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Abstract—This paper studies the problem of identifying the
minimum number of entities (agents), referred to as information
gatherers, that are able to infer all the states in a dynamical
social network. The information gatherers can be, for instance,
service providers and the remaining agents the clients, each
comprising several dynamic states associated with the services
and personal information. The problem of identifying the mini-
mum number of information gatherers can constitute a way to
create coalitions to oversee the entire state of the system, and
consequently the behavior of the agents in the social network.
The dynamical social network is assumed to be modelled as
a linear time-invariant system, and we will make use of the
structural systems concept, i.e., by considering only the sparsity
pattern (location of zeroes/non-zeroes) of the system coupling
matrix. As a consequence, the design guarantees derived hold
for almost all numerical parametric realizations of the system.
In this paper, we show that this problem is NP-hard: in addition,
we provide a reduction of the coalition problem to a minimum set
covering problem that, in practice, leads to efficient (polynomial
complexity) approximation schemes for solving the coalition
problem with guaranteed optimality gaps. Finally, an example
is provided which illustrates the analytical findings.

Index Terms—Structural Systems, Observability, Coalition,
Privacy

I. INTRODUCTION

In today’s world, there exist several tasks that demand
the cooperation between individuals or entities (agents) to
exert a joint action towards a specific goal, as for instance
a multi-agent network to achieve formation. Yet, there are
other forms of coalition: the cooperation between agents to
acquire information about all the agents in the network, in
order to obtain leverage in economic markets or advertisement
strategies, just to name a few. Hereafter, we focus in networks
of agents, where the interaction between the agents consists
of linear updates of their own state consisting of a quantity
of interest. This interaction occurs over time, leading to a
dynamic evolution of their states, which we briefly refer to as a
dynamical social network. Additionally, each agent may have
access to information about the network, either the updating
rules of the agents in the network as well as partial information
of a collection of agents in the network, yet each agent only
has partial measurements of the network state, i.e., linear

combinations of the agents’ states: consequently, each agent
gathers information not only about itself, but also about other
agents. These agents play the role of information gatherers that
can compile information and try to infer general characteristics
of the network, for instance, the states of all other agents at
a particular instance of time. In this context, we address the
problem of determining the minimum number of information
gatherers, whose collective information is sufficient to retrieve
all agents’ states. We refer to this problem as the coalition
problem. Formally, consider the social network dynamics,
represented by the linear time-invariant system

xk+1 = Axk, x0 ∈ Rn, k ∈ N, (1)

where xk ∈ Rn is the collection of agents’ states, i.e., its ith
entry corresponds to the scalar state of agent i. Further, each
agent i is able to collect a set of measurements from the agents
in the network, given by

yik = Cixk, i = 1, . . . , n, (2)

where yik ∈ Rmi , with mi ∈ N, denotes the output vector mea-
sured by agent i. Notice that each agent may (and generally
will) observe different quantities from the network, i.e., Ci can
be different across agents in the network. In particular, if the
matrix A is a consensus-like matrix [5], [2], where each agent
i only measures the incoming state from its neighbors Ni and
itself, then Ci = INi∪{i}

n , where INi∪{i}
n denotes the collection

of rows of the identity matrix with indices in Ni∪{i}. Now, let
Ā ∈ {0, 1}n×n denote the zero/non-zero or structural pattern
of the system matrix A, C̄i ∈ {0, 1}mi×n the structural pattern
of the output matrix of agent i, given in (2). These structural
matrices are heavily used in the study of structural systems
theory [3], where the pair (Ā, C̄i) is said to be structurally
observable if there exists an observable numerical realization
(A,Ci) in (1)-(2) with the same structure as (Ā, C̄i) (by
density arguments, this entails that almost all pairs with the
structure of (Ā, C̄i) are observable, see for example [3]).

Hereafter, we restrict our attention to the theoretical prop-
erties of structural systems, and we consider the structural



counterpart to the coalition problem described above. More
specifically, given the structural dynamics matrix and the
collection of output configurations of each agent, the coalition
problem consists of identifying the smallest subset of agents
J ⊂ {1, . . . , n}, such that the union of their outputs ensure
structural observability of the system, and may be formally
posed as follows:

P1: Given a network composed by n agents, where the
structural dynamic matrix is given by Ā ∈ {0, 1}n×n and
C̄i ∈ {0, 1}mi×n is the structure of the measured outputs by
agent i, for i = 1, ..., n, determine the minimum collection of
agents, indexed by J ∗, obtained as follows:

J ∗ = arg min
J⊂{1,...,n}

|J | (3)

s.t. (Ā, C̄J ) is structurally observable,

where J is a subset of indices associated with the agents’
outputs, and C̄J corresponds to the collection of the measure-
ments of agents indexed by J , i.e.,

C̄J = [C̄T
j1 C̄T

j2 · · · C̄
T
jp ]T ,

where {j1, . . . , jp} ⊂ {1, . . . , n}, and j1 6= . . . 6= jp. �
Problem P1 is closely related to the minimum constrained

output selection (minCOS) problem addressed in [7] (see also
the references therein), in which the problem of determining
the minimum number of measurements that a single agent
needs to obtain to ensure structural observability of the system
was studied. In fact, the minCOS problem was shown to be
NP-hard in [7], and it will play a key role in showing the
coalition problem is at least as difficult to solve, i.e., it is an
NP-hard problem.

The main contributions of the present paper consist in
showing that the coalition problem is an NP-hard problem, and
providing the reduction of the coalition problem to a minimum
set covering problem. In practice, such a reduction may lead
to efficient (polynomial complexity) approximation schemes
for solving the coalition problem with guaranteed optimality
gaps.

The rest of this paper is organized as follows: Section II
introduces some preliminaries on computational complexity
theory. Additionally, it reviews some concepts and results in
structural systems theory to be used in the sequel. Section III
presents the main results of this paper, i.e., that the coalition
problem is NP-hard, and a polynomial reduction from the
coalition problem to a minimum set covering problem. The
proofs are relegated to the Appendix. Finally, an illustrative
example is provided in Section IV.

II. PRELIMINARIES AND TERMINOLOGY
In this section, we review the set covering problem [1], and

some necessary and sufficient conditions that ensure system’s
structural observability.

A (computational) problem is said to be reducible in poly-
nomial time to another if there exists a procedure to transform
the former into the latter using a number of operations, which
is bounded by a polynomial on the size of the input. Such

reduction is useful in determining the qualitative complexity
class [4] a particular problem belongs to. For instance, recall
that a problem P in NP (i.e., the class of problems for which
the feasibility of a solution can be verified in polynomial time)
is said to be NP-complete if all other NP problems can be
polynomially reduced to P [4]. These problems are commonly
referred to decision problems, since they aim to assess the
feasibility of a solution with specified properties. Instead, one
may be willing to determine solutions that are optimal with
respect to some objective. Those optimization problems which
decision versions are NP-complete are referred to as NP-hard,
see [4].

Lemma 1 ([4]): If a problem PA is NP-hard and PA is
reducible in polynomial time to PB , then PB is NP-hard. �

In this paper, we will often use the following well known
NP-hard problem as a means of obtaining the desired reduc-
tions.

Definition 1 ([1]): (Minimum Set Covering Problem)
Given a set of m elements U = {1, 2, . . . ,m} and a set of n
sets S = {S1, . . . ,Sn} such that Si ⊂ U , with i ∈ {1, · · · , n},

and
n⋃

i=1

Si = U , the set covering problem consists of finding

a set of indices I∗ ⊆ {1, 2, . . . , n} corresponding to the
minimum number of sets covering U , i.e.,

I∗ = arg min
I⊆{1,2,...,n}

|I|

subject to: U =
⋃
i∈I
Si .

�
Now, we revise some concepts from structural systems

theory. Structural systems provide an efficient representation
of a linear time invariant system as a directed graph (digraph).
A digraph consists of a set of vertices V and a set of directed
edges EV,V of the form (vi, vj) ∈ V × V . If a vertex v
belongs to the endpoints of an edge e ∈ EV,V , we say that
the edge e is incident to v. We represent the state digraph
by D(Ā) = (X , EX ,X ), i.e., the digraph that comprises only
the state variables as vertices denoted by X = {x1, · · · , xn}
and a set of directed edges between the state vertices denoted
by EX ,X =

{
(xi, xj) ∈ X × X : Āj,i 6= 0

}
. In addition, we

represent the ith agent digraph by D(Ā, C̄i) = (X∪Yi, EX ,X∪
EX ,Yi

), where Yi = {yi,1, · · · , yi,mi} corresponds to the out-
put vertices and EX ,Yi

=
{

(xj , yi,k) ∈ X × Yi : [C̄i]k,j 6= 0
}

the edges identifying which state variables are measured
by which outputs of the ith agent. Similarly, we define
the system digraph given by D(Ā, [C̄1 · · · Cn) = (X ∪
(
⋃n

i=1 Yi) , EX ,X ∪ (
⋃n

i=1 EX ,Yi
)).

We also require the following graph theoretic notions [1]: A
digraph D is strongly connected if there exists a directed path
between any two vertices. A strongly connected component
(SCC) is a maximal subgraph DS = (VS , ES) of D such that
for every u, v ∈ VS there exists a direct path from u to v.

By visualizing each SCC as a virtual node, we can build
a directed acyclic graph (DAG) representation, in which a
directed edge exists between two SCCs if and only if there
exists a directed edge connecting two vertices in the respective



SCCs in the original digraph D = (V, E). The construction of
the DAG associated with D(Ā) can be performed efficiently
in O(|V|+ |E|) [1]. The SCCs in the DAG may be categorized
as follows.

Definition 2 ([6]): An SCC is said to be non-bottom linked
if it has no outgoing edges from its vertices to the vertices of
another SCC. �

Given D = (V, E), we can construct a bipartite graph
B(S1,S2, ES1,S2) [6], where S1,S2 ⊂ V and the edge set
ES1,S2 = {(s1, s2) ∈ E : s1 ∈ S1, s2 ∈ S2 }.

Given B(S1,S2, ES1,S2), a matching M corresponds to a
subset M ⊆ ES1,S2 so that no two edges in M have a vertex
in common, i.e., given edges e = (s1, s2) and e′ = (s′1, s

′
2)

with s1, s
′
1 ∈ S1 and s2, s

′
2 ∈ S2, e, e′ ∈ M only if s1 6= s′1

and s2 6= s′2. A maximum matching M∗ is a matching M with
the largest number of edges among all possible matchings.

Given a matching M , an edge is said to be matched with
respect to (w.r.t.) M , if it belongs to M . In addition, we say
that a vertex v ∈ S1 ∪S2 is matched if it is incident to some
matched edge in M , otherwise we say that the vertex is free
w.r.t. M . A matching is said to be perfect if there are no free
vertices.

Corollary 1 ([6]): Given D(Ā) = (X , EX ,X ) and its
DAG representation, constituted by k SCCs, denoted by
{N i}i=1,...,k, where N i = (Xi, EXi,Xi), let N i1 , . . .N im be
the non-bottom linked SCCs in the DAG representation with
{i1, . . . , im} ⊂ {1, . . . , k} and B(Ā) = B(X ,X , EX ,X ) the
state bipartite graph. If B(Ā) has a perfect matching, then
(Ā, C̄) is structurally observable if and only if for each non-
bottom linked SCC there exists an output (corresponding to a
row in C̄) measuring at least one of its state variables. �

III. MAIN RESULTS

In this section, we present the main results of this paper:
first, we show that the coalition problem is NP-hard, and,
then, we provide a reduction to a set covering problem, which
may be used to determine a solution to the coalition problem.
Additionally, the reduction may lead to efficient (polynomial
complexity) approximation schemes for solving the coalition
problem with guaranteed optimality gaps.

We start by showing that the coalition problem presented in
P1 is NP-hard.

Theorem 1: The coalition problem presented in P1 is NP-
complete. �

Now, we assume that the structure of the dynamic matrix,
i.e., Ā in the coalition problem, satisfies the following condi-
tion:
Assumption 1 The structural dynamic matrix Ā is such that
the state bipartite graph B(Ā) = B(X ,X , EX ,X ) associated
with Ā has a perfect matching. �

Notice that Assumption 1 holds in general for social dy-
namical networks in which each agent uses its own past
state information in addition to its neighbors’ states in the
update protocol (for instance, consensus or gossip type proto-
cols, see [2]): more precisely, since each agent uses its own
information to update its state, the matrix Ā has non-zero

diagonal entries, thus leading to a perfect matching of B(Ā)
comprised by the edges (self-loops in D(Ā)) associated with
those diagonal entries.

The polynomial reduction of the coalition problem to a
minimum set covering problem is presented next.

Theorem 2: Consider the coalition problem P1 with sys-
tem matrix instance Ā ∈ {0, 1}n×n, where Ā satisfies As-
sumption 1, and output matrices C̄i ∈ {0, 1}mi×n, with
i = 1, . . . , n and mi ∈ N. Denote by N i, i = 1, . . . , k, the k
non-bottom linked SCCs of D(Ā). Then, the coalition problem
can be polynomially reduced to the set covering problem with
universe U = {1, . . . , k} and sets {S∗j }j=1,...,p, where S∗j =
{i ∈ U : ∃r∈{1,...,n}∃k∈{1,...,mi}[C̄j ]r,k = 1 and xr ∈ N i}.

�
In the next section, we provide an illustrative example in

which Theorem 2 is used to determine the solution to a
coalition problem, with the social dynamic network satisfying
Assumption 1.

Fig. 1. This figure represents a digraph D(Ā, [C̄T
1 . . . C̄T

n ]T ): the agent
states are depicted by black vertices and the inter-agent dynamical coupling by
the black directed edges. The non-bottom linked SCCs are depicted by gray
dashed boxes, and the red boxes represent the collection of outputs (depicted
by green vertices) that each agent has: the green edges ending in those outputs
represent the state variables measured, i.e., the information collected by the
agents. In particular, if an output has more than one incoming edge, then it
measures a linear combination of the agents’ states (those agents from which
the edges depart from).

IV. ILLUSTRATIVE EXAMPLE

Hereafter, we illustrate how the reduction proposed in
Theorem 2 can be used to determine the minimum num-
ber of information gatherers. Consider the system digraph
D(Ā, [C̄T

1 · · · C̄T
n ]T ) depicted in Figure 1 comprising 20

agents. The agents’ states are depicted by black vertices and
the inter-agent dynamical coupling by the black directed edges.
Further, agents’ output vertices are depicted by green vertices.
Consequently, the agent digraph D(Ā, C̄i) comprises the state
digraph D(Ā) and the collection of output vertices (and edges
ending on them) associated with agent i delineated with the
rectangle labeled as yi,?. The peripheral agents (x11 − x20)
have three outputs each, whereas the agents x1 − x10 only



have one output each (omitted in the figure) corresponding
to the linear combination of its own measurement and the
measurement of the agent with an incoming edge on it (similar
to those obtained by yj,1 for j = 11, . . . , 20). Figure 1 depicts
10 non-bottom linked SCCs, contained in gray dashed boxes,
and given by N 1 = {x11},N 2 = {x12}, . . . ,N 10 = {x20}.
Consequently, the sets S∗j in Theorem 2 are given as follows:
for j = 1, . . . , 10, S∗j = ∅, whereas for j = 11, . . . , 20,
S∗j contains the indices of the non-bottom linked SCCs
comprising the state variables with outgoing edges into one
of the output vertices in the bundle yj,∗, for instance, we
have S∗11 = {1, 2, 10} when j = 11. An optimal solution
to the corresponding set covering problem is {S∗j } with
j ∈ J ∗ = {11, 14, 17, 19}; hence, by Theorem 2, C̄J ∗ is
a solution to the coalition problem. In fact, it is possible to
graphically verify that it is solution: more precisely, recall
Corollary 1, and notice that each bundle of outputs yk,?

measures the states in {k − 1, k, k + 1} for k = 12, . . . , 19,
whereas y11,? measures the states in {11, 12, 20} and y20,?

measures the states in {11, 19, 20}. In summary, to measure
the states in the 10 non-bottom linked SCCs, is the same as
measuring the states themselves, which implies that we need
at least the collection of measurements from 4 agents.

V. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we have showed that the coalition problem is
NP-hard, which implies that (in general) efficient (polynomial
complexity) solution procedures to solve it are unlikely to
exist. Yet, some approximation algorithms can be used to
determine suboptimal solutions with proven optimality gap
guarantees, as is the case with the minimum set covering
problem proposed to solve the coalition problem. Further
research may consist of determining special network structures
for which the coalition problem can be solved using efficient
algorithms.

APPENDIX

The minimum constrained output selection (minCOS) prob-
lem is the problem of, given Ā and C̄, determining the mini-
mum number of outputs that ensure structural observability.
Theorem 3 shows that the minCOS in general is a hard
problem.

Theorem 3 ([7]): Let Ā ∈ {0, 1}n×n and C̄ ∈ {0, 1}m×n.
The minCOS problem given by:

J ∗ = arg min
J⊂{1,··· ,n}

|J | (4)

s.t. (Ā, C̄(J )) is structurally observable,

where C̄(J ) consists of the submatrix of C̄ comprising the
rows with indices in J , is NP-hard. �
Using Theorem 3, we now obtain one of the main results of
the present paper.

Proof of Theorem 1: The reduction of the minCOS to the
coalition problem depends on the relation between m and n.
More precisely, the polynomial reductions are presented for
the following cases: (i) m = n, (ii) m < n, and (iii) m > n.
In (i), we consider as inputs to the coalition problem the matrix
Ā and C̄ of the minCOS problem, and set C̄i in the coalition

problem to be C̄i = C̄({i}), with i = 1, . . . , n. In case (ii),
we proceed as in (i), where C̄i = C̄({i}) for i = 1, . . . ,m,
and C̄i = 01×n for i = m + 1, . . . , n, where 01×n is the
zero vector. Finally, in (iii) consider as input to the coalition
problem the structural m×m dynamic matrix

Ā? =

[
Ān×n 1

0 I

]
,

where 1 and I are the matrices comprising only ones and
the identity matrix with appropriate dimensions, respectively;
whereas C̄i = C̄({i}), with i = 1, . . . ,m.

To see that the reduction is correct, we need to verify if a
solution to the corresponding coalition problem also provides
a solution to the minCOS problem. To see this, notice that (i)
follows by noticing that it is just a re-writing of the minCOS
problem. In (ii) it is immediate to see that agents i, with i =
m + 1, . . . , n will never be considered to form the coalition,
since they do not collect any measurements, and, hence by
considering only agents i = 1, . . . ,m we can do the same
reasoning as we did for (i). Finally, in (iii), the bipartite graph
B(Ā) has a perfect matching M∗ comprising all the edges of
the form (xj , xj), with j = 1, . . . ,m. In addition, the digraph
representation of D(Ā?) has the same non-bottom linked SCCs
as D(Ā); hence, recalling Corollary 1, it readily follows that a
solution to the coalition problem given above yields a solution
to the minCOS problem.

At last, it is easy to see that all the inputs created to
the coalition problem in the proposed reductions, require a
linear (in max{n,m}) computational complexity; hence the
reduction is polynomial. Consequently, by Lemma 1, if follows
that the coalition problem is NP-hard. �

Proof of Theorem 2: The present proof follows the same
steps as in the proof of Theorem 2 in [7]. �
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