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Abstract— We address the problem of minimal cost actua-
tor/sensor placement for large scale linear time invariant (LTI)
systems that ensures structural controllability/observability. In
particular, for the dedicated actuator placement problem (i.e.,
each actuator can control only one state variable or dynamic
component), we propose a design methodology that provides the
optimal placement with minimal cost (with respect to a given
placement cost functional), under the requirement that the
system be structurally controllable. In addition of obtaining the
global solution of the optimization problem, the methodology
is shown to be implemented by an algorithm with polynomial
complexity (in the number of state variables), making it suitable
for large scale systems. By duality, the solution readily extends
to the structural design of the corresponding sensor placement
under cost constraints.

I. INTRODUCTION

In networked control systems [1], the problem of topology
design to meet certain desired specifications is of funda-
mental importance. Possible specifications include (but are
not restricted to) controllability and observability. These
specifications ensure the capability of a dynamical system
(such as chemical process plants, refineries, power plants,
and airplanes, to name a few), to drive its state toward a
specified goal or infer its present dynamic state. To achieve
these specifications, actuators and sensors must be deployed
in the network. More than often, we need to consider the cost
per actuator/sensor, that depends on its range of applicability
and/or its installation and maintenance cost. The resulting
placement cost optimization problem (apparently combina-
torial) turns out to be quite non-trivial, and currently applied
state-of-art methods typically consider relaxations of the
optimization problem, brute force approaches or heuristics,
see for instance [2-6].

Given that the precise numerical values of the network
parameters are generally not available for the large-scale sys-
tems of interest, a natural direction is to consider structured
systems [7] based reformulations of the above topology de-
sign problems, which we pursue in this paper. Representative
work in structured systems theory may be found in [8], [9],
[10], [11], see also the survey [12] and references therein.
The main idea is to reformulate and study an equivalent
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class of systems for which system-theoretic properties are
investigated based on the location of zeroes/non-zeroes of the
state space representation matrices. Properties such as con-
trollability and observability are, in this framework, referred
as structural controllability' and structural observability.

Hereafter we focus on the following problem: Given the
network topology, where should we place a minimal number
of actuators (resp. sensors) such that the dynamical system
is structurally controllable (resp. structurally observable) and
the assignment cost is minimal?

In this paper we assume that such actuators (resp. sensors)
are dedicated, i.e., they manipulate (resp. measure) a single
state variable. The mathematical formulation can now be
stated is as follows:

Problem Statement

Consider a dynamical system

i = Az, (1)

where A is a nxn binary matrix that represents the structural
pattern of an LTI system dynamics [7].
P Let C(z) e R,z € X = {xq,---
manipulating the state variable x.
Design the input matrix B= I+, 1ie., find a subset J*

of columns of the indices of the identity matrix I such

,ZTn} be the cost of

that
J* =ar min 17(C7015)1
g, pmin 7(Cg0olg)1y
s.t. (A, 1) is structurally controllable

| 7] is minimal

where C 7 consists of the subset of columns of the cost
matrix C = diag(C(x1),---,C(zy)), 17 is the 1 x| T|
vector of ones and o denotes the Hadamard product
(i.e., the entry-wise product). By |J| being minimal, it
follows that there exist no other J’, with |J'| < |J|
such that (A,17/) is structurally controllable.

Remark 1: Note that the solution procedure for P; also
addresses the corresponding structural observability output
matrix design problem by invoking the duality between
estimation and control in LTI systems. o

'A pair (A, B) is said to be structurally controllable if there exists
a pair (A’, B’) with the same structure as (A, B), i.e., same locations
of zeroes and non-zeroes, such that (A’, B’) is controllable. By density
arguments [10], it may be shown that if a pair (A, B) is structurally
controllable, then almost all (with respect to the Lebesgue measure) pairs
with the same structure as (A, B) are controllable. In essence, structural
controllability is a property of the structure of the pair (A, B) and not the
specific numerical values. A similar definition and characterization holds
for structural observability (with obvious modifications).



At first view, P; seems to be strictly combinatorial since
its solution requires to test if a subset 7 C {1,---,n}
leads to the design of B = I such that (A,1;) is
structurally controllable and, among these subsets we need
to select one that minimizes the cost function that may have
several solutions. Note that there exist a total of 2™ subsets
which originates an intractable problem from a computa-
tional point of view. To the best of authors knowledge, this
is the first work that solves the actuator/sensor placement
using structural theory with cost constraints. In [13], [14]
optimal placement under cost constraints is explored, al-
though under different assumptions and approximations are
achieved using distributed Gauss elimination method. On
the other hand, optimal sensor and actuator placement with
uniform costs (identical, constant across variables) have been
studied previously, for instance [2] and references therein;
however, these approaches mostly lead to combinatorial
implementation complexity in the number of state variables,
or are often based on simplified heuristic-based reductions
of the optimal design problems. Systematic approaches to
structured systems based design were investigated recently
in the context of different application scenarios, see, for
example, [15-20]; for instance, in network estimation, as in
[15], [18], where strategies for output (sensor) placement
are provided, ensuring only sufficient (but not necessarily
minimal) conditions for structural observability, whereas in
[15], [19] applications to power system state estimation are
explored. In [21], we provided a characterization of minimal
feasible dedicated input (resp. output) configurations O, in
other words, the minimal subset(s) of state variables to
which actuators (resp. sensors) need to be assigned to ensure
structural controllability (resp. observability). This problem
can be understood as a particular case of P; where the costs
are assumed to be uniform across all state variables, so that,
the design goal reduces to obtaining the minimum number
of dedicated inputs (outputs) ensuring structural controlla-
bility (observability). In [21], a polynomial complexity (in
the number of state variables) algorithm was provided to
characterize the set of (all) minimal feasible dedicated input
configurations © and also, a polynomial complexity algo-
rithm to compute such a single minimal feasible dedicated
input configuration. However, the techniques developed in
[21], although provide useful insights, are not sufficient to
address the solution of PP; with generic cost functionals.

The main contributions of this paper are twofold: first, we
show that we can solve P; by restricting S to © (the set of
all possible minimal feasible dedicated input configurations)
and secondly, we provide a polynomial complexity algorithm
to solve the above constrained but equivalent version of Py,
thus also recovering the solution of P;.

The rest of the paper is organized as follows: Section II
presents notation and reviews results from optimal actuator-
sensor placement in LTI systems with uniform placement
cost. Section III presents the main results of the paper,
in particular, a procedure to determine the minimal cost
placement of actuators in LTI systems as formulated in P;.
In section IV we illustrate the procedure through an example.

Finally, Section V concludes the paper.

II. PRELIMINARIES AND TERMINOLOGY

In this section we recall some classical concepts in struc-
tural systems [8], to be used in the subsequent development.

Given a dynamical system (1), an efficient approach to the
analysis of its structural properties is to associate it with a
directed graph (digraph) D = (V, &), in which V denotes a
set of vertices and £ represents a set of edges, such that, an
edge (vj,v;) is directed from vertex v; to vertex v;. Denote
by X = {z1, - ,x,} and U = {uq,--- ,u,} the set of state
vertices and input vertices, respectively. Denote by Ex x =

{(zi,z;) + [Ali; # O} and &ya0 = {(uy,2:) + [Bli; # 0},
to define D(A) = (X,Ex x) and D(A, B) = (XYUU,Ex x U
Eu x). A digraph D, = (Vs, &) with Vs C V and & C €
is called a subgraph of D. If Vs =V, D, is said to span
D. A sequence of edges {(v1,v2), (v2,v3), -+, (Vk—1,Vk)}s
in which all the vertices are distinct, is called an elementary
path from v; to vg. When vy, coincides with vy, the sequence
is called a cycle.

In addition, we will require the following graph theoretic
notions [22]: A digraph D is said to be strongly connected
if there exists a directed path between any two pairs of ver-
tices. A strongly connected component (SCC) is a maximal
subgraph Dg = (Vg, Es) of D such that for every v, w € Vg
there exists a path from v to w and from w to v. Note that,
an SCC may have several paths between two vertices and
the path from v to w may comprise some vertices not in
the path from w to v. Visualizing each SCC as a virtual
node (or supernode), one may generate a directed acyclic
graph (DAG), in which each node corresponds to a single
SCC and a directed edge exists between two SCCs iff there
exists a directed edge connecting the corresponding SCCs in
the original digraph. The DAG associated with D = (V, £)
may be efficiently generated in O(|V|+ |€|) [22], where |V
and |€| denote the number of vertices in V and the number
of edges in &, respectively. The SCCs in a DAG can be
characterized as follows:

Definition 1: An SCC is said to be linked if it has at least
one incoming/outgoing edge from another SCC. In particular,
an SCC is non-top linked if it has no incoming edges to its
vertices from the vertices of another SCC and non bottom
linked if it has no outgoing edges to another SCC. O

For any two vertex sets S1, Sy C V, we define the bipartite
graph B(S1,83,Es, s,) associated with D = (V, ), to be
a directed graph (bipartite), whose vertex set is given by
S1US; and the edge set Es, s, by €s, .5, = {(51,52) € € :
S1 € 81782 €S, }

Given B(S1,82,E€s,.s,), a matching M corresponds to a
subset of edges in £s, s, that do not share vertices, i.e., given
edges e = (s1,s2) and € = (s}, s5) with s1,s] € S; and
S2,85 € So, e,/ € M only if s # s} and sy # s5. A
maximum matching M™* may then be defined as a matching
M that has the largest number of edges among all possible
matchings. The maximum matching problem may be solved
efficiently in O(1/|S1 U Ss||Es, s,]) [22]. Vertices in S;
and Sy are matched vertices if they belong to an edge in



the maximum matching M*, otherwise, we designate the
vertices as unmatched vertices. If there are no unmatched
vertices, we say that we have a perfect match. It is to be
noted that a maximum matching M * may not be unique.
For ease of referencing, in the sequel, the term right-
unmatched vertices (w.r.t. B(S1, S, Es, s,) and a maximum
matching M ™) will refer to only those vertices in S that do
not belong to a matched edge in M*.
In case a graph is composed of multiple SCCs, we define
Definition 2: Let D(A) = (X,Ex.x) and M* be a max-
imum matching associated with B(X, X,Ex x). A non-top
linked SCC is said to be a top assignable SCC if it contains
at least one right-unmatched vertex (with respect to M ™). [J
Note that the total number of top assignable SCCs may
depend on the particular maximum matching M * (not unique
in general) under consideration; as such we may define:
Definition 3: Let D(A) = (X,Ex x) and M* a maximum
matching associated with B(X,X,Ex x). The maximum
assignability index of D(A) is the maximum number of top
assignable SCCs that a maximum matching M* may lead
to. |
The following results from [21] which consider the char-
acterization of the minimal feasible dedicated input con-
figurations (or equivalently, the specific case of P; with
uniform costs, so that, the design goal reduces to obtaining
the minimum number of dedicated inputs ensuring structural
controllability) will be used in the sequel.
Theorem 1 (Minimum Number of Dedicated Inputs):
Let D(A) = (X,Ex.x) be the system digraph with S
non-top linked SCCs in its DAG representation. Let M* be
a maximum matching associated with the bipartite graph
B(X,X,Ex x) and let Ur C X be the set of corresponding
right-unmatched vertices. Then, the minimum number of

dedicated inputs p is given by

p=m+f—a 2
where m = |Ug| and « denotes the maximum top assignabil-
ity index of B(X, X, Ex x). o

The characterization of the set of all minimal feasible
dedicated input configurations O, i.e., the minimal subset(s)
of state variables to which actuators need to be assigned to
ensure structural controllability, is described as follows:

the minimal subset(s) of state variables to which actuators
(resp. sensors) need to be assigned to ensure structural
controllability (resp. observability).

Theorem 2 (Naturally Constrained Partitions): Let
D(A) = (X,Ex.x) be a digraph with |X| = n and
Nt = (X', Exi i), for i« = 1,---,B, be the 3 non-
top linked SCCs of the DAG representation of D(A),
with X* C X and Exixi C Ex,x. In addition, let
o : {1,---,n} — {1,---,n}, a bijective function
representing a permutation of the indices and M™* be a
maximum matching associated with the bipartite graph
B(X,X,Ex x) with m = |Ug| right-unmatched vertices,
where Urp = {v1,v2,...,v,} C X is the set of right-
unmatched vertices with respect to M* and p denotes the
minimum number of dedicated inputs as in Theorem 1.

(@)

Fig. 1. Some possible maximum matching for a 4-vertices star network.

There exist subsets ©7 C X, j = 1,---,p, given by
-j=1-m:6 ={zrex: V-{y}HhU
{z} is the set of right-unmatched vertices for
some maximum matching of B(X, X, Ex x)},
-j=m+1,---,p: = | N,
le{1,,8}

such that, the set © of minimal feasible dedicated input

configurations may be characterized as follows: The sub-

set Sy = {Zy(1), " ,To(p)} C A is a member of O

if and only if the following natural constraints hold:

(1) zo(j € ©J, forj=1,---,p;

(i) 2,(;) € ©7 and 7,y € ©F for j # j' with 1 <
J,j" < m implies that z,(;) and z,(; are different
two right-unmatched vertices of a maximum matching;

(iii) each non-top linked SCC A has at least one state
variable in S,, that belongs to A/, o

Finally, we have the following result concerning the exis-
tence of polynomial complexity algorithms for the instances

referred in Theorem 2 and Theorem 3.

Theorem 3 (Complexity): There exist algorithms of poly-
nomial complexity (in the number of state vertices) to
implement the following procedures:

1) obtaining the minimum number of dedicated inputs;
2) constructing the natural constrained partitions, OI’s:
3) generating a minimal feasible dedicated input configu-
ration iteratively. (]
We now illustrate the previous results with the following
example: consider the 4-vertices star network G, in other
words, one vertex in the centre connected with bidirectional
edges to all the others, depicted in Figure 1 together with
some possible maximum matchings (depicted by red edges).
From Theorem 1 and the fact that G is an SCC, we have
that the minimum number of inputs equals the number
of right-unmatched vertices. From Theorem 2, given the
minimal feasible dedicated input configuration & = {z1, 24}
(corresponding to the maximum matching depicted in Fig.1-
(a)), we now compute ©7 as in Theorem 2: ©% = {21, 23}
and ©% = {z4,23}. In other words, by definition of the
©7°s sets, we can replace z; or z4 by z3 in S and we
still have a minimal feasible dedicated input configuration.
In these sets z3 belongs to @}5 (as in Figure 1-b)). On the
other hand, z3 belongs to ©% = {24, z3} as can be inferred
from Figure 1-c). Note that there is no uniqueness in the
maximum matching and all relevant information is stated
in terms of the right-unmatched vertices. In general, in this
way, all possible configurations are described by the naturally
constrained partitions.



III. MAIN RESULTS

We first show that solving P; reduces to solving

P> Find S € O (the set of all possible minimal feasible
dedicated input configurations) that minimizes
n

Zh(%)(ﬂ%)) 3)

It is important to stress that in [21], only a representation
of © is obtained using a polynomial complexity algorithm
and not the O itself. In fact, if the set of all possible minimal
feasible dedicated input configurations were to be computed
with polynomial complexity, PP; constrained to S € © would
be straightforward to solve for non uniform costs as in (3),
since it will only require to go through the possible minimal
feasible dedicated input configurations and select the one that
achieves the minimal cost.

The desired reduction is obtained in Theorem 4. Sub-
sequently, without explicitly computing © we provide an
algorithm (with polynomial complexity in the number of
state variables) that solves (3). This procedure is presented in
Algorithm 1, and its correctness and complexity are analyzed
in Theorem 5 and Theorem 6 respectively.

Theorem 4: Let C' : X — R be the cost function. Then,
any solution S to P; satisfies S € O and is a solution to Ps.
Similarly, any solution S’ to P is a solution to P;. O

Proof: Follows by definition of feasible dedicated input
configuration S € ©, which implies that (A,I7) is struct.
controllable and |J| is minimal. In addition, by developing
the cost function in P; we obtain the cost in Ps. |

Remark 2: Note that if an input has the capability to
control different variables simultaneously, without increasing
the cost, then the problem would be different and much more
difficult since one needs to consider in advance the subsets
of variables that are controlled by the same input signal.

Algorithm 1 provides a procedure to find the solution to
P2 (and hence, P; by Theorem 4). Intuitively, Algorithm
1 is reminiscent of techniques used in the theory of sub-
modular function optimization [23]. Informally, the idea is
to sequentially construct a subset of variables F C X based
on the following recursive criteria: for every x € X take
FU{z} and evaluate the cost function on it. Since we would
like to minimize the cost function we have to consider the
variable that contributes the least in terms of cost increase;
add such a variable to F and proceed in the same way
until a specified specification is achieved, for instance a
designated number of variables. It is easy to see that in our
case we may be selecting variables that do not contribute
to ensure structural controllability, increasing the final cost
unnecessarily. Nevertheless, using the characterization of ©
as in Theorem 3, our approach rules out this possibility by
selecting variables from the ©’s. This is a key difference
from general submodular function optimization procedures,
as in our case, instead of selecting variables sequentially from
the same set, we select variables from different sets chosen
adaptively as the algorithm progresses.

Now consider the following result, concerning the com-
plexity of Algorithm 1.

ALGORITHM 1: Find the minimal feasible dedicated
input configuration that incurs in the minimal cost

Input: D(A) = (X,Ex,x) and cost C(z) for z € X
Output: Minimal feasible dedicated input configuration S*
that incurs in the minimal cost
1. Compute the non-top linked SCC of D(A) and denote
them by N, 1 € {1,--- ,k}
2. Compute an initial minimal feasible dedicated input
configuration S (see Theorem 2);
Initialize: S* = S;
ThetaSetsUsed = {};
nonTopLinkedSCC = {};
for 1 to k do
3. Compute ©%. for
jeJ=A{1,---,|8"|} — ThetaSetsUsed,
L=A{1,---,k} —nonTopLinkedSCC,
% non-top linked SCCs to be explored

C(x)

min
xe (st* mU/\ﬂ> . JET L
l

5. Determine the ©%. for j € 7 and N for [ € L to
which z* belongs to, say * € @f; and z* € NV,
respectively;

ThetaSetsUsed = ThetaSetsUsed U {5*};
nonTopLinkedSCC = nonTopLinkedSCC U {I*};

Si» =x"; % entry j* of S is replaced by x*

4. Let ¥ = arg

end
for £+ 1 70 |C*| do
3. Compute O%. for

jeJ=A{1,---,|S"|} — ThetaSetsUsed;
4. Let 2" =arg min C(x);

©€0%., JET

5. Determine the ©%. for j € J to which ™ belongs to,
say x* € @{;;
ThetaSetsU sed = ThetaSetsUsed U {j*};

T =x"; % entry j° of S* is replaced by z*

end

Theorem 5 (Complexity of Algorithm 1): Algorithm 1
has polynomial complexity (in the number of state variables
in (1)). ]

Proof: Briefly, follows by noticing that in the algorithm
we are only required to: 1) compute a DAG of the graph;
2) maximum matchings of some bipartite graph; 3) find the
argmin in a finite set; 4) compute a feasible dedicated input
configuration and 5) compute the ©7’s. The computation of
1)-3) can be done in polynomial complexity in the number
of vertices of the graph (which are state vertices) and 4)-5)
can be done in polynomial complexity in the number of state
variables by Theorem 3. Hence the result follows. [ ]

The correctness of Algorithm 1 is established in the
following:

Theorem 6 (Correctness of Algorithm 1): Algorithm 1 is
correct. In other words, it provides a minimal feasible
dedicated input configuration that incurs in the minimum cost
in Py (and hence P; by Theorem 4). O

Proof: Denote by S?, the instance of S* obtained at
the end of iteration ¢ of Algorithm 1, ¢ = 0,--- ,p, with
Sp = S. We need to show, that S, is indeed a solution to
Po.



Note that by construction |S*| = p for all ¢. To show that
SP is a minimal feasible dedicated input configuration we
proceed inductively: at each iteration ¢t for ¢ = 1,--- ,p we
show that S? satisfies conditions i) and ii) of Theorem 2,
whereas, condition (iii) is shown to be verified for all S¢,
t=k+1,---,p, ie., from iteration k£ + 1 onwards, after at
least one dedicated input has been assigned to at least each
of the k non-top linked SCCs.

For the iterations ¢ = 0,1,---,p we now have that
St satisfies condition i) and ii) of Theorem 2. Indeed, S°
satisfies these conditions (by Theorem 2), being a minimal
feasible dedicated input configuration. We now show that S*
also satisfies these conditions as follows:

i) S is a minimal feasible dedicated input configuration
computed in Step 2 of Algorithm 1, so by definition it
belongs to © and by Theorem 2 it satisfies conditions i)
and ii). S! results from changing one entry in SY, say S}
by a variable in ©* hence i) holds since S} = S € ©°
for all 8 € {1, --- ,n} — « (that we verified to satisfy i) in
Theorem 2) and S} is a variable in ©“. Hence, S' satisfies
i).

ii) Note that, S} is a variable in © hence, by the
definition of ©% (in Theorem 2), it corresponds to a right-
unmatched vertex or to a vertex in a non-top linked SCC.
Moreover, we have, for § € {1, -+ ,n}—q, Sé = Sg, where
each Sj satisfies (ii). It then follows that S* satisfies (ii) also.

Using the same inductive reasoning, it then follows that
conditions i) and ii) hold for S* as long as they hold St~!
for t = 2,--- ,p. As far as condition iii) in Theorem 2 is
concerned, note that, it only holds at the end of the first for,
since this ensures that one state variable is selected from
each of the non-top linked SCCs (by restricting the search
of variables to the intersection of ©7 for j € J and S' for
l € £). Indeed, from Step k 4+ 1 onwards, those variables
belonging to the non-top linked SCCs are kept unchanged,
and hence, S, for t = k+1,--- ,p has at least one variable
from each non-top linked SCC, and thus satisfies condition
iii) in Theorem 2. Hence, conditions 1)-iii) from Theorem 2
hold, and it follows that SP, i.e., the final S* is a minimal
feasible dedicated input configuration.

Now, we show that the minimal feasible dedicated input
configuration §* = {z} ,--- 2] }(obtained after the execu-
tion of Algorithm 1) incurs in the minimal cost in P5. The
argument follows by contradiction: without loss of generality
(since S* is order invariant) consider that C' (mfl) <. <
C(z})) and suppose there exists another minimal feasible
dedicated input configuration &' = {z} ,---, 2 } that in-
curs in a cost smaller than S*. Similarly, let C' (xgl) <. <
C(z; ) and because the cost in (3) is additive and strictly
positive, it follows that there exists ¥V C S’ comprising of
state variables a7, for each a € A (i.e. the a-th entry of S’),
such that z/, < z%. Let @ = arg min, A, in other words, the
smallest entry of S’ that has z/, < z} for a € A. Hence,
it follows from Algorithm 1 (Step 4) that SZ (note that the
iteration index coincides with the entry by the assumption
that the entries are in increasing order of cost) should be z7,
which contradicts the fact that % is the variable obtained in

Fig. 2. Graphical representation of D(A): each rectangle represents an
SCC and the two in the top are non-top linked SCCs.

Step 4 and contained S?, i.e., S*. |
IV. ILLUSTRATIVE EXAMPLE

In this section we present an example demonstration of

Algorithm 1. Consider D(A) = (X, Ex ) to be as depicted

in Figure 2. o ) )
Moreover, suppose that assigning a dedicated input to z €

X incurs the following costs:

C(Il) C(IEQ) O(Ig) C(I’4) C(I5) C(JEG)
10 10 00 2 20 7
O($7) 0(1‘8) 0(339) 0(3310) 0(3311) 0(3712)
15 13 00 00 10 100

Now, consider Algorithm 1 and suppose that Step 2
provides the following minimal feasible dedicated input
configuration

S = {ZC371‘5,I7,1‘9,I12}.

Note that S is not unique, but by Theorem 4 we can always

compute such a minimal feasible dedicated input configura-
tion. Set S* = S and execute the algorithm iterations as
follows ]
(1) Start by computing ©% for j € {1,2,3,4,5}. From
Figure 1 we have that we need always two dedicated inputs
for each of 4-vertices star networks, and the center vertex
of each of the 4-vertices star networks is never a right-
unmatched vertex. Intuitively, there are two alternatives: first
we have two dedicated inputs for each of 4-vertices star
networks, or, we have three dedicated inputs for the 4-
vertices star network in the top of Figure 2 and one in the
4-vertices star network in the bottom of Figure 2. This last
case consists of considering z¢ as a right-unmatched vertex.
On the other hand, the cycle that comprises the vertices
1, T3, x3 is structurally controllable by selecting any of its
vertices, in accordance with Theorem 2. Because x4 is a
cycle (since it is a self-loop) not in a non-top linked SCC, it
will never be a right-unmatched vertex or used in a feasible
dedicated input configuration. Finally, we have

6‘15’* = {$3,$2,$1}, 6‘25’* = {$5,.’If8}, 6%’* = {x’?,.’L’g},

@45* = {x97x117x8}7 9?9* = {I127x117x8}'



Note that in Figure 1, there exists two non-top linked
SCCs. Denote by A the non-top linked SCC corresponding
to the cycle comprising x1,22,23 and by N? the non-
top linked SCC that consists of x5, ¢, x7,78. From the
cost table, we have that, the state variables in @fs NnYUN !

1

for j € {1,2,3,4,5},1 € {1,2} that incur in a small-
est cost are x1,xs (cost 10). Since, looking up is done
by order, select z; that belongs to @}9*. Hence, &* =
{1, x5, %7, L9, x12} by replacing its first entry by the small-
est cost variable found. In addition, set ThetaSetsUsed =
{1} and nonTopLinkedSCC = {1}. ‘

(2) Having a new S* we need to compute O%. for j €
{2,3,4,5}, which are the same as before. Among @fgﬂLlJNl

for j € {2,3,4,5},1 € {2} the cheapest variable is xg
(cost 13) in ©2Z.(the first time it appears). Thus, S* =
{x1, s, 27, 29,212}, and ThetaSetsUsed = {1,2} and
nonTopLinkedSCC = {1, 2} and we are done with looking
for the cheapest variables in the non-top linked SCCs.

(3) For the new configuration $*, we have

0% = {x7,75},08. = {x9, 211,75}, 0%. = {12, 79, 75}

Now, x1; (cost 10) is the cheapest amongst e, for je
{3,4,5} and appears for the first time for j = 4. Thus,
§* = {x1, s, 27,211, 12}, and update ThetaSetsUsed =
{1,2,4}.

(4) Repeating the same procedure, we have

@g* = {1’7, 255},

where z7 is the cheapest variable with cost 15, leaving
S* = {w1,zs, 7,211,212}, but setting ThetaSetsUsed =
{1,2,4,3}.

(5) Finally, because the S* is the same as in iteration (4),
also @g* remains the same. It follows that x5 (cost 20) is
the cheapest variable in @g, hence

"
S ={z1, 28,27, 211,05} = E
i€{1,8,7,11,5}

@?9* - {1’12,.’59,1'5},

O(l‘l) = 68.

Hence, we conclude that this is the minimal feasible
dedicated input configuration that ensures a minimal cost
of 68.

V. CONCLUSIONS

In this paper we have provided a systematic method with
polynomial implementation complexity (in the number of the
state variables) in order to obtain the minimal cost placement
with the minimum number of actuators ensuring structural
controllability of a given LTI system. We have shown that
our method yields the globally optimal dedicated input place-
ment under arbitrary non-homogeneous positive assignment
costs. By duality, the results extend to the corresponding
structural observability output design under cost constraints.
The non-homogeneity of the allocation cost functional makes
the framework particularly applicable to actuator (sensor)
topology design in large-scale dynamic infrastructures, such
as power systems, which consist of a large number of
heterogeneous dynamic components with varying overheads

for controller (sensor) placement and operation. We believe
our proposed framework will lead to cost-efficient controller
(sensor) architecture design for these systems, and we intend
to pursue such practical design questions in the future.
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