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Abstract: This paper addresses the problem of dynamic positioning of an underac-
tuated autonomous underwater vehicle (AUV) in the horizontal plane. A nonlinear
adaptive controller is proposed that yields convergence of the trajectories of the closed
loop system to a desired target point in the presence of a constant unknown ocean
current disturbance and parametric model uncertainty. The controller is first derived
at the kinematic level assuming that the ocean current disturbance is known. An
exponential observer is then designed and convergence of the resulting closed loop
system is analyzed. Finally, integrator backstepping and Lyapunov based techniques
are used to extend the kinematic controller to the dynamic case and deal with model
parameters uncertainties. Simulation results are presented and discussed.
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1. INTRODUCTION

The problem of steering an autonomous under-
water vehicle (AUV) to a point with a desired
orientation has only recently received special at-
tention. This task raises some challenging ques-
tions in control system theory when the vehicle is
underactuacted. Furthermore, as will be shown,
its dynamics are complicated due to the presence
of complex hydrodynamic terms. This rules out
any attempt to design a steering system for the
AUV that would rely on its kinematic equations
only. Pioneering work in this field is reported in
(Leonard, 1995), where open loop small-amplitude
periodic time-varying control laws are used to re-
position and re-orient underactuated AUVs. The
design of a continuous, periodic feedback control
law that asymptotically stabilizes an underactu-
ated AUV and yields exponential convergence to

? This work was supported in part by the EC under the
FREESUB network and by the PDCTM programme of the
FCT of Portugal under projects DREAM and MAROV.

the origin is described in (Pettersen and Ege-
land, 1996). In (Pettersen and Nijmeijer, 1998), a
time-varying feedback control law is proposed that
yields global practical stabilization and tracking
for an underactuated ship using a combined inte-
grator backstepping and averaging approach.
It is important to point out that some of the
control laws developed so far for underactuated
underwater vehicles do not take explicitly into
account their dynamics and are therefore un-
realistic. Furthermore, even when the dynamics
are taken into account, the resulting closed loop
system trajectories are often not ”natural”. This
issue is discussed in (Aguiar and Pascoal, 2001b),
where the problem of regulating a nonholonomic
underactuated AUV in the horizontal plane to a
point with a desired orientation and with para-
metric modeling uncertainty is posed and solved.
The control algorithm proposed builds on a non
smooth coordinate transformation, Lyapunov sta-
bility theory, and backstepping design techniques.
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In practice, an AUV must often operate in the
presence of unknown ocean currents. Interesting
enough, even for the case where the current is
constant, the problem of regulating an AUV to a
desired point with an arbitrary desired orientation
does not have a solution. In fact, if the desired
orientation does not coincide with the direction
of the current, normal control laws will yield
one of two possible behaviors: i) the vehicle will
diverge from the desired target position, or ii)
the controller will keep the vehicle moving around
a neighborhood of the desired position, trying
insistently to steer it to the given point, and
consequently inducing an oscillatory behavior.
Motivated by the above considerations, this paper
addresses the problem of dynamic positioning of
an AUV in the horizontal plane in the presence of
unknown, constant ocean currents. To tackle this
problem, the approach considered here is to drop
the specification on the final desired orientation
and use this extra degree of freedom to force the
vehicle to converge to the desired point. Naturally,
the orientation of the vehicle at the end will be
aligned with the direction of the current.The vehi-
cle under consideration (see Figure 1) only has two
independent main back thrusters and is therefore
underactuated. A nonlinear adaptive controller is
proposed that gives convergence of the trajectories
of the closed loop system in the presence of a
constant unknown ocean current disturbance and
parametric model uncertainty. Controller design
relies on a non smooth coordinate transformation
in the original state space followed by the deriva-
tion of a Lyapunov-based, adaptive, control law in
the new coordinates and an exponential observer
for the ocean current disturbance. For sake of clar-
ity of presentation, the controller is first derived
at the kinematic level, assuming that the ocean
current disturbance is known. Then, an observer
is designed and convergence of the resulting closed
loop system is analyzed. Finally, resorting to in-
tegrator backstepping and Lyapunov techniques
(Krstić et al., 1995), a nonlinear adaptive con-
troller is developed that extends the kinematic
controller to the dynamic case and deals with
model parameter uncertainties.

2. THE AUV. CONTROL PROBLEM
FORMULATION

This section describes the kinematic and dynamic
equations of motion of the AUV of Figure 1 in the
horizontal plane and formulates the problem of
controlling it to a point with a desired orientation.
The control inputs are the thruster surge force τu
and the thruster yaw torque τr. The AUV has no
side thruster, see (Aguiar and Pascoal, 1997) for
model details.

2.1 Vehicle Modeling
Following standard practice, the general kine-
matic and dynamic equations of motion of the
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Fig. 1. The vehicle SIRENE coupled to a benthic
laboratory. Body-fixed {B} and earth-fixed
{U} reference frames

vehicle can be developed using a global coordinate
frame {U} and a body-fixed coordinate frame {B}
that are depicted in Figure 1. In the horizontal
plane, the kinematic equations of motion of the
vehicle, can be written as

ẋ = u cosψ − v sinψ, (1a)
ẏ = u sinψ + v cosψ, (1b)

ψ̇ = r, (1c)

where, following standard notation, u (surge
speed) and v (sway speed) are the body fixed
frame components of the vehicle’s velocity, x and y
are the cartesian coordinates of its center of mass,
ψ defines its orientation, and r is the vehicle’s
angular speed. In the presence of a constant and
irrotational ocean current, (uc, vc)′ 6= 0, u and
v are given by u = ur + uc and v = vr + vc,
where (ur, vr)′ is the relative body-current linear
velocity vector.
Neglecting the motions in heave, roll, and pitch
the simplified equations of motion for surge, sway
and heading yield (Fossen, 1994)

muu̇r −mvvrr + durur = τu, (2a)
mv v̇r +muurr + dvrvr = 0, (2b)
mr ṙ −muvurvr + drr = τr, (2c)

where mu = m−Xu̇, mv = m−Yv̇, mr = Iz−Nṙ,
and muv = mu −mv are mass and hydrodynamic
added mass terms and dur = −Xu − X|u|u|ur|,
dvr = −Yv−Y|v|v|vr|, and dr = −Nr−N|r|r|r| cap-
ture hydrodynamic damping effects. The symbols
τu and τr denote the external force in surge and
the external torque about the z axis of the vehicle,
respectively. In the equations, and for clarity of
presentation, it is assumed that the AUV is neu-
trally buoyant and that the centre of buoyancy
coincides with the centre of gravity.

2.2 Problem Formulation

Let {G} be a goal reference frame and assume for
simplicity of presentation that {G} = {U}, see
Figure 2. Then, the problem considered in this
paper can be formulated as follows:
Consider the underactuated AUV with the kine-
matic and dynamic equations given by (1) and
(2). Derive a feedback control law for τu and τr
so that (x, y) converges to the origin of {G} as
t → ∞ in the presence of a constant unknown
ocean current disturbance and parametric model
uncertainty.
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3. NONLINEAR CONTROLLER DESIGN
AND CONVERGENCE ANALYSIS

This section proposes a nonlinear adaptive control
law to regulate the motion of the underactuated
AUV to a given point in the presence of a constant
unknown ocean current disturbance and paramet-
ric model uncertainty. The controller is first de-
rived at the kinematic level, that is, by assuming
that the control signals are the surge velocity ur
and the yaw angular velocity r. It is also assumed
that the ocean current disturbance intensity Vc
and its direction φc are known. This assumption
will be lifted latter.

3.1 Coordinate Transformation

Let (xd, yd) be a vector in R2. Further let d be the
vector from the origin of frame {B} to (xd, yd)′

and e its length. Denote by β the angle measured
from xB to d. Vector (xd, yd)′ plays an important
role in the development of the controller for the
AUV, as explained later. Figure 2 illustrates the
particular case where (xd, yd)′ is the origin of
{G}. Consider the coordinate transformation (see
Figure 2)

e =
√

(x− xd)2 + (y − yd)2, (3a)
x− xd = −e cos(ψ + β), (3b)
y − yd = −e sin(ψ + β), (3c)

ψ + β = tan−1

(−(y − yd)
−(x− xd)

)
. (3d)

In equation (3d), care must be taken to select
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Fig. 2. Coordinate Transformation.

the proper quadrant for β. Let the ocean current
disturbance be characterized by its intensity Vc
and direction φc. The kinematics equations of
motion of the AUV can be rewritten in the new
coordinate system to yield

ė = −ur cosβ − vr sinβ − Vc cos(β + ψ − φc), (4a)

β̇ =
sinβ

e
ur − cosβ

e
vr − r +

Vc

e
sin(β + ψ − φc), (4b)

ψ̇ = r. (4c)

Notice that the coordinate transformation (3) is
only valid for non zero values of the variable
e, since for e = 0 the angle β is undefined.
Throughout the paper the following assumptions
are considered. See (Aguiar and Pascoal, 2001a)
for a thorough discussion.

Assumption 1. The vehicle will not cross the sin-
gular position e(t) = 0 for any time t ≥ t0.

Assumption 2. The heading ψ(t) will not con-
verge to φc + 2πn, n = 0,±1,±2, · · · as t→∞.

3.2 Kinematic Controller

At the kinematic level, the control objective con-
sists of recruiting the linear and angular velocities
ur and r, respectively, to regulate the position
(x, y) to zero. Consequently, it will be assumed
that ur and r are the control inputs. At this stage,
the relevant equations of motion of the AUV are
simply (4) and (2b). It is important to stress out
that the dynamics of the sway velocity v must be
explicitly taken into account, since the presence
of this term in the kinematics equations (1) is
not negligible (as is usually the case for wheeled
mobile robots).
Returning now to the control problem, observe
equations (4). The strategy for controller design
consists basically of i) manipulating r to regulate
β to zero (this will align xB with vector d), and
ii) actuating on ur to force the vehicle position to
(x, y) = 0. However, this must be done without
driving formally e to zero, thus avoiding problems
concerning the boundedness of the control inputs.
This is done by defining the coordinates xd and yd
adequately. See the statement of the theorem be-
low. At this stage, it is assumed that the intensity
Vc and the direction φc of the ocean current dis-
turbance are known. The following result applies.

Theorem 1. Consider the nonlinear invariant sys-
tem Σkin described by the AUV nonlinear model
(1) and (2b) together with the control law

ur = k1e− k1γ − Vc cos(ψ − φc), (5a)

r = k1 sinβ − k1
γ

e
sinβ − vr

e
cosβ

+
Vc
e

sin(ψ − φc) cosβ + k2β,
(5b)

where k1, k2, and γ are positive constants such
that

dvr
mu

> k1, k1 > 2
Vc
γ
, (6)

with β and e as given in (3), and

xd = −γ cosφc, yd = −γ sinφc. (7)

Let Xkin(t) = (x, y, ψ, vr)′ = {Xkin : [t0,∞) →
R4}, t0 ≥ 0, be a solution of Σkin. Let assump-
tion 1 and 2 be satisfied. Then, for any initial
conditions Xkin(t0) ∈ R4 the control signals and
the solution Xkin(t) are bounded and the position
(x, y) converges to zero as t→∞.

Proof. The proof is organized as follows: First,
it will be shown that β converges to zero. Then,
resorting to LaSalle’s invariance principle, conver-
gence of e to γ is concluded under the assumption
that the sway velocity vr is bounded. Due to
space limitations the proof of boundedness of vr
is omitted. See (Aguiar and Pascoal, 2001a) for
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details. Finally, if e converges to γ it follows from
(3), (7) and Assumption 2 that (x, y) → 0 as
t→∞.
Consider the candidate Lyapunov function

Vkin =
1
2
β2. (8)

Computing its time derivative along the trajecto-
ries of the system Σkin, gives V̇kin = −k2β

2. Thus,
β → 0 as t → ∞. Now, consider the dynamic
motion of e in closed loop given by

ė = −k1 cosβ e+ he(t)− vr sinβ, (9)

where he(t) = k1γ cosβ + Vc
[
cos(ψ − φc) cosβ −

cos(β + ψ − φc)
]
. Clearly, on the manifold E =

{Xkin : β = 0}, one can easily conclude that e→ γ
as t → ∞ since k1 > 0. Moreover, from (9), the
solution e(t) for t ≥ t0 can be expressed as

e(t) = Φe(t, t0)e(t0) +
∫ t

t0

Φe(t, σ)he(σ) dσ

−
∫ t

t0

Φe(t, σ)vr sinβ dσ,
(10)

where Φe(t, t0) = e
−
∫ t
t0

[k1 cos β]dσ
. Since β con-

verges to zero, there exists a finite time Tβ ≥
t0 ≥ 0 such that cosβ > 0 for all t ≥ Tβ . Con-
sequently, Φe(t, σ) ≤ γee

−λe(t−Tβ), for σ < Tβ ,
and Φe(t, σ) ≤ e−λe(t−σ), for σ ≥ Tβ , where

γe = e
−
∫ Tβ
t0

[k1 cos β]dσ
and λe = inft≥Tβ k1 cosβ.

Thus, if vr is bounded, it follows from (10) that
e(t) is bounded. Resorting to LaSalle’s invariance
principle, one can conclude that e(t) converges to
the largest invariant set M contained in E. Notice
in this case that the set M does not reduce to
the singleton 0. However, it is well known (see
(Khalil, 1996, Lemma 3.1)) that any bounded so-
lution converges to its positive limit set L+ which
must be necessarily a subset of E. To characterize
the set L+, observe that on the invariant manifold
E the trajectory (e(t) − γ) → 0 as t → ∞, and
therefore L+ is the origin. This in turn implies
that e(t) converges to γ as t→∞.
To prove that (x, y) converges to zero, it re-
mains to analyze the evolution of (ψ, vr). Since
(e, β, ψ, vr) is bounded and (e − γ, β) converges
to zero as t → ∞, LaSalle’s theorem guarantees
convergence of (ψ, vr) to the largest invariant set
M contained in E = {(e, β, ψ, vr) ∈ R4, e 6= 0 :
e = γ, β = 0}. On the manifold E, consider the
closed loop dynamics of {ψ, vr} and the candidate
Lyapunov function

V = V 2
c

mu

mv

[
1 + cos(ψ − φc)

]
+

1
2
v2
r .

Computing its time derivative, gives V̇ = −ζ ′Qζ,
where ζ =

(
Vc
√

mu
mv

sin(ψ − φc), vr
)′, Q11 = Vc

γ ,

Q12 = Q21 = −Vc2γ

√
mu
mv

[
1 + cos(ψ − φc)

]
, and

Q22 = dvr
mv

+ Vc
γ
mu
mv

cos(ψ − φc). Notice that the

symmetric matrix Q is positive definite if the
inequalities Vc

γ > 0, dvr > 2Vcγ mu, hold. This is
clearly true in view of conditions (6). Therefore,
after some algebraic manipulations one obtains

V̇ ≤ −λmin(Q)
[
1− cos(ψ − φc)

]
V ≤ 0,

where λmin(Q) denotes the minimum eigenvalue
of the positive matrix Q. Hence, it can be con-
cluded that limt→∞ V̇ (t) = 0 which implies that
{sin(ψ − φc), vr} converges to zero as t → ∞.
Thus, from (3b), (3c), (7), and under Assumption
2 one conclude that (x, y)→ 0 as t→∞.
This concludes the proof of Theorem 1. 2

3.3 Observer Design

Let vcx and vcy denote the components of the
ocean current disturbance expressed in {U}.
Then, the kinematic equation (1a) can be rewrit-
ten as ẋ = ur cosψ − vr sinψ + vcx . A simple
observer for the component vcx of the current is

˙̂x = ur cosψ − vr sinψ + v̂cx + kx1 x̃,

˙̂vcx = kx2 x̃,

where x̃ = x−x̂. Clearly, the estimate errors x̃ and
ṽcx = vcx − v̂cx are asymptotically exponentially
stable if all roots of the characteristic polynomial
p(s) = s2 + kx1s+ kx2 associated with the system

[ ˙̃x
˙̃vcx

]
=
[−kx1 1
−kx2 0

] [
x̃
ṽcx

]

have strictly negative real parts.
The observer for the component vcy can be written
in an analogous manner.
Define the variables V̂c and φ̂c as the module and
argument of the vector [v̂cx , v̂cy ], respectively. The
next theorem shows convergence of the kinematic
control loop when the observer is included. See
(Aguiar and Pascoal, 2001a) for a formal proof.

Theorem 2. Consider the nonlinear time invariant
system Σkin+Obs consisting of the nonlinear AUV
model (1), (2b), the current observer, and the
control law

ur = k1e− k1γ − V̂c cos(ψ − φ̂c), (12a)

r = k1 sinβ − k1
γ

e
sinβ − vr

e
cosβ

+
V̂c
e

sin(ψ − φ̂c) cosβ + k2β,

(12b)

where k1, k2, and γ are positive constants that
satisfy conditions (6). Let variables β and e be
given as in (3) where xd and yd are now redefined
as xd = −γ cos φ̂c, yd = −γ sin φ̂c. (13)

Let Xkin+Obs(t) = (x, y, ψ, v, ṽcx , ṽcy )′ = {Xkin+Obs

: [t0,∞)→ R6}, t0 ≥ 0, be a solution to Σkin+Obs.
Then, for any initial conditions Xkin+Obs(t0) ∈ R6

and under assumptions 1-2, the control signals
and the solution Xkin+Obs(t) are bounded, and the
position (x, y) converges to zero as t→∞.
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3.4 Nonlinear Dynamic Controller Design

This section indicates how the kinematic con-
troller is extended to the dynamic case. This
is done by resorting to backstepping techniques
(Krstić et al., 1995). Following this methodology,
let ur and r in equations (12a) and (12b) be
virtual control inputs and α1 and α2 the corre-
sponding virtual control laws. Introduce the error
variables z1 = ur − α1, z2 = r − α2, and consider
the Lyapunov function (8) augmented with the
quadratic terms z1 and z2, that is,

Vdyn = Vkin +
1
2
muz

2
1 +

1
2
mrz

2
2 .

The time derivative of Vdyn for V̂c = Vc and
φ̂c = φc can be written as

V̇dyn = −k2β
2 + z1

[
τu +mvvrr − durur −muα̇1

+
sinβ
e

β
]

+ z2

[
τr +muvurvr − drr −mrα̇2 − β

]
.

Let the control law for τu and τr be chosen as

τu = −mvvrr + durur +muα̇1 − sinβ
e

β − k3z1,

τr = −muvurvr + drr +mrα̇2 + β − k4z2,

where k3 and k4 are positive constants. Then,

V̇dyn = −k2β
2 − k3z

2
1 − k4z

2
2 ,

which is negative definite. This result plays a key
role on the development of the dynamic controller.

3.5 Adaptive Nonlinear Controller Design

So far, it was assumed that the AUV model pa-
rameters are known precisely. This assumption
is unrealistic. In this section the control law de-
veloped is extended to ensure robustness against
uncertainties in the model parameters.
Consider the set of all parameters of the AUV
model (2) concatenated in the vector Θ =[
mu,mv,muv,mr, Xu, X|u|u, Nr, N|r|r,mr

mu
mv
,

mr
Yv
mv
,mr

Y|v|v
mv

]′
, and define the parameter esti-

mation error Θ̃ as Θ̃ = Θ − Θ̂, where Θ̂ denotes
a nominal value of Θ. Consider the augmented
candidate Lyapunov function

Vadp = Vdyn +
1
2

Θ̃TΓ−1Θ̃,

where Γ = diag {γ1, γ2, ..., γ11}, and γi > 0,
i = 1, 2, ...11 are the adaptation gains and Vdyn
is given above.
Motivated by the choices in the previous sections,
choose the control laws
τu = −θ̂2vrr − θ̂5ur − θ̂6|ur|ur

+ θ̂1α̇1 − sinβ
e

β − k3z1,
(14a)

τr = −θ̂3urvr − θ̂7r − θ̂8|r|r + θ̂4α̇2a + θ̂9
ur
e
r cosβ

+ θ̂10
vr
e

cosβ + θ̂11|vr|vr
e

cosβ (14b)

+ θ̂4
vr
e

( ˙̂e
e

cosβ + ˙̂
β sinβ

)
+ β − k4z2,

where θ̂i denotes the i-th element of vector Θ̂,
α2b = −vre cosβ, α2a = α2 − α2b ,

˙̂e = −ur cosβ − vr sinβ − V̂c cos(β + ψ − φ̂c)
− γ ˙̂

φc sin(β + ψ − φ̂c), and

˙̂
β =

sinβ
e

ur − cosβ
e

vr − r +
V̂c
e

sin(β + ψ − φ̂c)

− ˙̂
φc
γ

e
cos(β + ψ − φ̂c).

Then,
V̇adp = −k2β

2 − k3z
2
1 − k4z

2
2 + Θ̃T

[
Q− Γ−1 ˙̂Θ

]
,

where Q is a diagonal matrix given by Q =
diag

{
−α̇1z1, z1vrr, z2urvr,−z2α̇2a−z2

vr
e

(
˙̂e
e cosβ+

˙̂
β sinβ

)
, z1ur, z1|ur|ur, z2r, z2|r|r,−urr z2e cosβ,

vr
e z2 cosβ, vre |vr|z2 cosβ

}
. Notice in above equa-

tion how the terms containing Θ̃i have been
grouped together. To eliminate them, choose the
parameter adaptation law as

˙̂Θ = ΓQ, (15)

to yield V̇adp = −k2β
2 − k3z

2
1 − k4z

2
2 ≤ 0.

The above results play an important role in
the proof of the following theorem that extends
Theorem 2 to deal with vehicle dynamics and
model parameter uncertainty, see (Aguiar and
Pascoal, 2001a).

Theorem 3. Consider the nonlinear invariant sys-
tem Σadp consisting of the nonlinear AUV model
(1) and (2), the current observer, and the adaptive
control law (14), (15), where the adaptation gain
Γ is a (11× 11) diagonal positive definite matrix.
Assume the control gains ki, i = 1, 2, 3, 4 and
the control variable γ are positive constants and
satisfy conditions (6). Let variables β and e be
given as in (3) where xd and yd are defined in
(13).

Let Xadp(t) = (x, y, ψ, u, v, r, ṽcx , ṽcy , Θ̃
′)′ =

{Xadp : [t0,∞) → R19}, t0 ≥ 0, be a solution to
Σadp. Then, for any initial conditions Xadp(t0) ∈
R11 and under assumptions 1 and 2, the control
signals and the solution Xadp(t) are bounded, and
the position (x, y) converges to zero as t→∞.

4. SIMULATION RESULTS

In order to illustrate the performance of the pro-
posed control scheme in the presence of para-
metric uncertainty and a constant ocean current
disturbance, computer simulations were carried
out with a model of the SIRENE AUV. The ve-
hicle dynamic model can be found in (Aguiar and
Pascoal, 1997).
Figure 3 shows the resulting vehicle trajectory
in the xy-plane for two simulations using the
nonlinear adaptive control law (14), (15). The
control parameters were selected as following:
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Fig. 3. Simulation resulting paths of the AUV.

k1 = 0.04, k2 = 0.8, k3 = 2 × 103, k4 = 500,
kx1 = 1.0, kx2 = 1.0, ky1 = 1.0, ky2 = 1.0, γ =
15, and Γ = diag(10, 10, 10, 1, 1, 2, 2, 2, 1, 0.1, .1)×
103. The parameters satisfy constraints (6). The
initial estimates for the vehicle parameters were
disturbed by 50% from their true values. In both
simulations, the initial conditions for the vehicle
were (x, y, ψ, u, v, r) = (−25m, 0, 0, 0, 0, 0). In one
simulation there is no ocean current. The other
simulation captures the situation where the ocean
current (which is unknown from the point of view
of the controller) has intensity and direction Vc =
0.5m/s, and φc = π

4 rad, respectively.
In the figure it can be seen that the vehicle
converges to the desired position (the origin, in
this case). Notice how in the presence of ocean
current the vehicle automatically recruits the yaw
angle that is required to counteract that current at
the target point. Thus, at the end of the maneuver
the vehicle is at the goal position and faces the
current with surge velocity ur equal to Vc. This is
clearly illustrated in the Figures 4-5 that show the
time responses for the case where ocean current is
different from zero.
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Fig. 4. Time evolution of x(t), y(t), and ψ(t).

5. CONCLUSIONS

A solution to the problem of dynamic position-
ing of an underactuated AUV (in the horizontal
plane) in the presence of a constant unknown
ocean current disturbance and parametric model
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Fig. 5. Time evolution of the relative linear ve-
locity (surge) ur(t), (sway) vr(t), and the
angular velocity r(t).

uncertainty was proposed. Convergence of the re-
sulting nonlinear regulation system was analyzed
and simulations were performed to illustrate the
behaviour of the proposed control scheme. Future
research will address the application of the new
control strategy developed to the operation of a
prototype marine vehicle.
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