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Abstract: This paper addresses the pose estimation problem for autonomous
vehicles that use a monocular charged-coupled-device (CCD) camera mounted on-
board that observes the apparent motion of stationary points. We formulate the
problem in the framework of state estimation of a state-affine system with multiple
perspective outputs. Resorting to dynamic programming, we derive a minimum-
energy estimator which produces an estimate of the state that is “most compatible”
with the dynamics, in the sense that it requires the least amount of noise energy
to explain the measured outputs. In our formulation we take directly into account
that the measurements arrive at discrete-time instants, are time-delayed, and may
not be complete. In this way, we can deal with usual problems in vision systems
such as noise as well as latency and intermittency of observations. The convergence
of the proposed observer system is analyzed and simulations results are presented
and discussed.
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1. INTRODUCTION

A fundamental problem in mobile robotics is
the determination of the position and orientation
with respect to an inertial coordinate system. A
promising solution to this problem is to utilize
a camera mounted on the robot that observes
the apparent motion on the image of stationary
points. The linear and angular velocities of the
camera can be assumed known in its own coor-
dinate system (possibly with errors due to noise)
but not in the inertial coordinate system. This
is quite reasonable in mobile robotics where the
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motion of the camera is determined by the applied
control signals. The problem of estimating the
position and orientation of a camera mounted on
a rigid body from the apparent motion of point
features has a long tradition in the computer
vision literature (cf., e.g., [Matthies, Kanade and
Szeliski, 1989; Jankovic and Ghosh, 1995; Soatto,
Frezza and Perona, 1996; Kaminer, Pascoal, Kang
and Yakimenko, 2001; Chiuso, Favaro, Jin and
Soatto, 2002; Rehbinder and Ghosh, 2003] and
references therein). Interesting algorithms are the
ones that are filtering-like or iterative that contin-
uously improve the estimates as more data (i.e.,
images) are acquired and that are robust with
respect to measurement noise. Soatto et al. [1996]
formulates the visual motion estimation problem
in terms of identification of nonlinear implicit
systems with parameters on a topological man-



ifold and propose a dynamic solution either in
the local coordinates or in the embedding space
of the parameter manifold. In [Rehbinder and
Ghosh, 2003], rigid-body pose estimation using
inertial sensors and a monocular camera is con-
sidered. A local convergent observer where the
states evolve on SO(3) (the rotation estimation
is decoupled from the position estimation) is pro-
posed. In the area of wheeled mobile robots, Ma,
Kosecka and Sastry [1999] address the problem of
tracking an arbitrarily shaped continuous ground
curve by formulating it as controlling the shape
of the curve in the image plane. Observability of
the curve dynamics is studied and an extended
Kalman filter is proposed to dynamically estimate
the image quantities needed for feedback control
from the actual noisy images. An application for
landing an unmanned air vehicle using vision in
the control loop is described in [Shakernia, Ma,
Koo and Sastry, 1999]. In [Kaminer et al., 2001],
based on measurements provided by airborne vi-
sion and inertial sensors, the problem of naviga-
tion system design for autonomous aircraft land-
ing is addressed. The authors cast the problem
in a linear parametrically varying framework and
solve it using tools that borrows from the theory
of linear matrix inequalities. These results are
extended in [Hespanha, Yakimenko, Kaminer and
Pascoal, 2001] to deal with the so-called out-of-
frame events.

Inspired by the (single output) perspective sys-
tems introduced by Ghosh, Jankovic and Wu
[1994], in Section 2 we formulate the problem
of estimating the position and orientation of a
controlled rigid body using measurements from
an on-board charged-coupled-device CCD cam-
era as a state-estimation problem of a perspec-
tive system. The reader is referred to [Ghosh
et al., 1994; Ghosh and Loucks, 1995; Takahashi
and Ghosh, 2001] for several other examples of
perspective systems in the context of motion and
shape estimation.

We propose a minimum-energy estimator that
produces an estimate for the state of the per-
spective system that is “most compatible” with
the system’s dynamics and measured outputs. In
particular, the optimal state estimate x̂ at time
t is defined to be the value for the state that
is compatible with the observations collected up
to time t and the dynamics of the system for
the “smallest” possible measurement noise and
disturbances, with “smallest” understood in an
integral-square sense. This type of estimators were
first proposed by Mortensen [1968] and further
refined by Hijab [1980]. Game theoretical versions
of these estimators were proposed by McEneaney
[1998]. It was recently shown by Krener [2003]
that this type of estimators is globally convergent
when the system is observable for every input.
In [Hespanha, 2002], it was shown that for pro-

jective systems with multiple inputs, convergence
can be obtained under less restrictive observability
assumptions. In [Aguiar and Hespanha, 2003a], we
improve upon the results in [Hespanha, 2002] by
incorporating quadratic state-constraints in the
minimum-energy formulation. State constraints
allow one to take into account that some elements
of the state must lie in given manifolds. In the
context of rigid body motion, typically part of
the state is a rotation matrix that is known to
lie in SO(3). This can be expressed by quadratic
constraints. In [Aguiar and Hespanha, 2003a],
the state estimates were used to close the loop
and control a mobile robot to a desired position,
defined with respect to visual landmarks. State-
constraints for systems with perspective outputs
also appeared in [Takahashi and Ghosh, 2001] in
the context of motion estimation using a CCD
camera and a laser range finder, where the mea-
surements from camera and range finder were
related by an algebraic constraint.

One of the main novelties of this paper is that
we explicitly address the fact that the measure-
ments arrive at discrete-time instants, are time-
delayed, and may not be complete. In this way,
we can deal with usual problems associated to
vision systems such as noise, latency, and inter-
mittency. Resorting to dynamic programming, in
Section 3 we derive a minimum-energy estima-
tor. The state-estimator has the desired property
that, under suitable observability assumptions,
the state-estimate converges asymptotically to the
true value of the state in the absence of noise
and disturbance. In the presence of noise, the
estimate remains bounded away from the true
value of the state (cf. Section 4). We can therefore
use this state-estimator to design output-feedback
controllers by using the estimated state to drive
state-feedback controllers. In Section 5 we illus-
trate the performance of the proposed estimator
through computer simulation.

Due to space limitations, all the proofs are omit-
ted. These can be found in [Aguiar and Hes-
panha, 2003b].

2. PROBLEM STATEMENT

Consider a continuous-time system described by

ẋ = A(u)x + b(u) + G(u)d, (1)
αjyj = Cj(u)x + dj(u) + nj , (2)

j ∈ I := {1, 2, . . . , N}, where x ∈ R
n denotes

the state of the system, u ∈ R
nu its input,

yj ∈ R
mj its jth perspective output, d ∈ R

nd

an input disturbance that cannot be measured,
and nj ∈ R

mj measurement noise affecting the
jth output. Each αj ∈ R, j ∈ I denotes a scalar
that is determined by a normalization constraint
such as

‖yj‖ = 1 or v′
jyj = 1, (3)



where the vj ∈ R
mj denote constant vectors. We

call (1)–(2) a state-affine system with multiple
perspective outputs, or for short simply a system
with perspective outputs.

As it is shown in Appendix, this system describes
the kinematic model of a rigid-body whose out-
puts are the homogeneous image coordinates of
N fixed points provided by an on-board camera.

Suppose now that we acquire the measurements
only at discrete times t′i, i = 0, 1, . . . , k, with
t′0 < t′1 < . . . < t′k, and we only have access to
them after a time-delay τi. Then, from (2) we have

αj(ti)yj(ti) = αj(t′i)yj(t′i)
= Cj(u(t′i))x(t′i) + dj(u(t′i)) + nj(t′i)

where y denotes the discrete time-delay observed
variable, and ti = t′i + τi. Furthermore, suppose
that the measurements may not be complete, that
is, j ∈ Ii, i = 0, 1, . . . , k, where Ii ⊆ I is an
index set that typically is equal to I if we receive
all the measurements at the same time ti. Then,

αj(ti)yj(ti) = Cj(u(ti − τi))x(ti − τi)
+ dj(u(ti − τi)) + nj(ti − τi), (4)

j ∈ Ii, i = 0, 1, . . . , k. The problem under
consideration is to design an observer, formulated
as a deterministic optimization problem, which
estimates the continuous-time state vector x(t)
governed by equation (1), given the discrete time-
delay measurements y(ti) expressed by the output
equation (4).

Before we formulate the optimization problem,
observe first from (1) that x(ti) satisfies

x(ti) = Φ(ti, ti − τi)x(ti − τi)

+
∫ ti

ti−τi

Φ(ti, σ)
[
b(u(σ)) + G(u(σ))d(σ)

]
dσ,

where Φ(t, t0) is the transition matrix of system
(1) satisfying the differential equation Φ̇ = A(u)Φ.
Therefore,

x(ti − τi) = Φ−1(ti, ti − τi)x(ti) − Φ−1(ti, ti − τi)∫ ti

ti−τi

Φ(ti, σ)
[
b(u(σ)) + G(u(σ))d(σ)

]
dσ.

Replacing this equation in (4) we get for j ∈ Ii,
i = 0, 1, . . . , k

αj(ti)yj(ti) = C̄j(u)x(ti) + d̄j(u) + n̄j(ti), (5)
where

C̄j(u) := Cj(u(ti − τi))Φ(ti − τi, ti),

d̄j(u) := −C̄j(u)

∫ ti

ti−τi

Φ(ti, σ)b(u(σ)) dσ + dj(u(ti − τi)),

n̄j(ti) := −C̄j(u)

∫ ti

ti−τi

Φ(ti, σ)G(u(σ))d(σ) dσ + nj(ti − τi).

The optimization problem can now be stated as
follows:

Problem 1. Consider the continuous-time state
equation (1) together with the discrete-time per-
spective output equation (5). Given an input u

defined on an interval [0, t), and measured outputs
yj(ti), with i = 0, 1, . . . k, t0 := 0, tk ≤ t, and
k := arg mink(t − tk), compute the estimate x̂(t)
of the state at time t ≥ 0 defined as

x̂(t) := arg min
z∈Rn

J(z, t), (6)

where

J(z; t) := min
d:[0,t),n̄j(ti),αj(ti)

i=0,1,...k

{
(x(0) − x̂0)′P0(x(0) − x̂0)

+

∫ t

0

‖d(σ)‖2 dσ +

k∑
i=0

∑
j∈Ii

‖n̄j(ti)‖2 :

x(t) = z, ẋ = A(u)x + b(u) + G(u)d,

αj(ti)yj(ti) = C̄j(u)x(ti) + d̄j(u) + n̄j(ti)

}
,

(7)

Ii ⊆ I, P0 > 0 and x̂0 encodes a-priori informa-
tion about the state.

The estimate x̂(t) can be interpreted as the value
for which the measured outputs can be made com-
patible with the system dynamics (1) and (5) for
the “smallest” possible noise n̄j and disturbance
d. Notice also that this formulation includes the
case when we do not have all the measurements at
the same time ti. In that case, Ii is a strict subset
of I.

3. THE OBSERVER EQUATIONS

In this section we present the observer equa-
tions that were derived by resorting to dynamic
programming. In that framework, the function
J(z; t), z ∈ R

n, t ≥ 0 is viewed as a cost-to-go. In
what follows, given a signal x with a jump at time
t, we denote by x(t−) the limit of x(τ) as τ ↑ t
from below, i.e., x(t−) := limτ↑t x(τ). Without
loss of generality we consider that x is continuous
from above at every point, i.e., x(t) = limτ↓t x(τ).
The following result solves Problem 1.

Theorem 1. The estimate x̂(t) of the state at time
t ≥ 0 defined by (6) and (7) can be computed as
a solution to the impulse system described by the
initial conditions

t0 = 0, P (t0) = P0, x̂(t0) = x̂0, (8)

the dynamic equations for ti ≤ t < ti+1, i =
0, 1, . . . , k

Ṗ (t) = −P (t)A(u) − A(u)′P (t)
− P (t)G(u)G(u)′P (t), P (ti) = Pi (9)

˙̂x(t) = A(u)x̂(t) + b(u), x̂(ti) = x̂i (10)

and the impulse equations for t = ti+1, i =
0, 1, . . . , k − 1

P (ti+1) = P (t−i+1) + W (ti+1), (11)
x̂(ti+1) = x̂(t−i+1) (12)

− P (ti+1)−1
[
W (ti+1)x̂(t−i+1) + w(ti+1)

]



where

W (ti+1) :=
∑

j∈Ii+1

C̄′
j(u)

(
I − yj(ti+1)yj(ti+1)′

‖yj(ti+1)‖2

)
C̄j(u),

w(ti+1) :=
∑

j∈Ii+1

C̄′
j(u)

(
I − yj(ti+1)yj(ti+1)′

‖yj(ti+1)‖2

)
d̄j(u).

Furthermore, the cost function J(z; t) defined in
(7) can be written as

J(z; t) =
(
z − x̂(t)

)′
P (t)

(
z − x̂(t)

)
+ c(t), (13)

where

c(t) =




0, t = 0
c(ti), ti ≤ t < ti+1

−(P (t
−

)x̂(t
−

) + x̂(t
−

)
′
P (t

−
)x(t

−
) + c(t

−
)

−w(t))
′[

P (t
−

) + W (t)
]−T

(P (t
−

)x̂(t
−

) − w(t))

+

∑
j∈Ii+1

d̄j

(
I −

yjy
′
j

‖yj‖2

)
d̄j , t = ti+1

for all i = 0, 1, . . . k − 1.

Proof. See [Aguiar and Hespanha, 2003b]. �

Remark 1. From equation (10) we can conclude,
as it was expected, that since in the time interval
(tk, tk+1) there is no additional information, the
dynamic equation of the observer for x̂(t) is a
replica of the state dynamic equation of system
(1). Notice also that for t = ti+1, i = 0, 1, . . . , k−1,
the state-estimation equation (12) can be rewrit-
ten as

x̂(ti+1) = x̂(t−i+1) + P (ti+1)
−1∑

j∈Ii+1

C̄′
j(u)

(
α̂jyj(ti+1) − C̄j(u)x̂(t−i+1) − d̄j

)
,

α̂j =
y′

j(ti+1)
(
C̄j(u)x̂(t−i+1) + d̄j

)
‖yj(ti+1)‖2

which emphasizes the parallel between (12) and a
Kalman filter for linear systems.

4. ESTIMATOR CONVERGENCE

In this section we investigate under what condi-
tions the state estimate x̂ provided by Theorem
1 converges to the true state x of the perspective
system. The following technical assumptions are
needed:
Assumption 1. There exist positive constants δ,
∆ ∈ (0,∞) such that δI ≤ G(u)G(u)′ ≤ ∆I,
∀u ∈ R

nu

Assumption 2. Let Num(t, σ) denote the number
of discontinuities of the observer system in the
open interval (σ, t). There exist finite positive
constants τD and N0, for which the following
condition holds:

Num(t, σ) ≤ N0 +
t − σ

τD
.

The constant τD is called the average dwell-time
and N0 the chatter bound.

Assumption 1 is a mild assumption and essen-
tially guarantees that G(u) is bounded and full-
row rank, “uniformly” over all possible inputs.

Assumption 2 roughly speaking guarantees that
the observer system occasionally can have con-
secutive discontinuities separated by less than
τd, but the average interval between consecutive
discontinuities is no less than τD. This type of
condition typically arises in the context of logic-
based switching control (cf., e.g., [Hespanha and
Morse, 1999] and references therein).

The following result establishes the convergence
of the state estimate.

Theorem 2. Assuming that the solution to the
process (1)-(2) exists globally, the solution to
the impulse state estimator (8)-(12) also exits
globally. Moreover, when Assumptions 1-2 hold
and P−1 remains uniformly bounded, there exist
positive constants c, r < 1, γd, γ1, . . . , γN such
that

‖x̃(tk)‖ ≤ c rk‖x̃(0)‖ + γd sup
τ∈(0,tk)

‖d(τ)‖

+
N∑

j=1

γj sup
τ∈(0,tk)

‖n̄j(τ)‖, tk > 0

where x̃(t) := x̂(t) − x(t) denotes the state esti-
mation error.

Proof. See [Aguiar and Hespanha, 2003b]. �

Some condition on the observability of (1)-(2)
would be expected to achieve convergence of the
estimated state x̂ to the process state x. In The-
orem 2 this condition appear in the form of the
requirement that P−1 remains bounded. The fol-
lowing result provides a condition under which
this happens.

Lemma 1. The matrix P remains lower bounded
by a positive value δ, i.e., P (t) ≥ δI > 0
along trajectories of the system (1), (5), and the
state-estimator (8)-(12), provided that there exist
positive constants N, ε such that the following
persistence of excitation condition

1
N

N∑
j=0

Φ(ti+j , ti)′W (ti+j)Φ(ti+j , ti)) ≥ εI > 0,

(14)
i = 0, 1, . . . , k, holds, where Φ(t, τ) denotes the
state transition matrix of ż = A(u)z.

Proof. See [Aguiar and Hespanha, 2003b]. �

Combining Theorem 2 and Lemma 1 we obtain
the following:

Corollary 1. When Assumptions 1 and 2 hold,
and there exist constants N, ε such that the
persistence of excitation condition (14) holds,
the state-estimate x̂ converges to the state x in
the absence of disturbance input and measure-
ment noise. When the disturbance and noise are
bounded but nonzero, x̂ may not converge to x
but remains bounded away from it.
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Fig. 1. Time evolution of the estimation errors in
position and orientation.

5. SIMULATION RESULTS

This section illustrates the performance of the
proposed estimator through computer simulation.
The objective is to estimate the position and
orientation of a unicycle mobile robot that starts
at position x0 = −2.0m, y0 = −5.0m with
orientation θ0 = 0 rad and follows a circular path
with linear velocity v = 0.3m/s and angular
velocity ω = 0.2 rad/s. A pin-hole camera is fixed
with the robot with its optical axis aligned with
the linear velocity. The vision sampling interval
is T = 0.4 s and the time-delay is τ = 0.2 s.
The estimator was initialized with x̂0 = −5.0m,
ŷ0 = 0m, and R̂ = I. The measurements given by
the camera were corrupted with additive Gaussian
noise with standard deviation equal to roughly 5%
of the measurements. The visual landmarks are
four corners (N = 4) of a square that belongs
to the plane perpendicular to the inertial x −
axis and contains the origin. Notice that since
the robot is describing a circular trajectory, the
visual landmarks will periodically be out of the
camera’s field of view (negative depth). While this
happens, the estimator does not receive visual
measurements.

Fig. 1 displays the time evolution of the estimation
errors. It can be seen that the estimated pose
tend to a small neighborhood of the true value.
Observe also, as expected, that the estimation
errors only reduce significantly when the visual
landmarks are in the camera’s field of view. This
can be checked by comparing Fig. 1 with Fig. 2
which shows the time evolution of the minimum
and maximum singular values of P , respectively,
and also indicates through the time evolution of
variable σ when the estimator is receiving (σ = 0)
or not (σ = −1) measurements from the camera.

6. CONCLUSIONS

We considered the problem of estimating the
position and orientation of autonomous vehicles
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Fig. 2. Time evolution of the minimum and max-
imum singular values of P , respectively; and
the variable σ which indicates when the esti-
mator is receiving (σ = 0) or not (σ = −1)
measurements from the camera.

that use an onboard monocular charged-coupled-
device (CCD) camera that observes the apparent
motion of stationary points. We designed a dy-
namical impulsive system that produces an esti-
mate of the state that is “most compatible” with
the dynamics, in the sense that it requires the
least amount of noise energy to explain the mea-
sured output. We explicitly take into account that
the measurements arrive at discrete-time instants,
are time-delayed, and may not be complete. In
this way, we can deal with measurement noise,
latency, and intermittency. The convergence of
the proposed estimator system was analyzed and
illustrated through computer simulation. Future
work will address experimental validation of these
results.

APPENDIX

Consider a coordinate frame {b} attached to a
rigid body that moves with respect to an inertial
frame {i}. We denote 1 by (pib, Rib) ∈ SE(3)
the configuration of the frame {b} with respect
to {i}, and (vb

ib,Ω
b
ib) ∈ se(3) the twist that

defines the velocity of frame {b} with respect to
{i}, expressed in the frame {b}. Suppose that
a camera attached to the body frame {b} sees
N points Q1, Q2, . . . , QN . Denoting by yj ∈ R

3

the homogeneous image coordinates provided by
the camera of the point Qj , the dynamics of the
system can be described by the following system
with N perspective outputs: (see [Hespanha, 2002]
for details)

q̇b
1 = −Ωb

ibq
b
1 + R′

ibq̇
i
1 − vb

ib, (15)

Ṙ′
ib = −Ωb

ibR
′
ib, (16)

αjyj = F
(
pcb + Rcbq

b
1 + RcbR

′
ib(q

i
j − qi

1)
)
, (17)

1 We denote by SE(3) the Cartesian product of R
3 with

the group SO(3) of 3 × 3 rotation matrices; and by se(3)
the Cartesian product of R

3 with the space so(3) of
3 × 3 skew-symmetric matrices (cf.,e.g., [Murray, Li and
Sastry, 1994]).



∀j ∈ {1, 2, . . . , N}, where (pcb, Rcb) ∈ SE(3)
denotes the configuration of the frame {b} with
respect to the camera’s frame {c}, and F an
upper triangular matrix with the cameras intrinsic
parameters, of the form[ f11 f12 f13

0 f22 f21
0 0 1

]
,

where each fij denotes a scalar. For ideal pin-
hole cameras f12 = f13 = f21 = 0 and f11 =
f22 = f , where f is the camera’s focal length.
For the general case, we refer the reader e.g. to
[Faugeras, 1993]. Note that F and (pcb, Rcb) can
be time-varying in case the camera is allowed to
zoom or pan and tilt, which is often needed to
get good visual information. The normalization
constraints (3) are given by

[ 0 0 1 ] yj = 1, ∀j ∈ {1, 2, . . . , N}.

To proceed we need the following notation: Given
a m × n-matrix M , we denote by stack(M) the
mn-vector obtained from stacking the columns
of M one on top of each other, with the first
column on top. Given two matrices Mi ∈ R

mi×ni ,
i ∈ {1, 2} we denote by M1 ⊗ M2 ∈ R

m1m2×n1n2

the Kronecker product of M1 by M2. Using the
fact that given three matrices with appropriate
dimensions stack(AX B) = (B′ ⊗ A) stack(X)
[Horn and Johnson, 1994], we can re-write (15)–
(17) as follows:

q̇b
1 = −Ωb

ibq
b
1 + (I3×3 ⊗ q̇i

1) stack(Rib) − vb
ib,

stack(Ṙib) = (−Ωb
ib ⊗ I3×3) stack(Rib),

αjyj = Fpcb + FRcbq
b
1

+ (FRcb ⊗ (qi
j − qi

1)′) stack(Rib).

Thus, defining

x :=

[
qb
1

stack(Rib)

]
∈ R

12,

and

A :=
[−Ωb

ib I3×3⊗q̇i
1

0 −Ωb
ib⊗I3×3

]
, b :=

[
−vb

ib
0

]
,

Cj := [ FRcb FRcb⊗(qi
j−qi

1)
′ ] , dj := Fpcb,

it can be seen that the system (15)–(17) belongs
to the class of systems of the form (1)-(2). Once
we compute estimates R̂ib and q̂b

1 for Rib and qb
1,

respectively, we can also estimate pib using

p̂ib = qi
1 − R̂ibq̂

b
1.
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