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Abstract— This paper addresses the problem of Multiple
Model Adaptive Estimator (MMAE) design for linear process
models subjected to parameter uncertainty. MMAE algorithms
rely on a finite number of representative models chosen from
the original set of possibly infinite plant models. One of the
standing issues that arise in the process of MMAE design
is the selection of the model-set. Typical questions that arise
at this phase are the following: i) what is gained by using a
MMAE approach compared with a single model approach?,
and ii) for a given required level of performance, what is
the minimum number of models required and how should
they be selected as a function of the parameter uncertainty
region? For discrete-time, linear, time-invariant MIMO plants
with parameter uncertainty, we propose a performance-based
model-set design strategy. To this effect, we first introduce the
concept of an Infinite Model Adaptive Estimation Performance
(IMAEP) index that defines the best achievable performance of
the MAAE, assuming an ideal MMAE with an infinite number
of representative models. Then, based on a specified demanded
performance relative to the ideal IMAEP (say, 85% of the
IMAEP uniformly over the original parameter uncertainty
set), we provide an algorithm that guarantees the demanded
performance and yields the corresponding finite number of
representative models. An example is described that illustrates
the proposed strategy and the improvement in performance
that is obtained when compared with other previously proposed
design methodologies.

I. INTRODUCTION
In most practical applications of estimation theory, it is

virtually impossible to obtain a highly accurate mathematical
model of the physical process of interest. For this reason,
a model is often given in terms of its basic structure and
a vector of parameters in a compact set that capture plant
parameter uncertainty. When state estimation for this type
of systems is carried out, the variations of the parameters
and their identification play a critical role. Also, it is often
necessary to estimate both a system’s parameter vector and
its state. Many approaches have been proposed in attempting
to perform state estimation together with parameter identifi-
cation. In particular, the Multiple Model Adaptive Estimation
(MMAE) algorithm has received considerable attention [1]–
[4]. It is cost-effective, robust, and has a parallel structure.
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In this approach, a set of models (estimators) is designed to
cover the possible system behavior “patterns” or structures
and the overall output is obtained by adequate combination of
the outputs based on each individual model. Namely, in the
standard version of the MMAE [1]–[3] a separate discrete-
time Kalman filter (KF) is developed based on each differ-
ent assumed value of the uncertain parameters defining a
“model”. The resulting set of KFs forms a “model-set” where
each local KF generates its own state estimate and an output
error (residual) as shown in Fig. 1. All the KFs in the model-
set run in parallel and at each sample time the residuals are
used to compute for the ith KF the conditional probability pi

that it corresponds to the correct parameter value. The overall
state estimate is a probabilistically weighted combination of
each KF’s estimate. The rationale behind this approach is
that the highest probability should be assigned to the state
estimation of the most accurate KF, and lower probabilities
assigned to the other KFs.

In many applications of MMAE, the set of possible values
of the uncertain system parameter, known as parameter
space, is not finite. Instead, the parameters lie in some
compact subset of Rn. Optimal use of more models in the
continuous parameter space does improve the performance
of the MMAE algorithm for state estimation. In practice,
however, only a limited number of models, say N , can be
used. In [3], by introducing an information theoretic measure,
the authors analyzed the convergence of the conditional
probabilities pi and showed that the one corresponding to
the KF designed for the closest to the actual system (in a
stochastic norm sense) converges to 1, while the others tend
to 0. We will call the measure described the Baram metric.

The present paper was strongly motivated by the unre-
solved issue of how to select a proper model-set during the
MMAE design phase. Typical questions that arise are the
following: i) what is gained by using a MMAE approach
compared with a single model approach? and ii) for a given
required level of performance, what is the minimum number
of models required and how should they be selected as a
function of the parameter uncertainty region?

For discrete-time, linear, time-invariant MIMO plants
with parameter uncertainty, we propose a performance-based
model-set design strategy. To this effect, we first introduce
the concept of an Infinite Model Adaptive Estimation Per-
formance (IMAEP) index that defines the best achievable
performance of the MAAE, assuming an “ideal” MMAE
with an infinite number of representative models. In practice,
to determine the IMAEP we use a dense grid of parameters
in parameter space and plot the associated Baram metric.



Then, based on a specified demanded performance relative
to the ideal IMAEP (say, 85% of the IMAEP uniformly
over the original parameter uncertainty set), we give an
algorithm that guarantees the demanded performance and
yields the corresponding finite number of representative
models. Besides offering a rigorous procedure to determine
the latter, the results in the paper are also useful to evaluate
the performance of MMAE algorithms.

The structure of the paper is as follows. Section II reviews
the key concepts of MMAE. Section III summarizes basic
convergence results and the Baram metric definition [3]. Sec-
tion IV introduces the IMAEP index and gives a procedure
to decide on the number of and what models to use in the
the MMAE procedure. An example is described in Section
V that illustrates the proposed strategy and the improvement
in performance that is obtained when compared with other
previously proposed design methodologies, via computer
simulations. Conclusions and suggestions for future research
are summarized in Section VI.

II. THE MULTIPLE-MODEL ADAPTIVE
ESTIMATOR

One of the earliest uses of multiple-models was motivated
by the need to accurately estimate the state of a stochastic dy-
namic system subjected to significant parameter uncertainty.
In many such applications, the estimation accuracy provided
by standard KFs was not adequate. For some early references
on MMAE see [1]–[3].

Fig. 1 shows the architecture of the MMAE system. It is
assumed that a discrete-time linear time-invariant plant G
is driven by white process noise and a known deterministic
input signal and generates measurements that are corrupted
by white measurement noise. If there is no parameter uncer-
tainty in the plant, then the KF is the optimal state-estimation
algorithm in a well-defined sense; see, for example, [2], [5].
Moreover, under the usual linear-gaussian assumptions, the
KF state-estimate is the true conditional mean of the state,
given the past controls and observations. If the plant has
an uncertain real-parameter vector, say κ, one can imagine
that it is “close” to one of the elements of a finite discrete
representative parameter set, κ := {κ1, κ2, . . . , κN}. One
can then design a bank of standard KFs, where each KF
uses one of the discrete parameters κi in its implementation,
i ∈ {1, . . . , N}. It turns out that, if indeed the true plant
parameter is identical to one of its discrete values then the
conditional probability density of the state is the sum of
gaussian densities. Then, the MMAE of Fig. 1 will generate
the true conditional mean of the state and one can calculate
the true conditional covariance matrix; see, for example,
[2]. The structure of MMAE, in Fig. 1, consists of: i) The
Posterior Probability Evaluator (PPE) and ii) a bank of N
discrete-time KFs, where each local estimator is designed
based on one of the representative parameters. The state
estimate is generated by a probabilistically weighted sum
of the local state-estimates produced by the bank of KFs.
In what follows, we assume the plant model G is subjected
to parameter uncertainty κ ∈ Rl, that is, G = G(κ). We
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Fig. 1. The MMAE architecture.

consider multiple-input-multiple-output (MIMO) linear time-
invariant (LTI) plant models of G the form

x(t + 1) = Aκx(t) + Bκu(t) + Lκξ(t), (1a)
y(t) = Cκx(t) + θ(t), (1b)

where x(t) ∈ Rn denotes the state of the system, u(t) ∈ Rm

its control input, y(t) ∈ Rq its measured noisy output, ξ(t) ∈
Rr an input plant disturbance that can not be measured,
and θ(t) ∈ Rq is the measurement noise. Vectors ξ(t)
and θ(t) are zero-mean white Gaussian sequences, mutually
independent with covariances cov[ξ(t); ξ(τ)] = Ξδtτ and
cov[θ(t); θ(τ)] = Θδtτ . The initial condition x(0) of (1) is
Gaussian random vector with mean and covariance given by
E{x(0)} = 0 and E{x(0)xT (0)} = Σ(0). Matrices Aκ, Bκ,
Lκ, and Cκ contain unknown constant parameters indexed
by vector κ.
Consider a finite set of candidate parameter values κ =
{κ1, κ2, . . . , κN} indexed by i ∈ {1, . . . , N}. We propose
the following MMAE. The state estimate is given by

x̂(t|t) :=
N∑

i=1

pi(t)x̂κi(t|t), (2)

ŷ(t|t) :=
N∑

i=1

pi(t)ŷκi(t|t), (3)

where x̂(t|t) and ŷ(t|t) are the estimates of the state x(t)
and output y(t), respectively (at time t) and pi(t) is the
conditional probability that κ = κi, given the measurements
record. In (2), each x̂κi(t|t); i = 1, . . . , N corresponds to
a “local” state estimate generated by the ith steady state
Kalman filter [2],

x̂κi(t + 1|t) = Aκi x̂κi(t|t) + Bκiu(t) (4a)
x̂κi(t|t) = x̂κi(t|t− 1) + Hκi [y(t)− Cκi x̂κi(t|t− 1)],

(4b)

0 = −Σκi + AκiΣκiA
T
κi

+ LκiΞLT
κi

−AT
κi

ΣκiC
T
κi

[CκiΣκiC
T
κi

+ Θ]−1CκiΣκiAκi , (4c)

Hκi = ΣκiC
T
κi

[CκiΣκiC
T
κi

+ Θ]−1 (4d)



where [Aκi
, Lκi

] and [Aκi
, Cκi

] are assumed to be stabi-
lizable and detectable, respectively for i = 1, . . . , N . We
next introduce the Posterior Probability Evaluator (PPE) that
weighs the local estimations (2).

A. Posterior Probability Evaluator (PPE)

The key to the MMAE algorithm is the so-called posterior
probability evaluator (PPE) which calculates, in real time,
the posterior conditional probability that each model gener-
ates the data, i.e. the probability κ = κi; i ∈ {1, . . . , N}
(see (5) for more details). Thus, the PPE represents an
identification subsystem.

The posterior probabilities can be computed on-line by the
PPE using the recursive formula

pi(t + 1) =
βie

−wi(t+1)

∑N
j=1 pj(t)βje−wj(t+1)

pi(t), (5)

where pi(0) are the prior model probabilities and wi(t) and
βi are

wi(t) :=
1
2
[y(t)− ŷκi

(t|t− 1)]T Σ−1
κi

[y(t)− ŷκi
(t|t− 1)],

(6a)

βi :=
1

(2π)
q
2
√
|Σκi |

, (6b)

where q is dimension of y(t) and Σκi is the covariance
matrix of residuals in ith KF given by

Sκi = CκiΣκiC
T
κi

+ Θ. (7)

In the sequel we use the following notation. Let y(t) be a
sequence of measurements (observations) and let Y (t) ≡
{y(0), y(1), · · · , y(t)}. The KF designed based on each
κi in the parameter set provides a conditional probability
density function fi

(
y(t)|Y (t − 1), κi

)
for each t ≥ 1,

with fi

(
y(1)|Y (0), κi

)
= CκiE{x(0)}. We call κ? the true

parameter in the plant and the correct conditional probability
density function of y(t) is denoted by f?

(
y(t)|Y (t−1), κ?

)
.

For each KF, we have fi

(
Y (t)|κi

)
=

∏t
k=1 fi

(
y(k)|Y (k −

1), κi

)
.

III. CONVERGENCE PROPERTIES

As explained in section II, we design N KFs for N
nominal values of κi, i = 1, 2, · · ·N . For two different KFs
based on κi and κj , if

fj

(
Y (t)|κj

)
> fi

(
Y (t)|κi

)
(8)

or, equivalently,

log fj

(
Y (t)|κj

)
> log fi

(
Y (t)|κi

)

we will say that κj is more probable to be the true parameter
in comparison with κi, based on observation Y (t). We can
define the likelihood ratio for the sequence of Y (t) as

kj
i

(
Y (t)

)
=

fj

(
Y (t)|κj

)

fi

(
Y (t)|κi

) (9)

or, equivalently,

log kj
i

(
Y (t)

)

= log fj

(
Y (t)|κj

)− log fi

(
Y (t)|κi

)
,

where log kj
i

(
Y (t)

)
can be regarded as a measure of the

information in Y (t) in order to select between jth, ith KFs.
Similarly, we can define the conditional likelihood ratio,

kj
i

(
y(t)|Y (t− 1)

)
=

fj

(
y(t)|Y (t− 1), κj

)

fi

(
y(t)|Y (t− 1), κi

) (10)

or, equivalently,

log kj
i

(
y(t)|Y (t− 1)

)

= log fj

(
y(t)|Y (t− 1), κj

)− log fi

(
y(t)|Y (t− 1), κi

)
,

that can be interpreted as a measure of the information in
y(t) for selecting between the jth and ith KFs. We can also
define the mean information in y(t) for preferring jth KF
over the ith KF as

d(j, i) = E{log kj
i

(
y(t)|Y (t− 1)

)}. (11)

When d(j, i) is positive we conclude that the jth KF is more
probable to be the true KF when compared with the ith KF.
The above measure holds the key to the selection of the
“best” KF from the model-set. It is not difficult to see that
the true KF is always preferred over other KFs.

Proposition 1. Let the ?th Kalman filter correspond to the
true plant. Then, for all the Kalman filters in the model-set
we have that

dt(?, i) ≥ 0, ∀i = 1, 2, · · ·N (12)

with equality if and only if f?

(
y(t)|Y (t − 1), κ?

)
=

fi

(
y(t)|Y (t− 1), κi

)
.

See [3] for a proof.
The conditional probability density of y(t) given the past

observation Y (t− 1) when κi is the true parameter is given
by [2]

fi

(
y(t)|Y (t− 1), κi

)
= βie

−wi(t), (13)

where wi(t) and βi are defined in (6). Denote by Σκj
κi the

covariance of the innovations when the true parameter in the
plant is κj but the KF is designed based on κi. For each KF
we have

E{log fi

(
y(t)|Y (t− 1), κi

)}
= −q

2
log(2π)− 1

2
log(|Σκi |)

− 1
2
tr(Σ−1

κi
E{ỹT

κi
(t|t− 1)ỹκi(t|t− 1)})

= −q

2
log(2π)− 1

2
log(|Σκi |)−

1
2
tr(Σ−1

κi
Σκ?

κi
). (14)



It is now easy to write d(j, i) as

d(j, i) = E{log fj

(
y(t)|Y (t− 1), κj

)}
− E{log fi

(
y(t)|Y (t− 1), κi

)}
= +

1
2

log(|Σκi |) +
1
2
tr(Σ−1

κi
Σκ?

κi
)

− 1
2

log(|Σκj
|)− 1

2
tr(Σ−1

κj
Σκ?

κj
). (15)

Let
Γκ?

κi
≡ +

1
2

log(|Σκi |) +
1
2
tr(Σ−1

κi
Σκ?

κi
), (16)

which we call the Baram metric. It follows that

d(j, i) = Γκ?
κi
− Γκ?

κj
. (17)

It is also useful to mention that

d(?, i)− d(?, j) = Γκ?
κi
− Γκ?

κj
.

It can therefore be stated that

d(?, i) ≥ d(?, j)

if and only if
Γκ?

κi
≥ Γκ?

κj
.

Lemma 1. For the jth and ith KF in the model-set under
the assumption that residuals of KFs are ergodic, we have

lim
t→∞

ki
j

(
Y (t)

)
= 0, (18)

if and only if
Γκ?

κi
≥ Γκ?

κj
. (19)

See [3] for a proof (the ergodicity of the KF’s residual is
proved in [3] for stable plants).

This lemma means that posterior probability pi(t) of the
ith KF whose Γκ?

κi
is less than the others will converge to 1.

IV. MODEL-SET DESIGN STRATEGY

This section presents a systematic approach to model
selection for the MMAE. To this end, it is first convenient to
stress the following property of the MMAE: Suppose that the
representative parameter set {κ1, κ2..., κN} does not include
the true parameter κ?. Then, from Lemma 1, as long as the
ergodicity condition holds, it can be concluded that one of the
posterior probabilities governed by (5), say pj , converges to
1 and the rest converge to 0 as t →∞. Obviously, this does
not imply that κj is κ?. However, in a well defined sense
it can be said that the true value κ? is closer to κj than to
any other κi in the representative parameter-set. This simple
reasoning allows us to conclude that, corresponding to each
κi, i = 1 . . . N there is a set of plants that are naturally
identified as κi. Each of these sets is called the set of
Equivalently Identified Plants (EIP), denoted Si

EIP [6]. With
an obvious abuse of notation, for each κi, the corresponding
EIP is defined as a subset in the uncertain parameter space
with the property that if the uncertain parameter belongs to
that subset, then the selected model with parameter κi will
be identified. For more details and how to compute the set
of Equivalently Identified Plants (EIP), see [6].

We now address the following questions: What do we gain
by using a MMAE approach compared with the Kalman
filter? and, for a given required performance, what is the
minimum number of models needed and how should they be
distributed in the original parameter space?

To address these questions, we introduce the concept of
Infinite Model Adaptive Estimation Performance (IMAEP)
index. Consider an “ideal” MMAE that assumes an infinite
number of models, N → ∞. Clearly, this is equivalent to
knowing exactly the true parameter κ? and designing the
corresponding optimal KF. By computing Γκ?

κ?
in (16) we

obtain
Γκ?

κ?
= +

1
2

log(|Σκ? |) +
q

2
. (20)

This value can be viewed as the best possible performance
if we knew the real parameter exactly and the corresponding
model was included in the model-set. In practice, to deter-
mine the ideal MMAE one uses a dense grid of points in
the original parameter uncertainty set. We denote by Γκ?

κ?
the

Infinite Model Adaptive Estimation Performance (IMAEP)
index which defines the best possible performance for each
parameter value.

At this point we can compute the best performance that
can be achieved with MMAE. We now present a systematic
approach to decide on the number of models and the design
of the model-set, that we refer to as the “the % IMAEP
method”. This method fully exploits the information pro-
vided by the IMAEP curve. Furthermore, it has the desired
strong property that the number of models required for the
MMAE is a direct result of performance design specifica-
tions. In the so-called % IMAEP approach, the designer
specifies that the performance parameter, Γκ?

κi
, should be

“equal or greater” than X% of the best possible performance,
Γκ?

κ?
, as defined by the IMAEP.

For simplicity of presentation we assume that the unknown
parameter κ is a scalar parameter that lies in the interval
[κL , κU ]. The basic idea is illustrated in Fig. 2. Starting from
the IMAEP curve and using the designer-specified value of
X%, we construct the X% IMAEP curve, shown in Fig. 2,
and we proceed as follows. Starting from the lower limit
κL (or upper limit), of the parameter uncertainty set, we
design the first KF, and we increase (or decrease) the value
of the representative parameter until the point at which ΓκL

κ1

intersects the the X% IMAEP curve at κL; to design the
second model, we start from the first point κb

1 that Γκb
1

κ1

intersects the X% IMAEP curve and exits the area between
the IMAEP curve and the X% IMAEP curve, and we repeat
the procedure (κb

1 is the first point in
(
κL κU ] at which Γκb

1
κi

intersects the X% IMAEP curve).
The % IMAEP method is straightforward for systems

involving a single scalar uncertain real parameter. In the
case of two, or more, uncertain parameters the procedure
has to be modified. In fact, in the latter case the IMAEP and
the X% IMAEP become surfaces. The above process yields
intersection of surfaces (the equivalent of Γκ

κ1
, Γκ

κ2
, . . .

are also surfaces). Unfortunately, the intersection of these
surfaces does not occur along rectangular (or parallelepiped)



parameter subsets that lead to having overlap between EIP
sets of different models.
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Fig. 2. Model-set Design with the X% IMAEP Strategy.

The following is a procedure by which the number of
models and their representative parameters are determined
based on the demanded performance.
Algorithm
Input Data: description of the system and the intensity
of process and measurement noise and percentage of the
demanded performance.
Output Data: number of models and their representative
parameters.
Process:

1) For a fine discretization of the parameter space
[κL κU ], design KF and compute Γκ

κ to obtain the
IMAEP.

2) Plot the IMAEP and the X% of IMAEP against the
unknown parameter.

3) Let κst = κL, i = 1.
4) Design the ith KF at κi such that Γκst

κi
intersects the

X% IMAEP curve and Γκ
κi

for κ ∈ [κst κb
i ] is between

the curves of the IMAEP and the X% IMAEP. Here,
κb

i is the first point in
(
κst κU ] at which Γκb

i
κi intersects

the X% of IMAEP curve.
5) If Γκ

κi
for κ ∈ [κst κU ] is between the curves of the

IMAEP and the X% IMAEP, then stop; otherwise, let
κst = κb

i , i = i + 1, and go to 4.

V. ILLUSTRATIVE EXAMPLE

This section illustrates the design methodology described
in the previous section. Motivated by [7] we consider a non-
minimum phase system described by the transfer function

G(s) =
( 1
0.9s + 1)(−1

Z s + 1)
( 1
2.5s + 1)( 1

4.25s2 + 1
4.25s + 1)

, (21)

which exhibits a non-minimum phase zero at s = Z. For
this example, we consider that Z is an uncertain zero with
a value within the following bounds

1 ≤ Z ≤ 100. (22)

Fig. 3 shows the block diagram of the example adopted
where y(t) is the observed output, u(t) is the control input,
d(t) is the plant disturbance, and θ(t) is the sensor noise
assumed to be white noise with zero mean and intensity
10−3.

( )tξ

( )u t
Σ

( )y t

( )tθ

NMP Plant

( )G s

dW

Σ

( )d t

Fig. 3. The non-minimum Phase (NMP) Plant.

The plant is subject to a low-frequency stochastic distur-
bance input d(t) obtained by filtering white noise ξ(t) with
zero mean and unit intensity, as follows:

Wd(s) =
d(s)
ξ(s)

=
0.1

s + 0.1
. (23)

All simulations for this example were implemented in
discrete-time using a zero-order hold with a sampling time
of Ts = 0.01 secs.
Fig. 5 illustrates the IMAEP curve for the uncertainty zero
in the interval (22). As predicted by the analysis in [8], it
can be seen that the non-minimum phase zero introduces a
performance limitation which gets more accentuated as the
zero gets closer to the jω axis.

Based on a 99% of IMAEP relaxation, we applied the
design strategy proposed in Section IV and obtained three
models with the following representative parameter set:
{1.187, 1.88, 5.9} (see Fig. 4).
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Fig. 4. Model-set Design for 99 % of the IMAEP.

Figures 5-7 illustrate through Monte-Carlo simulations the
MMAE using three design strategies: the proposed 99% of
IMAEP, a uniform distributed strategy (with representative
parameter set {17.5, 50.5, 83.5}), and the logarithmically
strategy proposed in [9] (with representative parameter set
{14.68, 31.62, 68.13}); we have also designed , for each



relevant value of κ, the corresponding optimal KF so as to
enable comparison with the performance obtained with the
MMAE under the different strategies adopted.
It can be seen in Fig. 5 that the RMS of the output estimation
error for the three different estimators are consistent with
Fig. 5 (see also Figures 6-7 which are zoom-ins on Fig. 5).
In particular Fig. 6 shows, in striking contrast with what
can be achieved with the other strategies, that the MMAE
designed with a 99% IMAEP criterion satisfies the required
performance. Fig. 7 shows that only for values of Z greater
than 5.3 do the other two MMAE approaches satisfy the 99%
performance criteria.

0 10 20 30 40 50 60 70 80 90 100
0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

Z

R
M

S
 o

f 
O

u
tp

u
t 

E
st

im
at

io
n

 E
rr

o
r

 

 

MMAE Designed with 99% IMAEP Approach
MMAE Designed with Uniform Approach
MMAE Designed with Logarithmical Approach
Optimal KF Performance (IMAEP)
99% of Optimal KF Performance (IMAEP)

Fig. 5. RMS of the Output Estimation Error for Different Values of Z.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

Z

R
M

S
 o

f 
O

u
tp

u
t 

E
st

im
at

io
n

 E
rr

o
r

 

 

MMAE Designed with 99% IMAEP Approach
MMAE Designed with Uniform Approach
MMAE Designed with Logarithmical Approach
Optimal KF Performance (IMAEP)
99% of Optimal KF Performance (IMAEP)

Fig. 6. RMS of the Output Estimation Error for Different Values of Z.

VI. CONCLUSIONS AND FUTURE RESEARCH

For discrete-time, linear, time-invariant MIMO plants with
parameter uncertainty, the paper proposed a performance-
based model-set design strategy for MMAE design. The
methodology addresses in a systematic way the problem
of selecting the minimum number of models and how
they should be distributed as a function of the parameter
uncertainty region (which, in general, does not have to be
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uniform or logarithmic). To this end, the concept of an
Infinite Model Adaptive Estimation Performance (IMAEP)
index that defines the best achievable performance of the
MAAE was introduced. Then, based on a specified demanded
performance relative to the ideal IMAEP, an algorithm
that guarantees the demanded performance and yields the
corresponding finite number of representative models was
proposed. The illustrative example showed the improvement
in performance that is obtained when compared with other
previously proposed design methodologies. Future work will
aim at extending the current design methodology to accom-
modate the case where the unknown parameter is not a scalar,
which may imply the study of general geometric properties
of the EIP sets. Another topic that warrants further research
is the design of adaptive control systems for uncertain plants
(with special focus on unstable and non-minimum phase
plants) using the multiple model approach.
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