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Abstract—In this paper, we address the analysis of resilience
properties related to electric power grids modeled as a (large)
dynamical system. To this end, we introduce the notion of p-
robustness as the capability of ensuring the proper functioning
of the electric power grids, in the sense of guaranteeing
generic controllability of the associated dynamical system,
under arbitrary p transmission line failures. Then, we provide
conditions under which the electric power grid is p-robust,
and an algorithm that determines the minimum number of
transmission lines in the electric power grid that is need to add
in order to transform a non-robust (O-robust) electric power
grid into a 1-robust electric power grid. Further, we discuss
how the methodology can be extended to ensure p-robustness
with a relatively small number of additional transmission lines.
We present an illustrative example of the proposed analysis and
methodology using the IEEE 39-bus system, whose dynamical
model is described by 127 state variables.

[. INTRODUCTION

Electric power grids, as well as many other physical
systems, can be modeled as hybrid dynamical systems [1], as
long as they present both continuous and discrete behaviors;
typical examples include the air conditioning, or circum-
stances where a control module has to switch [2], such as
electric power grid when failure of transmission lines occur,
for instance, due to fatigue or/and overheat. In fact, the latter
serves as testbed for the present paper.

The modes of an hybrid system represent the continuous-
time behavior, among which the system switches (or jump)
— the discrete nature of these systems. If the dynamics
described by the modes are linear time-invariant, we have
linear time-invariant switching systems, which we refer to
as switching systems and enclose many of the existing
hybrid systems [2], [3]. Motivated by the uncertainties in
the models’ parameters and/or floating point approximations,
we resort to structural systems [4], where only the location
of the zero/nonzero entries of the system plant matrices is
considered. In the context of switching systems, we obtain
the so-called structural switching systems, a subclass of
structural hybrid systems introduced in [5]. One of the
distinct characteristics of structural systems is the capabil-
ity of inferring controllability properties that hold almost
always. Controllability plays a major role because, once
ensured, a control law can be designed to steer the system
towards a specified goal. In fact, when considering critical
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infrastructures, such as electric power grids, certain standards
need to be fulfilled over time, for instance, in US it is
required that the frequency lies within the 60 + 5Hz; thus,
by ensuring controllability of the system, those standards
can be enforced. Nevertheless, before such control law can
be specified, we need to ensure that the inputs placed in
our system are capable of ensuring systems’ controllability.
Given the aforementioned discussion, in this paper, we aim to
analyze and design a dynamical model of an electric power
grid guarantying p-robustness, i.e., the capability of ensuring
the proper functioning of a system under p transmission line
failures, and an initial placement of inputs ensuring generic
controllability of the system (also referred to as structural
controllability, formally introduced in Section II).

Our approach differs from others that aim to explore
structural vulnerability and resilience of the network, where
properties of the network topology are assessed through the
nodes’ degrees, edge failures, among other metrics com-
parable to random graphs [6], [7]. Although, these do not
explicitly consider the dynamics of the electric power grid,
we refer the reader to [8] for an overview of the area.
In addition, several graph theoretical measures have been
proposed to assess the power systems’ vulnerabilities, see for
example [9]. See also [10] and [11], where some conclusions
are drawn in terms of graph connectivity, where the dynamics
is not considered.

The structural treatment of dynamical properties of switch-
ing systems and, in particular, necessary and sufficient condi-
tions to ensure weak structural controllability, i.e., structural
controllable for some non-empty window of time, have been
explored in [12]. However, if at some time the system is
structurally controllable for a given instance of time, then
it will be weak structurally controllable for any interval of
time containing it. Therefore, this approach does not cope
with the critical scenario in electric power grids: suppose
that a switching system is working under normal operating
conditions at a certain instance of time and a transmission
line failure occurs, leading the system to a mode where it
is not structurally controllable, then it will be weak struc-
turally controllable. Hence, the system may fail to satisfy
certain operating standards, since these cannot be enforced.
In this paper, the proposed approach and design scenarios
ensure that the system is always structurally controllable and,
therefore, capable of maintaining the operation standards.
Additional references about structural hybrid systems can be
found in [5], and applications of structural switching systems
can be found, for instance, in [13], [14].

The main contributions of this paper are fourfold: (i) we
provide necessary and sufficient conditions to obtain p-
robustness of an electric power grid modeled as a dynamical



system [3]; (ii) we provide an algorithm to determine a mini-
mum number of transmission lines in the electric power grid
that need to be added, to transform a non-robust (0-robust)
electric power grid into a 1-robust electric power grid; (iii)
we discuss how the presented methodology can be extended
to achieve p-robustness by introducing a relatively small
number of transmission lines; and (iv) an illustrative example
of the proposed analysis and methodology is presented
using the IEEE 39-bus system, whose dynamical model is
described by 127 state variables.

The rest of the paper is organized as follows. Section II in-
troduces the problem statement addressed in this paper. Sec-
tion III reviews and introduces some concepts in structural
systems theory. Section I'V presents the main contributions of
this paper. Section V provides an illustrative example using
the IEEE 39-bus system. Finally, Section VI concludes the
paper and discusses avenues for further research.

II. PROBLEM STATEMENT

Consider the electric power grid as modeled in [3] that
consists in a linearized model under normal operating condi-
tions. It can be written in terms of interconnected dynamical
subsystems consisting in generators and loads, denoted by
G and L. The network topology of the electric power
grid is given by an undirected graph G = (V, &), where
the vertices in V identify the buses and £ are the edges
representing the transmission lines between buses. Further,
the electric power grid can be represented by the triple
N = (G, {G,}icz,{L;j}jes), where Z and J are the indices
of the buses that generators and loads are connected to,
respectively. The dynamics of the electric power grid and its
components, modeled as in [3], is described by the following
state variables: Pr,, represents the mechanical power of the
turbine of the generator G, wg, the generator G; frequency
and ag, its valve opening. In addition, [y, is the real energy
consumed by the load L; and wy,; the frequency measured
at load L location. The different components are connected
through the injected/received power to/from the network at
the connection site, which dynamics depend on the frequency
of the components on the neighboring buses; the injected and
received power variables for generator % and load j are Pg,
and P, respectively.

The electric power grid dynamics modeled as in [3], is
denoted by A(N(G(c(t)))) € R*™*™, with N(G(a(t))) =
(G(o(t)),{Gi}iez, {L;}jer), ie., only the network topol-
ogy changes over time, and where o : R — {1,..., M}
is a piecewise constant and deterministic switching signal
that may only switch, at most, once in a given dwell-time
[t,t+¢], e > 0.

Because the exact values of these parameters are not
(in general) known, and considered as nominal value with
certain error bounds. Thus, rather than considering the exact
values, we seek an approach that considers the structure of
the system dynamics which consists only on the location
of the zeros/nonzeros of the pair (A, B) which we denote

y (A, B). A pair (A, B), with A € {0,x}"*" and B €
{O *x}"*P_ where x stands for a nonzero entry, is said
to be structurally controllable if there exists a numerical

realization of the system’s plant matrices (A, B) with the
same structure (i.e., location of zero/nonzero entries) as
(A, B) that is controllable. In fact, a stronger characterization
holds and it can be shown that the set of non-controllable
numerical realizations (A, B) of a structurally controllable
pair (A, B) has zero Lebesgue measure in the product space
R™* ™ x R™*P_ in other words, almost all numerical realiza-
tions of a structurally controllable pair are controllable [4].

Subsequently, in this paper, we aim to address the follow-
ing two problems.

Problem Statement

P1  Given structural matrices A(o(t)) € {0,%}"*", and
o: RY — {1,..., M}, a piecewise constant and deter-
ministic switching signal satisfying the dwell-time property,
and A(c(0), B) structurally controllable, we aim to provide
conditions on G(co(t)) under which (A(o(t)), B) is struc-
turally controllable for an arbitrary interval [ty,ts], with
0 <ty <to. o
Then, provided that a power electric grid is non-robust,
i.e., it is O-robust, we address the following problem.
P,  Given a O-robust power electric grid (A(N(G(t))), B),
where G(a(0)) = (V,€) and (A(N(G(0))), B) is struc-
turally controllable, we want to find a minimum set of extra
transmission lines £ C (V x V) such that power electric grid
(A(N(G(t))), B) is 1-robust, where G(a(0)) = (V,EUE).0
In addition, we also discuss how the provided solution can
be used to obtain an arbitrary p-robust of the electric power
grid by adding a relatively small number of transmission
lines.

III. PRELIMINARIES AND TERMINOLOGY

In this section, we review some concepts of graph theory
and its constructs related with structural systems [15].

Structural systems provide an efficient representation of
the system as a directed graph (digraph). A digraph consists
of a set of vertices V and a set of directed edges £y y of the
form (v;, v;) where v;,v; € V (meaning a directed edge that
starts in v; and ends in v;). If a vertex v belongs to the end-
points of an edge e € £y ), we say that the edge e is incident
in v. We represent the state digraph by D(A) = (X, Ex x),
i.e., the digraph that comprises only the state variables as
vertices denoted by X = {x1,---,z,} and the set of
directed edges between the state vertices denoted by Ex x =
{(zs,2;) : s, x; € X and Aj; # 0}. Similarly, we repre-
sent the system digraph by D(A, B) = (XU, Ex xUEy x),
where U = {uq,---,u,} corresponds to the input vertices
and &y x = {(uq,x]) tu; €U,z € X and Bi,j #* O} to
the edges, identifying which state variables are actuated by
which input.

A directed path between the vertices v; and vy is a
sequence of edges {(v1,v2), (v2,v3), ..., (Vg—1,vg)}. If all
the vertices in a directed path are different, then the path
is said to be an elementary path. A cycle is a directed path
such that v; = v and all remaining vertices are distinct.

We also require the following graph theoretic notions [16]:
Given a digraph D, we say that a digraph Dy = (Vs, Es)
such that Vs C V and & C & is a subgraph of D. If



Vs =V, then D is said to span D. In addition, a digraph D
is strongly connected if there exists a directed path between
any two vertices. A strongly connected component (SCC) is
a maximal subgraph, i.e., there is no other subgraph with
more edges having the same property, Dg = (Vg,Es) of D
such that for every u,v € Vg there exists a path from u to v
and from v to u. By visualizing each SCC as a virtual node,
we can build a directed acyclic graph (DAG) representation,
where there is a directed edge between vertices belonging
to two SCCs if and only if there exists a directed edge
connecting the corresponding SCCs in the original digraph
D = (V,€). The construction of the DAG associated with
D(A) can be computed efficiently in O(|V|+|€|), [16]. The
SCCs in the DAG can be categorized as follows.

Definition 1 ([15]): An SCC is said to be linked if it has
at least one incoming/outgoing edge from another SCC. In
particular, an SCC is non-top linked if it has no incoming
edges to its vertices from the vertices of another SCC. ¢

The controllable pairs (A, B) can be characterized as
follows.

Theorem 1 ([5], [15]): Let D(A) = (X,Ex.x) be the
state digraph and its DAG representation with £ SCCs, de-
noted by {N;}F_ |, N; = (Xi, Ex, x,), where N;,, ..., N

be the non-top linked SCCs in the DAG representation with
{it,-o yim} C {1,...,k}. If D(A) is spanned by cycles,
then (A, B) is structurally controllable if and only if there
exists an edge from an input in D(A, B) to a state variable
in each non-top linked SCC N}, j € {i1,...,im}. o
Now, we have the following result that characterizes the
structural controllability of structural switching systems.
Proposition 1 ([5]): Let the structural switching system
be given by (A(c(t)), B), with o : Rf — {1,...,M}. A
structural switching system is structurally controllable if and
only if the pair (A,, B,) is structurally controllable for all
ge{l,...,M}. o
Finally, we present some additional concepts necessary to
study the structure of the network topology constraints and
its robustness to transmission line failures in Section IV.
For both directed and undirected graph, with some abuse
of notation, we denote an edge from vertex x; to vertex zo
by (z1,z2). We say that vertex v; is connected to vertex
v; if there is a sequence of one or more undirected edges
of the form (v;,v1), (vi,v2), ..., (v,v;), i.e., a sequence
of edges starting in v; and ending in v;, which we refer
to as path. A tree T(V,€) = G(V,€) is an undirected
graph in which any two vertices are connected by exactly
one path. Given an undirected connected graph G(V,€), a
cut C' consists in a partition of the vertices V' of the graph
into two disjoint subsets V1, Vs C V, i.e., V1 N Vo = 0 and
Vi UVy, = V. A minimum cut C* is a cut C' with sets
V1,Vo C V with the minimum number of edges between
vertices in the set V; and V5. The size of a cut C, denoted
by |C|, is the number of edges between the sets of vertices
V; and V5. Given an undirected connected graph G(V, &),
the complexity of computing a minimum cut is O(|V|?|€|),
using the Dinic’s algorithm [16]. In addition, determining the
minimum number of edges to be added to a graph to ensure
that its minimum cut size increases by one can be achieved

using an algorithm with complexity O(|C||V|?|€]) where C
denotes the collection of all minimum cuts [17].

Finally, let G = (V, &), we say that G’ = (V',&’) is a
contraction of G if G’ consists of transforming each SCC
in G into a single vertex. This way there is an edge in G’
between two vertices if in G there is an edge between the
vertices of the corresponding SCCs. We say that the tree
T =V',E&)is areduced graph of G = (V, &) if each SCC
is contracted into a vertex, without considering edges that
are critical cuts of size 1.

IV. MAIN RESULTS

In this section, we provide the main results of the paper.
First, we characterize the state digraph associated with the
dynamics of a power electric grid modeled as in [3]. Then,
we show that the p-robustness of a system depends on the
cuts of the network topology of the electric power grid, but
not necessarily the minimum cut. First, sufficient conditions
to ensure p-robustness are presented in Theorem 3 and
Corollary 1 in terms of the minimum cuts of the network
topology. Subsequently, necessary and sufficient conditions
are provided in Theorem 4 and Corollary 2 that resort to
the notion of critical cut introduced in Definition 2. Next,
we provide an algorithm (Algorithm 2) that determines
a minimum number of transmission lines in the electric
power grid that should be considered, such that a non-robust
(O-robust) electric power grid becomes a 1-robust electric
power grid. Finally, we discuss how the methodology can
be extended to ensure p-robustness with a relatively small
number of additional transmission lines, see Section IV-E.

A. Digraph Representation of the Dynamical Model of the
Power Electric Grid

The state digraph representation D(Ag,) and D(Ap;) of
a generator ¢ and a load j are depicted in Figure 1, with dy-
namics structure given by Ag, and A L, respectively. If these
are annexed to a bus, hence to the network, then the induced
dynamics is coupled with the power injected/received to/from
the network, as described in Section II. Thus, the digraph
representation of the dynamics has bidirectional connection
between these new variables and the frequency of the corre-
sponding components (corresponding to the injected/received
power to/from the network), as depicted in Figure 1. Further,
if the load j and generator ¢ are attached to the same bus, or
different buses but there exists a transmission line between
those, there exists an edge (i,j) in the network topology
G; consequently, the frequency of the components at bus
1 affects the dynamics of the power of the components at
bus j, which implies that the digraph of the interconnected
dynamics has outgoing edges from the frequencies of the
components into the power of the components in the neigh-
boring buses, for example, in Figure 1 is depicted a state
digraph, where a generator is connected to bus ¢, a load is
connected to bus j and both buses are connected through a
transmission line.

From the above description, we obtain the following result.

Theorem 2: Consider a power electric grid with network
topology N = (G,{G}icz,{L;};jes), where {G;};cz and
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Fig. 1.  Coupling between two neighboring components, a load and a
generator; D(Ag; ) and D(Ay, ;) are the generator and load state digraphs,
and the state variables are described in Section IV-A.

{L;}jes denote the set of |J| loads and |Z| generators,
respectively. If the network topology N is such that G is
connected, then D(A(N)), corresponding to the digraph
representation of the dynamics of the electric power grid,
is composed of several SCCs, where max{1, ||} are non-
top linked SCCs, and D(A(N)) is spanned by cycles. ¢

Proof: From the description above, if there exists a
load Lj, then there is a non-top linked SCC given by Iy,
see Figure 1. Further, a generator GG; with state variable Pg,
form an SCC and connects either to a similar (in structure)
SCC, when the neighboring component is another generator,
or to an SCC originated by a load containing wy,; and Pr;.
Hence, each load contributes with a non-top linked SCC,
and if there are no loads and G is connected, we obtain a
single SCC (composed by the state variables associated with
generators and the corresponding power state variables), also
a non-top linked SCC. Finally, since every state variables
have self-loops, the digraph is spanned by cycles. [ ]

B. Sufficient Conditions to Ensure p-Robustness

Upon the description we provided in Section IV-A, we now
explore some sufficient conditions that ensure p-robustness
of the electric power grid. We start with the following result.

Theorem 3: Consider an electric power grid with network
topology N = (G = (V,€),{Gi}iez, {L;}je). where
{Gi}iez and {L;};cs denote the set of || loads and
|Z| generators, respectively. Let (A(N), B) be a structurally
controllable mode of the structural switching system, and
(A(N"(L)), B) a mode for which the structural switching
system transits to after transmission line failures, where
N/(E) = (g/ = (V,g\ﬁ), {Gi}i627 {Lj}jej) and L is the
collection of undirected edges representing the transmission
lines that failed. If £* C £ is a minimum cut of G = (V, £),
then (A(N’(L)), B) is structurally controllable for any £ C
€ such that |L£] < |L£*]. o

Proof: The proof follows by first noticing that by
Theorem 1 and Theorem 2 there exists an input edge
from an input to a state variable in each non-top linked

SCC of D(A(N), B), since it is structurally controllable.

Now, D(A(N'(L), B) contains the same the same SCCs
as D(A(N), B) if |£| < |£*|; hence, there exists an input
edge from an input to a state variable in each non-top linked
SCC, which implies that, by Theorem 1, D(A(N’(L), B) is
structurally controllable. [ ]

Invoking Proposition 1, we have the following corollary.

Corollary 1: Under the same assumptions as in Theo-

rem 3. If G(o(t)) is connected and (A(c(0)), B) is struc-

turally controllable, then (A(c(t)), B) is also structurally
controllable. o

Although, suppose a set of transmission lines that are lost
corresponds to one minimum cut on the network topology,
in the next subsection we provide conditions to verify if the
mode the system transits to after the transmission line failure
is structurally controllable.

C. Necessary and Sufficient Conditions
Robustness

to Ensure p-

Previously, we only provided sufficient conditions to en-
sure robustness to transmission line failure. Hereafter we
provide also necessary conditions addressing, this way, ad-
dressing problem P;. We start by analyzing the scenario
painted at the end of the previous section. If we loose a
set of transmission lines that correspond to one minimum
cut (or cuts containing a minimum cut), the mode of the
structural switching system that we transition to may be
structurally controllable. Therefore, we propose the following
classification for the cuts.

Definition 2: Consider an electric power grid with net-
work topology N = (G = (V,€),{Giticz, {Lj}jeq)s
where {G; };sez and {L;};c s denote the set of | 7| = [ loads
and |Z| = m generators, respectively. Let D(A(N), B) be a
structurally controllable mode of the structural switching sys-
tem, and (A(N”’(L)), B) a mode that the structural switching
system transitions to after transmission lines failure, where
N'(L) = (G = (V,€\ £).{Ci}ier. {L;}jer) and L the
collection of the edges representing the transmission lines
that failed. If (A(N’(L)), B) is not structurally controllable,
then £ is said to be a critical cut. o

Intuitively, the previous definition precludes the mischar-
acterization of islands formed after transmission line failures
which are structurally controllable. In the sequence, using
Definition 2, we can adapt Theorem 3 to obtain necessary
and sufficient conditions to ensure p-robustness of the electric
power grid. This is the scope of the next result.

Theorem 4: Consider an electric power grid with network
topology N' = (G = (V,€),{Gi}ier,{L;}jes). where
{Gi}icz and {L;};cs denote the set of |J| = [ loads
and |Z| = m generators, respectively. Let (A(N), B) be
a structurally controllable mode of the structural switch-
ing system, and (A(N”(L)), B) a mode that the structural
switching system transits to after transmission lines failure,
where N'(£) = (¢ = (V,€\ £),{Gi}iez,{L;}jes) and
L the collection of the edges representing the transmission
lines that failed. If £ is a non-critical cut of G = (V, &), then
(A(N'(L))) is structurally controllable. o

Proof: The proof follows similar steps to that in
Theorem 3, where additionally one has to account for the
classification of cuts provided in Definition 2. [ ]

Invoking Proposition 1, we obtain the following corollary.

Corollary 2: Under the same assumptions as in Theo-
rem 4. The structural switching system (A(o(t)),B) is
structurally controllable (in the sense of Proposition 1) if
and only if no jump is due to the failure of a collection of
transmission lines containing a critical cut of G(o(t)) occurs,

and (A(c(0)), B) is structurally controllable. o



Observe that Corollary 2 assumes that the set of inputs is
fixed. Nevertheless, to preclude the system to lose structural
controllability, two strategies are possible: (i) reallocate re-
sources such as inputs to ensure that the dynamical system
associated with islands formed after transmission line failures
is structurally controllable, see [5] for details; or (ii) re-
design the network topology, by adding transmission lines,
to ensure that the structural switching system representing
the dynamics of the electric power grid has a pre-specified
level of robustness. In the next subsection, we explore the
latter scenario in further detail.

D. From a Non-robust to a 1-robust Network Topology

Now, we address the design problem Ps: first, Algorithm 1
builds a tree containing the edges of the original critical cuts
of size 1, used as subroutine of Algorithm 2 that determines
how to add a minimum number of edges such that a network
topology no longer has critical cuts of size 1.

ALGORITHM 1: Subroutine that produces a tree for
which eliminating the edges corresponds to eliminating
the critical cuts of size one of the original graph

Input: N = (G, {Gi}iez, {Lj}jer), where G = (V,€) has at
least one critical minimum cut of size 1
Output: 7 = (V/,£’) as the reduced graph obtained from G
1: remove the set of edges £’ from G corresponding to critical cuts
of size one, obtaining the graph G’
2: find contract each of the SCCs of G’ into a single vertex, renaming
the corresponding vertices in £’
3: return the tree 7 = (V’,E’), where V' is the set of vertices in
which the edges in £ are incident

Proposition 2: Let N = (G,{G;}iez,{L;j}jcs) be the
network topology of the electric power grid, where G =
(V, €) has at least one critical minimum cut of size 1, and C
the collection of size 1 critical cuts of G, then Algorithm 1
has complexity O(|C||V|?|€]), where O(|V|?|€]) is the com-
plexity of finding a minimum critical cut. o

Proof: Step 1 has complexity O(|C||V|?|€|) since we
need to compute every critical cut of size 1, where there are
|C| critical cuts of size 1 and O(|V|?|€]) is the complexity of
finding a critical minimum cut; more precisely, it corresponds
to determine a minimum cut, partitioning V' in V4 and Vs,
and verify if for both N7 = (G1,{G,;}iez,{L;j}jes) and
Ny = (G2,{G;}iez,{L;}es). the conditions in Theorem 1
hold. G; = (V1, €|y, ) and G3 = (Va, E1y,) are the subgraphs
of G with sets of vertices V; and V,, and the original
edges incident to V; and Vs, respectively (£]y, and &|y,).
Step 2 has complexity bounded by O(|&]), corresponding
to the complexity of computing the SCCs of G’, the final
complexity of the Algorithm 1 is O(|C||V|?|€]). [ |

Proposition 3: Let G = (V,€) be an undirected graph
with at least one critical minimum cut of size 1, let C denote
the set of size 1 critical cuts of G, then Algorithm 2 has com-
plexity O(|C||V|?|€|), where O(|V|?|€]) is the complexity of
finding a critical minimum critical cut. o

Proof: Step 1 has complexity O(|C||V|?|€|), by Propo-
sition 2. The remaining steps have complexity bounded by
O(|€]), since we visit all the edges in the tree 7. [ |

Proposition 4: Algorithm 2 is correct, i.e., given a non-
robust electric power grid and, in particular, its network

ALGORITHM 2: Determine the minimum number of
edges to eliminate critical cuts of size 1

Input: N = (G, {Gi}iez, {Lj}jer), where G = (V,E) has at
least one critical minimum cut of size 1

Output: G’ = (V, &’) resulting from adding the minimum possible
number of edges to G such that G’ does not have critical cuts of size 1
: build 7, using Algorithm 1 and G

setG' =@

: find the set of leaves of 7, denoted by £

: choose two vertices u,v € L

: add the edge (u,v) to G’

. add the edge (u,v) to 7 and contract cycles into a single vertex
: goto 3: until 7 =0

: return G’

0O N AW —

topology, Algorithm 2 computes a minimum set of extra
transmission lines we need to consider in order to achieve a
network topology of a 1-robust electric power grid.

Proof: The proof of the correctness of Algorithm 2 is
a known result, see Chapter 4 of [17]. |

E. Redesigning the Ensure

p-Robustness

Network  Topology to

The previous algorithms (Algorithm 1 and Algorithm 2)
add the minimum number of transmission lines such that a 0-
robust electric power grid becomes 1-robust. Next, we extend
these algorithms to achieve p-robustness of the electric power
grid.

ALGORITHM 3: Subroutine that produces a tree for
which eliminating the edges corresponds to eliminating
the critical cuts of size k — 1 of the original graph
Input: N' = (G,{Gs}icz, {Lj}jes), where G = (V,€) has at
least one critical minimum cut of size k — 1
Output: 7 = (V/,£’) the tree of the reduced graph obtained from G
1: remove the set of edges £’ from G corresponding to critical cuts
of size k — 1, obtaining the graph G’
2: find contract each of the SCCs of G’ into a single vertex,
renaming the corresponding vertices in &’
3: return the tree 7 = (V’,E’), where V' is the set of vertices in
which the edges in £ are incident

The extension to turn a network topology p-robust by
adding a relatively small number of transmission lines can
be obtained iteratively as follows: given a (k — 1)-robust
network, to achieve k-robustness we only need to invoke
Algorithm 2, where its first instruction uses Algorithm 3
instead of Algorithm 1.

In the next section, we provide an illustrative example that
applies the main results presented in this paper.

V. ILLUSTRATIVE EXAMPLE
IEEE 39-bus power system

The IEEE 39-bus electric power system, with the network
topology N = (G, {Gi}iezy, {L;}jes) depicted in Figure 2,
is used as benchmark model in power systems. It corresponds
to an electric power grid composed by 39 buses, intercon-
nected through transmission lines (depicted by solid lines
between buses in Figure 2). Here, we consider |Z| = 10
generators and | 7| = 29 loads, coupled through the network

topology, depicted in Figure 2. Let D(A(N(0(0)))) denote



the state digraph, where A(N(c(0))) is the dynamic of the
electric power grid with network topology given by N(c(0))
as depicted in Figure 2.

Fig. 2. Network topology N(c(0)) = (G(0(0)),{Gi}iez,{L;}jer)
of a 39-bus system consisting of 10 synchronous generators connected to
29 loads. Each red edge corresponds to a critical minimum cut (of size 1),
whereas each green edges correspond to the non-critical cuts of size 1.
The dashed blue edges represent a possible minimum set of additional
transmission lines that, if considered, represent a network topology without
critical cuts of size one, and the network becomes robust to one transmission
line failure, i.e., 1-robust

Moreover, let the initial mode of the structural switch-
ing system be given by the digraph D(A(N), B), where
B =le L,]jes denotes a matrix comprehending canonical
vectors in which the non-zero entries correspond to the
state variables [ L; (i.e., the real load consumption), with
7 € J. Therefore, recalling Theorem 2, it follows that
D(A(N(a(0))), B) is structurally controllable by invoking
Theorem 1. Further, a transmission line in T = {(2,30),
(25,36), (29,37), (23,35), (19,32), (22,34), (19,32),
(20,33), (10,31), (6,39)} (red lines between buses depicted
in Figure 2) corresponds to a critical minimum cut (of
size 1) of the network topology; contrarily, the green lines
between buses depicted in Figure 2 correspond to the non-
critical minimum cuts (of size 1). Consequently, the network
topology is O-robust to transmission line failures, recall
Theorem 3 and Theorem 4.

In fact, for each possible transmission line failure, except
the ones in the set T, the network topology is still connected,
hence, by Corollary 1 (see also Corollary 2) we obtain a
transition that steers the structural switching system to a
structurally controllable mode.

To obtain a 1-robust electric power grid, the model of
the network should comprise more transmission lines, i.e.,
we should redesign it in order to eliminate the critical cuts
of size 1. In that case, we use Algorithm 2, as described
in Section IV-D, to obtain the network topology with the
additional transmission lines depicted in blue dashed edges
in Figure 2 and the electric power grid becomes 1-robust.

VI. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we used structural switching systems to
model a linearized model of the electric power grid under
transmission line failures. We explored conditions of the

network topology in the electric power grid that ensure this
to be structurally controllable after at most p transmission
line failures, i.e., p-robust. Further, we provided a systematic
procedure to transform a O-robust network into a 1-robust
considering the lowest subset of transmission lines that need
to be added. In addition, we discussed the general procedure
to obtain an arbitrary p-robust electric power grid with a
relatively small number of additional transmission lines. In
this paper, the transmission lines were considered without
accounting for geographical or costs constraints, which con-
stitutes part of future research. In addition, an interesting
open question consists in integrating fault detection and
isolation schemes for the jumps in the structural hybrid
system.
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