − C̄j(0, u)
)
,

Yji :=
[
E1j ȳj(ti)|E2j ȳj(ti)| · · · |E�jj ȳj(ti)

]
, (16)

Y ⊥
ji denotes the pseudo-inverse of Yji, ∇A(u) and

JE0j(y) are respectively the gradient of A(x, u)
and the Jacobian of E0j(x)y both with respect to
x. The following result solves Problem 1.

Theorem 1. The H∞ state estimate x̂(t) defined
by (9)–(10) can be obtained from the impulse
system (11)–(15). Furthermore, the cost function
J(z; t) defined in (10) is quadratic and can be
written as

J(z; t) =
(
z − x̂(t)

)′
P (t)

(
z − x̂(t)

)
+ c(t), (17)

where c(t) satisfies an appropriate impulse equa-
tion. �

To guarantee that the H∞ state estimate has a
global solution (T = ∞), the value of γ should be
sufficiently large. In particular, a sufficient condi-
tion for this is given by the following observability
condition.



J(z; t) := min
w:[0,t),

v̄j(ti) i=0,1,...k

{
γ2e−2λt(x(0)−x̂0)

′P0(x(0)−x̂0)+γ2

∫ t

0

e−2λ(t−σ)‖w(σ)‖2 dσ+γ2

k∑
i=0

∑
j∈Ii

e−2λ(tk−ti)‖v̄j(ti)‖2

−
∫ t

0

e−2λ(t−σ)‖x(σ) − x̂(σ)‖2 dσ : x(t) = z, ẋ = A(x, u) + G(u)w, Ējiȳj(ti) = C̄j(x(ti), u) + v̄j(ti)

}
(10)

Lemma 1. The H∞ estimator (11)–(15) has a
global solution and

P (t) ≥ δI > 0, ∀t ≥ 0, (18)
for some δ > 0, if there exists a sufficiently large
γ > 0 such that the following condition

γ2W0(t) ≥
∫ t

0

Φ̄(τ, t)′Φ̄(τ, t)dτ + δI ∀t ≥ 0

(19)
holds, where

W0(t) :=
k∑
i=1

∑
j∈Ii

Φ̄(ti, t)′Ψj(ti)Φ̄(ti, t), (20)

Φ̄(τ, σ) :=
{

Φ̄i(τ,σ), i=j

Φ̄i(τ,ti+1)Φ̄i+1(ti+1,ti+2)···Φ̄j(tj ,σ), i<j

∀τ ∈ [ti, ti+1) and ∀σ ∈ [tj , tj+1), and Φ̄i(t, τ)
denotes the state transition matrix of ż = (∇A+
γ−2GG′P + λI)z, ∀τ ∈ [ti, ti+1). �

4. ESTIMATOR CONVERGENCE
We are now interesting in determining under what
conditions does the state estimate x̂ converges
to the true state x. As in [Aguiar and Hes-
panha, 2006b], the following technical assumption
is needed:
Assumption 1. Let Num(t, σ), 0 ≤ σ < t denote
the number of time instants at which measure-
ment arrive in the open interval (σ, t). There exist
finite positive constants τD and N0, for which the
following condition holds:

Num(t, σ) ≤ N0 +
t− σ

τD
.

The constant τD is called the average dwell-time
and N0 the chatter bound. �
This assumption roughly speaking guarantees
that the average interval between consecutive ar-
rival of measurements is no less than τD. In this
way, the summation in (10) will not grow un-
bounded due to “too frequent” measurements.
The following result establishes the convergence
of the state estimate.
Theorem 2. Assuming that the solutions to the
system with implicit outputs (1), (5) exists on
[0, T ), T ∈ [0,∞], the solution to the impulse
state estimator (11)–(15) also exists on [0, T ).
Moreover, if P (t) ≥ δI, ∀t ∈ [0, T ), δ > 0,
then there exist positive constants c > 0, r <
1, γw, γ1, . . . , γN such that

‖x̃(tk)‖ ≤ c rk‖x̃(0)‖ + γw sup
σ∈(0,tk)

‖w(σ)‖

+
N∑
j=1

γj sup
σ∈(0,tk)

‖v̄j(σ)‖, tk > 0 (21)

where x̃(t) := x̂(t) − x(t) denotes the state esti-
mation error. �

Combining Theorem 2 and Lemma 1 we obtain
the following:

Corollary 1. When Assumption 1 holds, and there
exist constants N, ε such that the persistence of
excitation condition (19) holds, the state-estimate
x̂ converges to the state x in the absence of dis-
turbance input and measurement noise. When the
disturbance and noise are bounded but nonzero,
x̂ converges to a neighborhood of the true state x.

�

5. POSE ESTIMATION OF AUTONOMOUS
VEHICLES USING CCD CAMERAS AND

INERTIAL SENSORS

In this section we show how one can estimate the
position and attitude of an autonomous vehicle
with respect to an inertial coordinate frame de-
fined by visual landmarks using both measure-
ments from an inertial measurement unit (IMU)
and a monocular charged-coupled-device (CCD)
camera mounted on-board. We do this by reducing
the problem to the estimation of the state of a
system with implicit outputs of the form (1)–(3).

5.1 Kinematic equations of motion
Let {V} be an inertial coordinate frame defined by
visual landmarks and {B} a body-fixed coordinate
frame whose origin is located e.g. at the center of
mass of the vehicle. The configuration of the ve-
hicle

( V
BR,

VPB
)

is an element of the Special Eu-
clidean group SE(3) := SO(3) × R

3, where V
BR ∈

SO(3) := {R ∈ R
3×3 : RR′ = I3,det(R) = +1}

is a rotation matrix that describes the orientation
of the vehicle by mapping body coordinates into
{V}, and VPB ∈ R

3 is the position of the origin
of {B} in {V}. Denoting by Bv ∈ R

3 and Bω ∈ R
3

the linear and angular velocities of the vehicle
relative to {V} expressed in {B}, respectively, the
following kinematic relations apply:

˙VPB = V
BR

Bv, V̇
BR = V

BRS(Bω), (22)

where S(x) :=
[ 0 −x3 x2
x3 0 −x1−x2 x1 0

]
, ∀x := (x1, x2, x3) ∈

R
3. The objective is to determine the position and

attitude of the vehicle with respect to the visual
coordinate system {V}, that is, to estimate VPB
and V

BR.
5.2 Sensor Measurements
We consider that the IMU provides the vehicle’s
linear velocity Bv, angular velocity Bω, and pose
(position and attitude) with respect to some in-
ertial coordinate frame {I}. It is assumed that
the position and orientation of {I} with respect
to the visual coordinate frame {V} are unknown.
The measurements are denoted by

ζ1 = Bv, ζ2 = Bω, ζ3 = IPB, ζ4 = I
BR, (23)

where ζ1 ∈ R
3, ζ2 ∈ R

3, ζ3 ∈ R
3, ζ4 ∈ SO(3), and( I

BR,
IPB

)
denotes the configuration of the frame

{B} with respect to frame {I}.
We also suppose that there is a camera attached
to the vehicle that sees N points Qi = (xi, yi, zi)′,



i = 1, 2, . . . , N whose coordinates expressed in
the visual coordinate system are assumed to be
known. Denoting by ζi+4 ∈ R

3 the homogeneous
image coordinates provided by the camera of the
point Qi, the following relationships apply:

µi+4ζi+4 = F CQi, (24)
[ 0 0 1 ] ζi+4 = 1, ∀i ∈ {1, 2, . . . , N} (25)

where CQi is the position of Qi expressed in the
camera’s frame, µi+4 ∈ R captures the depth
of the point CQi (which is unknown), and F is
an upper triangular matrix with the camera’s
intrinsic parameters.
Given the measurements ζi, i = 1, . . . , N + 4, we
now proceed with the formulation of a system with
implicit outputs.
5.3 System with implicit outputs

Let VQ1 and BQ1 be the coordinates of a point Q1
in the frames {V} and {B}, respectively. Then, we
have that VQ1 = VPB + V

BR
BQ1. From this and

(22), we obtain the state equations
BQ̇1 = V

BR
′ VQ̇1 − S(ω) BQ1 − v, (26)

V
BṘ

′ = −S(ω) V
BR

′. (27)
To obtain the output equations of the vision
subsystem, we first note that if VQj and BQj
denote the coordinates of another point Qj in the
frames {V} and {B}, respectively, we conclude
that BQj = V

BR
′ VQj − V

BR
′ VPB = V

BR
′( VQj −

VQ1

)
+ BQ1. Using now (24) and the fact that

CQi = CPB + C
BR

BQi, we obtain the output
equations
µi+4ζi+4 = F

(
CPB + C

BR
V
BR

′( VQi − VQ1

)
+ C

BR
BQ1

)
, ∀i ∈ {1, 2, . . . , N} (28)

where
( C
BR,

CPB
) ∈ SE(3) denotes the configura-

tion of the frame {B} with respect to the camera’s
frame {C}.
We will regard ζ1 and ζ2 as inputs to the implicit
output system. The dynamics of (23) can be
written as

˙︷ ︸︸ ︷
V
BR

′ VPI = −S(Bω) V
BR

′ VPI , (29)
V
IṘ

′ = 0, (30)
with the output equations

I
BR

′ IPB = V
BR

′ VQ1 − BQ1 − PI , (31)
I
BR

′ V
IR

′ = V
BR

′. (32)
Thus, our implicit output system is composed by
(29)–(30), (26)–(27), (31)–(32) and (28). We now
need to rewrite it in the form (1)–(3).

To proceed we use the following notation: Given
an m × n-matrix M , we denote by stack(M) the
mn-vector obtained from stacking the columns
of M one on top of each other, with the first
column on top. Given two matrices Mi ∈ R

mi×ni ,
i ∈ {1, 2} we denote by M1 ⊗M2 ∈ R

m1m2×n1n2

the Kronecker product of M1 by M2. Using the
fact that given three matrices A, B, X with
appropriate dimensions, stack(AX B) = (B′ ⊗
A) stack(X) [Horn and Johnson, 1994], we can
rewrite (29)–(30), (26)–(27), (28), (31)–(32) as
(1)–(3) where

x := stack( V
BR

′ VPI , stack( V
IR

′),BQ1, stack( V
BR

′)),
y := stack(ζ ′4ζ3, stack(ζ4), ζ4+1, . . . , ζ4+N ), u :=
stack(ζ1, ζ2),

A(x, u) :=

[−S(Bω) 0 0 0
0 0 0 0
0 0 −S(Bω) VQ̇′

1⊗I3×3

0 0 0 I3×3⊗−S(Bω)

]
x +

[
0
0

−Bv
0

]

C1(x, u) := [−I 0 −I VQ′
1⊗I3×3 ] x, C2(x, u) := [ 0 0 0 I ] x

C2+i(x, u) := [ 0 0 F C
BR ( VQi−VQ1)′⊗F C

BR ] x + F CPB ,

∀i ∈ {1, . . . , N}. By introducing additive noise to
the output equations (31)–(32) and (24) we con-
clude that E1(x, v1) := I, E2(x, v2) := V

IR⊗I3×3,
E2+i(x, v2+i) := [ 0 0 1 ]F

[ CPB + C
BR

V
BR

′( VQi −
VQ1

)
+ C

BR
BQ1

]
+ Bv2+i, ∀i ∈ {1, . . . , N}. The

image of Ej(x, vj) satisfies (3) with E01(x) := I,
�1 = 0, E02(x) := V

IR⊗I3×3, �2 = 0, E0,2+i(x) :=
0, �2+i = 1, E1,2+i := 1 ∀i ∈ {1, . . . , N}. We can
now use the results given in the previous sections
to compute x̂. From BQ̂1 and V

BR̂
′, the position

VPB can also be estimated using V̂PB = VQ1 −V
B

R̂ BQ̂1.

We now illustrate the performance of the proposed
estimator through computer simulation. The au-
tonomous vehicle starts at the origin VPB = 0
with orientation V

BR = I and follows a circu-
lar path with a camera looking up at four non-
coplanar points. The linear velocity is Bv =
[0.3, 0, 0]′m/s and the angular velocity is Bω =
[0, 0, 0.2]′ rad/s. The vision sampling interval is
TCCD = 0.4 s and the time-delay is τCCD =
0.05 s. The IMU sampling interval is TIMU =
0.1 s and there is no time-delay. The estimator
was initialized with V̂PB = [1, 1, 1]′m/s and
V
BR̂ =

[
0.9814 −0.0179 0.1913
−0.1246 0.6983 0.7049
−0.1462 −0.7156 0.6831

]
. The measurements

were corrupted with additive Gaussian noise with
standard deviation equal to roughly 5% of the
measurements.

Fig. 1 displays the time evolution of the estimation
errors. It can be seen that the estimated pose
without noise converges to zero (see Fig. 1(a)) and
in the presence of noise tend to a small neighbor-
hood of the true value (see Fig. 1(b)). To illustrate
the benefit of having measurements from the IMU,
Fig. 1(c) shows the time evolution of the esti-
mation errors when there is only measurements
from the CCD camera. As expected, although
the errors converge to a small neighborhood of
the origin, the transients are worst than the ones
displayed in Fig. 1(b). In Fig. 1(d) we can also see
what happens when the observer does not receive
measurements at all from t = 20 s to t = 100 s.

6. CONCLUSIONS

We considered the problem of estimating the state
of a system with implicit outputs, whose measure-
ments arrive at discrete-time instants, are time-
delayed, noisy, and may not be complete. We
designed a estimator using a deterministicH∞ ap-
proach that is globally convergent under appropri-
ate observability assumptions and can therefore,
be used to design output-feedback controllers.
These results were applied to the estimation of po-
sition and attitude of an autonomous vehicle using
measurements from an inertial measurement unit
and a monocular charged-coupled-device camera
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(a) Without noise and disturbances
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(c) With noise, disturbances, and only measurements
from the CCD camera

0 50 100 150 200
−1

−0.5

0

0.5

1
Position error

 

 

0 50 100 150 200
−1

−0.5

0

0.5

1

Orientation error − R
1

 

 

0 50 100 150 200
−1

−0.5

0

0.5

1

Orientation error − R
2

 

 

0 50 100 150 200
−1

−0.5

0

0.5

1

Orientation error − R
3

 

 

x
y
z

x
y
z

x
y
z

x
y
z

(d) With noise, disturbances, only measurements from
the CCD camera, and no measurements from t ∈
(20, 100)s

Fig. 1. Time evolution of the estimation errors in position and orientation. The orientation errors labeled
R1, R2, and R3 correspond to the estimation errors for the first, second, and third columns of V

BR,
respectively.

attached to the vehicle. Future work will address
the investigation of easier conditions that satisfy
the required observability assumptions and exper-
imental validation of these results.
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