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Abstract: We investigate limits of performance in reference-tracking and path-
following and highlight an essential difference between them. For a class of
nonlinear systems, we show that in reference-tracking, the smallest achievable
L2 norm of the tracking error is equal to the least amount of control energy
needed to stabilize the zero-dynamics of the error system. We then show that
this fundamental performance limitation does not exist when the control objective
is to force the output to follow a geometric path without a timing law assigned to
it. This is true even when an additional desired speed assignment is required to
be satisfied asymptotically or in finite time. Copyright c©2005 IFAC
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1. INTRODUCTION

Fundamental performance limitations in reference-
tracking for linear systems using feedback control
have been quantified with classical Bode inte-
grals and as the limits of cheap optimal control
performance [Kwakernaak and Sivan, 1972; Mid-
dleton, 1991; Qiu and Davison, 1993; Seron et
al., 1999; Chen et al., 2000]. In the absence of
unstable zero dynamics (non-minimum phase ze-
ros) and if the system is right invertible, perfect
tracking of any reference signal is possible, that
is, the L2 norm of the tracking error can be made
arbitrarily small. However, this is not the case in
the presence of unstable zero dynamics. A formula
derived by Qiu and Davison [1993], see also [Su et
al., 2003], shows that the tracking error increases
as the signal frequencies approach those of the
unstable zeros.
For step reference signals, Seron et al. [1999] re-
interpreted the Qiu-Davison formula and general-
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ized it to a class of nonlinear systems under the
assumption that the relative degree is one and the
zero dynamics are anti-stable. They showed that
the best attainable value of the L2 norm of the
tracking error eT (t), denoted by JT , is equal to the
lowest control effort, measured by the L2 norm,
needed to stabilize the zero dynamics driven by
eT (t). It is its role as a stabilizing control input
that prevents the output y(t) from perfect track-
ing. Extensions to non-right-invertible systems are
given in [Woodyatt et al., 2002; Braslavsky et
al., 2002].
In this paper we show that these results hold for
the problem of tracking any reference signal gener-
ated by a known exosystem. The zero dynamics to
be stabilized are those of the error system driven
by eT (t). As before, the best attainable value of
JT is the lowest energy needed to stabilize the
zero-dynamics.
Path-following problems are concerned with the
design of control laws that drive an object (robot
arm, mobile robot, ship, aircraft, etc.) to reach
and follow a geometric path. A secondary goal
is to force the object moving along the path to
satisfy some additional dynamic specification such



as follow the path with some desired velocity. A
common approach to the path-following problem
is to parameterize the geometric path yd by a
path variable θ and then select a timing law for
θ, [Hauser and Hindman, 1995; Al-Hiddabi and
McClamroch, 2002; Skjetne et al., 2004; Aguiar et
al., 2004; Aguiar et al., 2004a; Aguiar and Hes-
panha, 2004b]. A framework for path-following as
a method to avoid some limitations in reference-
tracking was described in [Aguiar et al., 2004a].
The key idea is to use θ as an additional control in-
put to stabilize the unstable zero-dynamics while
the original control variables keep the system on
the path.
We show that for a class of nonlinear systems
the fundamental performance limitations imposed
on reference-tracking by unstable zero dynamics
do not apply to the path-following problem. Fur-
thermore, the same is true for the speed-assigned
path-following problem in which a speed assign-
ment is required to be satisfied asymptotically or
in finite time.

In Section 2 we formulate the reference-tracking
and path-following problems. In Section 3 we
briefly review our recent results for non-minimum
phase linear systems, [Aguiar et al., 2004], show-
ing that the path-following problems can be solved
with arbitrarily small L2 norm of the path-
following error. Section 4 presents the main results
of the paper. Concluding remarks are given in
Section 5.

2. REFERENCE-TRACKING AND
PATH-FOLLOWING PROBLEMS

2.1 Reference-tracking
The classical reference-tracking problem is to de-
sign a feedback controller such that the closed-
loop system is asymptotically stable and, for any
reference signal r(t) in a prescribed family, the
plant output converges to r(t).
For linear systems

ẋ = Ax + Bu, y = Cx + Du, (1)

x ∈ R
n, u ∈ R

m, y ∈ R
q, and reference signals

r(t) ∈ R
q generated by a known exosystem

ẇ = Sw, r = Qw, (2)

Davison [1976] and Francis [1977] show that the
so-called servomechanism or regulator problem is
solvable if and only if (A,B) is stabilizable, (C,A)
is detectable, the number of inputs is at least
as large as the number of outputs (m ≥ q),
and the zeros of (A,B,C,D) do not coincide
with the eigenvalues of S. The internal model
approach, [Francis and Wonham, 1976; Francis,
1977], designs the reference-tracking controller

u(t) = Kx(t) + (Γ − KΠ)w(t),

where K is such that (A + BK) is Hurwitz, and
Π and Γ satisfy

ΠS = AΠ + BΓ,

0 = CΠ + DΓ − Q.

Then, the tracking error defined as

eT (t) := y(t) − r(t)

converges to zero, and the transients

x̃ := x − Πw, ũ := u − Γw (3)

are governed by ˙̃x = (A + BK)x̃, ũ = Kx̃.
For the nonlinear regulator problem

ẋ = f(x, u), y = h(x, u), (4)
ẇ = s(w), r = q(w), (5)

where f(0, 0) = 0, x ∈ R
n is the state, u ∈ R

m

the control, y ∈ R
q the output, w ∈ R

p the state
of the exosystem, and r ∈ R

q the reference signal,
Isidori and Byrnes [1990] show that it is solvable
if and only if there exist smooth maps Π(w), and
c(w), satisfying

∂Π
∂w

s(w) = f(Π(w), c(w)), Π(0) = 0,

h(Π(w), c(w)) − q(w) = 0, c(0) = 0.
(6)

Krener [1992] presents necessary and sufficient
conditions for local solvability of (6) when either
the exosystem has a semisimple pole structure or
the plant has a semisimple zero structure.

2.2 Path-following
In path-following, the output y(t) is required to
reach and follow a geometric path yd(θ), where
θ ∈ R is the path variable. In this paper, the path
yd(θ) is assumed to be generated by the exosystem

d

dθ
w(θ) = s(w(θ)), w(θ0) = w0

yd(θ) = q(w(θ)),
(7)

where w ∈ R
p, yd ∈ R

q, and θ0 := θ(0). For a
given timing law θ(t), the path-following error is
defined as

eP (t) := y(t) − yd(θ(t)). (8)

We consider the following two path-following
problems:
Geometric path-following: For a desired path
yd(θ), design a controller that achieves:

i) boundedness: the state x(t) is uniformly
bounded for all t ≥ 0 and for every
(x(0), w(θ(0))) = (x0, w0), in some neighbor-
hood of (0, 0),

ii) error convergence: the path-following error
eP (t) converges to zero as t → ∞, and

iii) forward motion: θ̇(t) > c for all t ≥ 0, where
c is a positive constant.

Speed-assigned path-following: In addition
to the geometric path-following task, a constant
speed vd > 0 is assigned and it is required that
either θ̇(t) → vd as t → ∞, or θ̇(t) = vd for all
t ≥ T and some T ≥ 0.

As illustrated by Skjetne et al. [2004], these path-
following problems provide natural settings for
many engineering applications. From a theoreti-
cal standpoint our main interest is to determine



whether the freedom to select a timing law θ(t)
can be used to achieve an arbitrarily small L2

norm of the path-following error, that is, whether
δ� > 0 in ∫ ∞

0

‖eP (t)‖2 dt ≤ δ� (9)

can be made arbitrarily small.

3. LIMITS OF PERFORMANCE FOR
LINEAR SYSTEMS

3.1 Reference-tracking
In reference-tracking, to satisfy the requirement
that ∫ ∞

0

‖eT (t)‖2 dt ≤ δ�, (10)

for an arbitrary δ� > 0, while keeping the closed-
loop system stable, the zeros of (1) must lie in
the open left half-plane C

−, [Kwakernaak and
Sivan, 1972].
The non-minimum phase zeros, that is the zeros
in C

+, impose a fundamental limitation on the
attainable tracking performance (10). This is re-
vealed by the fact, [Kwakernaak and Sivan, 1972],
that the limit JT , as ε → 0, of the optimal value
of the cheap control cost functional

Jε := min
ũ

∫ ∞

0

[‖eT (t)‖2 + ε2‖ũ(t)‖2
]
dt (11)

with ũ defined in (3), is strictly positive. Qiu
and Davison [1993] showed that the locations of
the zeros in C

+ determine the best attainable
performance, that is the value of JT .

Theorem 1. (Qiu and Davison [1993]). Let r(t) :=
η1 sinωt+η2 cos ωt, x(0) = 0, and assume that (1)
is right-invertible, has no zeros at jω, and its non-
minimum phase zeros are z1, z2, . . . , zp. Then the
best attainable performance JT := limε→0 Jε is
given by

JT = η′Mη, η = col(η1, η2),

where M is positive semi-definite and its trace
satisfies

trace M =
p∑

i=1

(
1

zi − jω
+

1
zi + jω

)
.

�

For more general reference signals, [Su et al., 2003]
give explicit formulas which show the dependence
of JT on the non-minimum phase zeros and their
frequency-dependent directional information.

3.2 Path-following

In contrast to reference-tracking, the attainable
performance for path-following is not limited by
non-minimum phase zeros, [Aguiar et al., 2004].
Let the desired path

yd(θ) :=
nd∑

k=1

[
akejωkθ + a�

ke−jωkθ
]
, (12)

where the ωk > 0 are real numbers and the
ak are non-zero complex vectors, be generated

by exosystem (7). Considering, as in [Qiu and
Davison, 1993; Woodyatt et al., 2002; Braslavsky
et al., 2002; Su et al., 2003], that x(0) = 0, [Aguiar
et al., 2004] prove:

Theorem 2. (Aguiar et al. [2004]). Consider the ge-
ometric path-following problem for (1) where
(A,B) is stabilizable. Then for any given positive
constant δ� there exist constant matrices K and
L, and a timing law θ(t) such that the feedback
law

u(t) = Kx(t) + Lw(θ(t)) (13)
achieves (9). �

It is important to stress that the stabilizability
of (A,B) is the only condition (necessary and
sufficient) for the solvability of the geometric
path-following problem using (13).
Furthermore, an arbitrarily small L2 norm of the
path-following error is attainable even when the
speed assignment vd is specified beforehand.

Theorem 3. (Aguiar et al. [2004]). For the speed-
assigned path-following problem, let vd be speci-
fied so that the eigenvalues of vdS do not coincide
with the zeros of (4), and assume that (A,B) is
stabilizable. Then, (9) can be satisfied for any
δ� > 0 with a timing law θ(t) and a controller
of the form (13) but with time-varying piecewise-
constant matrices K and L. �

4. LIMITS OF PERFORMANCE FOR
NONLINEAR SYSTEMS

In the first part of this section, we present an
internal model analog of the results in [Seron et
al., 1999; Braslavsky et al., 2002] for the reference-
tracking problem. In the second part, we present
our main result for the path-following problem.
We show that, in contrast to reference-tracking,
the path-following problems can be solved with
arbitrarily small L2 norm of the path-following
error.

4.1 Reference-tracking
We consider the class of nonlinear systems which
are locally diffeomorphic to systems in strict-
feedback form 3 :

ż = f0(z) + g0(z)ξ1, (14a)

ξ̇1 = f1(z, ξ1) + g1(z, ξ1)ξ2,

...

ξ̇rd
= frd

(z, ξ1, . . . , ξrd
) + grd

(z, ξ1, . . . , ξrd
)u,
(14b)

y = ξ1, (14c)

where z ∈ R
nz , ξ := col(ξ1, . . . , ξrd

), ξi ∈ R
m,

∀i ∈ {1, . . . , rd}, u ∈ R
m, and y ∈ R

m. fi(·)

3 When convenient we use the compact form (4) for (14).
In that case, f(·) denotes the vector field described by
the right-hand-side of (14a)–(14b), h(·) the output map
described by (14c), and x = col(z, ξ1, . . . , ξrd ).



and gi(·) are Ck functions of their arguments (for
some large k), fi(0, . . . , 0) = 0, and the matrices
gi(·), ∀i ∈ {1, . . . , rd} are always nonsingular.
We assume that initially the system is at rest,
(z, ξ) = (0, 0).
When the reference-tracking problem is solvable,
there exist maps Π = col(Π0, . . . ,Πrd

), Π0 : R
p →

R
nz , Πi : R

p → R
m, ∀i ∈ {1, . . . , rd}, and

c : R
p → R

m that satisfy (6). The following locally
diffeomorphic change of coordinates

z̃ = z − Π0(w), (15)

ξ̃ := col(ξ̃1, . . . , ξ̃rd
), (16)

ξ̃i = ξi − Πi(w), i = 1, . . . , rd (17)
ũ = u − c(w), (18)

transforms the system (14) into the error system

˙̃z = f̃0(z̃, w) + g̃0(z̃, w)eT , (19a)
˙̃
ξ1 = f̃1(z̃, ξ̃1, w) + g̃1(z̃, ξ̃1, w)ξ̃2,

... (19b)
˙̃
ξrd

= f̃rd
(z̃, ξ̃1, . . . , ξ̃rd

, w) + g̃rd
(z̃, ξ̃1, . . . , ξ̃rd

, w)ũ,

eT = ξ̃1, (19c)

where

f̃0 := f0(z̃ + Π0(w)) − f0(Π0(w))

+
[
g0(z̃ + Π0(w)) − g0(Π0(w))

]
q(w),

g̃0 := g0(z̃ + Π0(w)),

f̃0(0, w) = 0, g̃0(z̃, 0) = g0(z̃), and f̃i(·), g̃i(·), i =
1, . . . , rd are appropriately defined functions that
satisfy f̃i(0, . . . , 0, w) = 0 and g̃i(z̃, . . . , ξ̃i, 0) =
gi(z̃, . . . , ξ̃i).

Our analysis makes use of the following two opti-
mal control problems.

Cheap control problem: For the system con-
sisting of the error system (19) and the exosys-
tem (5) with initial condition

(
z̃(0), ξ̃(0), w(0)

)
=(

z̃0, ξ̃0, w0

)
, find the optimal feedback law ũ =

αcc
δ,ε(z̃, ξ̃, w) that minimizes the cost functional

1
2

∫ ∞

0

(‖eT (t)‖2+δ‖z̃(t)‖2+ε2rd‖ũ(t)‖2
)
dt (20)

for δ > 0, ε > 0. We denote by Jcc
δ,ε(z̃0, ξ̃0, w0) the

corresponding optimal value. The best-attainable
cheap control performance for reference-tracking
is then

JT := lim
(δ,ε)→0

Jcc
δ,ε(z̃0, ξ̃0, w0). (21)

As shown in [Krener, 2001], in some neighborhood
of (0, 0, 0) and for every δ > 0, ε > 0, the value
Jcc

δ,ε(·, ·, ·) is Ck−2 under the following assumption:

Assumption 1. The linearization around (z, ξ) =
(0, 0) of system (14) is stabilizable and detectable,
and the linearization around w = 0 of the exosys-
tem (5) is stable.

Minimum-energy problem: For the system
˙̃z = f̃0(z̃, w) + g̃0(z̃, w)eT , z̃(0) = z0, (22a)

ẇ = s(w), w(0) = w0, (22b)

with eT viewed as the input, find the optimal
feedback law eT = αme

δ (z̃, w) that minimizes the
cost

1
2

∫ ∞

0

(
δ‖z̃(t)‖2 + ‖eT (t)‖2

)
dt, (23)

for δ > 0. We denote by Jme
δ (z̃0, w0) the cor-

responding optimal value. Under Assumption 1,
Jme

δ (·, ·) is Ck−2 in some neighborhood of (0, 0).

Our analysis reveals that JT is equal to the least
control effort needed to stabilize the correspond-
ing zero dynamics system (22) driven by the track-
ing error eT .

Theorem 4. Suppose that Assumption 1 holds
and that (6) has a solution in some neighborhood
of w = 0. Then, for any (z̃(0), ξ̃(0), w(0)) =
(z̃0, ξ̃0, w0) in some neighborhood of (0, 0, 0) there
exists a solution to the cheap control problem and

JT = lim
δ→0

Jme
δ (24)

Proof. Under Assumption 1 and from the formu-
lations of the cheap control and minimum-energy
problems, we conclude that for every δ > 0, ε > 0,
and every initial condition (z̃0, ξ̃0, w0) in some
neighborhood of (0, 0, 0), the values Jme

δ (z̃0, w0)
and Jcc

δ,ε(z̃0, ξ̃0, w0) exist and satisfy

Jme
δ (z̃0, w0) ≤ Jcc

δ,ε(z̃0, ξ̃0, w0). (25)

On the other hand, from Lemma 7 in Appendix
we have

Jcc
δ,ε(z̃0, ξ̃0, w0) ≤ Jme

δ (z̃0, w0) + O(ε). (26)

Therefore, from (25)–(26) we conclude that

Jme
δ (z̃0, w0) ≤ Jcc

δ,ε(z̃0, ξ̃0, w0) ≤ Jme
δ (z̃0, w0)+O(ε).

The result (24) follows from this and (21) as one
makes (δ, ε) → 0. �

4.2 Path-following

For path-following, we define the correspondent
cheap control problem by replacing eT with
eP in (20). We then show that, in contrast
to reference-tracking, the path-following problem
can be solved with arbitrarily small L2 norm of
eP .
We let the vector field s(w) and the output map
q(w) of the exosystem (7) be linear, s(w) = Sw,
q(w) = Qw, such that all eigenvalues of S ∈ R

p×p

are non-zero and semisimple.

Theorem 5. Assume that (6) has a solution when
s(w) = vdSw, for vd almost everywhere on (0,∞).
Then, for every w(θ(0)) = w0 in a neighborhood
around w = 0, there exist a timing law for θ(t)
and a feedback law

u = c(w) + αδ,ε(z, ξ, w) (27)

which solve the geometric path-following and sat-
isfy (9) for every δ� > 0.



Proof. With the timing law

θ̇(t) = vd, θ(0) = 0, (28)

and vd > 0 a constant to be selected later,
the path-following problem becomes the tracking
problem of r(t) generated by

ẇ(t) = vdSw(t), r(t) = Qw(t), (29)

which, upon the substitution in (6), yields
∂Π
∂w

vdSw = f(Π(w), c(w)),

h(Π(w), c(w)) − Qw = 0.
(30)

The function c(w), used in the feedback law (27),
solves (30), while αδ,ε(z, ξ, w) minimizes (20) for
the error system (19) together with the exosystem
(29) and some small δ > 0, ε > 0. With the timing
law (28), Theorem 4 allows us to conclude that as
(ε, δ) → 0 we have JP = limδ→0 Jme

δ .
To prove that Jme

δ can be made arbitrarily small
by selecting a sufficiently large vd, we use Lemma
8 in Appendix. It shows that for the minimum-
energy problem and every initial condition in some
neighborhood of (z̃, w) = (0, 0), there exist a
sufficiently small δ > 0 in (23) and a feedback law
eT = α̂me

δ (z̃, w) for which Jme
δ (z̃0, w0) is bounded

by

Jme
δ (z̃0, w0) ≤ 1

2
z̃′0P0z̃0,

where P0 > 0 does not depend on vd. Observing
that z̃0 = Π0(w0), since z(0) = 0, the proof
is completed using Lemma 9 in Appendix which
establishes that ‖Π0(w0)‖ can be made arbitrarily
small by choosing a sufficiently large vd. �

Next we show that an arbitrarily small L2 norm
of the path-following error is attainable even when
the speed vd is specified beforehand.

Theorem 6. Consider the speed-assigned path-
following problem with vd specified so that (30)
has a solution in some neighborhood of w = 0.
Then, (9) can be satisfied for any δ� > 0 with
a suitable timing law θ(t) and a controller of the
form (27) with time-varying piecewise-continuous
maps c(w) and α(z, ξ, w).

Proof. To construct a path-following controller
that satisfies (9) we start with

u = cσ(w) + ασ(z, ξ, w), (31a)

θ̇ = vσ, (31b)

where for each positive constant v�, 	 ∈ I :=
{0, 1, 2, . . . N}, the maps Π� := col(Π�0 ,Π�ξ

),
Π�ξ

:= col(Π�ξ1
, . . . ,Π�ξrd

), Π�0 : R
p → Rnz ,

Π�i
: R

p → Rm, i = 1, . . . , rd, and c� : R
p → R

m

satisfy
∂Π�

∂w
v�Sw = f(Π�(w), c�(w)),

h(Π�(w), c�(w)) − Qw = 0,
(32)

and σ(t) : [t0 := 0,∞) → I, is the piecewise
constant switching signal

σ(t) =
{

i, ti ≤ t < ti+1, i = 0, . . . , N − 1
N, t ≥ tN

Each α�(z, ξ, w) is the optimal feedback-law that
minimizes∫ ∞

0

(‖eP ‖2+δ‖z−Π�0(w)‖2+ε2rd‖u−c�(w)‖2
)
dt,

for some small δ > 0, ε > 0. Note that (31) is
a speed-assignment path-following controller for
which θ̇(t) converges to vN = vd in finite time.
We now prove that for any δ� > 0, (9) can be sat-
isfied by appropriate selection of a finite sequence
t0, t1, . . . , tN together with (v0,Π0, α0, c0), (v1,Π1,
α1, c1), . . . , (vN ,ΠN , αN , cN ) used in the feedback
controller (31). To this end, we show in Lemma
10 in Appendix that JP is bounded by

JP ≤ 1
2
z̃′0P0z̃0 + γ

λmax(P0)
2

N∑
�=1

(v�−1 − v�)2

+ λmax(P0)
N∑

�=1

z̃�−1(t�)′
[
z̄�−1(t�) − z̄�(t�)

]

+
λmax(P0)

2

N∑
�=1

‖z̃�−1(t�)‖2, (33)

where λmax(P0) denotes the maximum eigenvalue
of P0 > 0, γ is a positive constant, z̃0 := z̃(0),
z̄� := Π�0(w), and the transient z̃� := z − Π�0(w)
converges to zero as t → ∞.

We show that each term of (33) is upper-bounded
by δ�

4 so that JP ≤ δ�. Applying the same
arguments as in Theorem 5, the first term in (33)
is bounded by δ�

4 using a sufficiently large v0. To
prove that the second term in (33) is smaller than
δ�

4 , we select the parameters v�, 	 ∈ I to satisfy

v�−1 − v� = µ, vN = vd, 	 = 1, 2, . . . , N (34)

where µ := 2δ�

γλmax(P0)(v0−vN ) , and N := v0−vN

µ .
Then

γ
λmax(P0)

2

N∑
�=1

(v�−1 − v�)2 ≤ γ
λmax(P0)

2
Nµ2

= γ
λmax(P0)

2
(v0 − vN )µ =

δ�

4
.

The above selection for the v�, 	 ∈ I, it is made
under the constraint that the reference-tracking
problem for the signal r(t) generated by (29) with
vd replaced by v� is solvable. This can always be
satisfied by appropriately adjusting v0. Finally,
for any given N , each of the last two terms in
(33) can be made smaller than δ

4 by choosing t�,
	 = 1, 2, . . . , N sufficiently large. �

5. CONCLUSIONS

This paper demonstrates that the task of fol-
lowing a geometric path yd(θ) is less restrictive
than the task of tracking a reference signal r(t).
The reference-tracking problem is subjected to
the limitations imposed by the unstable zero-
dynamics, a nonlinear analog of the Bode’s limi-
tations caused by non-minimum phase zeros. Our
analysis revealed that the limitation is due to



the need to stabilize the zero-dynamics by the
tracking error, which therefore prevents the out-
put y(t) from achieving perfect tracking. In path-
following one has available an additional degree of
freedom to select a timing law θ(t) with which a
prescribed path yd(θ) will be followed. In Theo-
rems 5 and 6, we prove that with an appropriate
choice of θ(t) the L2 norm of the path-following
error can be made arbitrarily small, that is, the
path-following problem is not subjected to the
limitations of reference-tracking. This conceptual
result may be of practical significance, because the
path-following formulation is convenient for many
applications. Design of path-following controllers
for non-minimum phase systems is a topic of cur-
rent research, [Dačić et al., 2004].

Appendix A
Due to space limitations, the proofs of the follow-
ing lemmas are omitted. These can be found in
[Aguiar et al., 2004c].

Lemma 7. Suppose that Assumption 1 holds. For
every initial condition (z̃0, ξ̃0, w0) for the error
system (19) and the exosystem (5) in some neigh-
borhood of (0, 0, 0), and every δ > 0, there ex-
ist a sufficiently small ε > 0 and feedback law
ũ = α̂cc

δ,ε(z̃, ξ̃, w) for which the value of (20) does
not exceed

Jme
δ (z̃0, w0) + O(ε).

Lemma 8. Consider the minimum-energy prob-
lem formulated in Section 4. For every initial
condition (z̃(0), w(0)) = (z̃0, w0) for (22) in some
neighborhood of (0, 0), there exist δ > 0 in (23)
and a feedback law eT = α̂me

δ (z̃, w) for which (23)
does not exceed 1

2
z̃′0P0z̃0,

where P0 > 0 does not depend on vd.

Lemma 9. In the reference-tracking problem for
the nonlinear system (14) let the vector field s(w)
and the output map q(w) of the exosystem (5)
be s(w) = vdSw, q(w) = Qw. Suppose that
the eigenvalues of S ∈ R

p×p are non-zero and
semisimple, and that for some vd > 0, (6) has
a solution in some neighborhood of w = 0. Then,
for any ρ > 0, there exists v�

d > 0 such that the
map Π0 : R

p → R
nz satisfying

∂Π0(w)
∂w

Sw = µ
[
f0(Π0(w)) + g0(Π0(w))Qw

]
,

µ := 1
v�

d
, is bounded by

‖Π0(w)‖ ≤ ρ.

Lemma 10. Under the conditions of Theorem 6,
the path-following controller (31) ensures that
there exists γ > 0 such that JP satisfies (33).
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tović (2004a). Path-following or reference-tracking?
An answer relaxing the limits to performance. In:
Proc. of IAV2004 - 5th IFAC/EURON Symp. on In-
tel. Auton. Vehicles. Lisbon, Portugal.

Aguiar, A. P. and J. P. Hespanha (2004b). Logic-based
switching control for trajectory-tracking and path-
following of underactuated autonomous vehicles with
parametric modeling uncertainty. In: Proc. of the
2004 Amer. Contr. Conf.. Boston, MA, USA.

Aguiar, A. P., J. P. Hespanha and P. Kokotović (2004b).
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