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Abstract—This paper addresses the problem of steering a
group of underactuated autonomous vehicles along given spatial
paths, while holding a desired inter-vehicle formation pattern.
For a general class of vehicles moving in either two or three-
dimensional space, we show how Lyapunov-based techniques
and graph theory can be brought together to yield a decentral-
ized control structure where the dynamics of the cooperating
vehicles and the constraints imposed by the topology of the
inter-vehicle communications network are explicitly taken into
account. Path-following for each vehicle amounts to reducing
the geometric error to a small neighborhood of the origin.
The desired spatial paths do not need to be of a particular
type (e.g., trimming trajectories) and can be any sufficiently
smooth curves. Vehicle coordination is achieved by adjusting
the speed of each vehicle along its path according to information
on the positions and speeds of a subset of the other vehicles,
as determined by the communications topology adopted. We
illustrate our design procedure for underwater vehicles moving
in three-dimensional space. Simulations results are presented
and discussed.

I. INTRODUCTION

Increasingly challenging mission scenarios and the advent
of powerful embedded systems and communication networks
have spawned widespread interest in the problem of coordi-
nated motion control of multiple autonomous vehicles. The
types of applications envisioned are manifold and include
aircraft and spacecraft formation flying control [5], [11],
[15], coordinated control of land robots [6], [14], and control
of multiple surface and underwater vehicles [7], [13], [16].
In spite of significant progress in the area, however, much

work remains to be done to develop strategies capable of
yielding robust performance of a fleet of vehicles in the
presence of complex vehicle dynamics, severe communica-
tion constraints, and partial vehicle failures. These difficulties
are specially challenging in the field of marine robotics for
two main reasons: i) the dynamics of marine vehicles are
often complex and cannot be simply ignored or drastically
simplified for control design proposes, and ii) underwater
communications and positioning rely heavily on acoustic sys-
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tems, which are plagued with intermittent failures, latency,
and multipath effects.
Inspired by the developments in the field, this paper

tackles a problem in coordinated vehicle control that departs
slightly from mainstream work reported in the literature.
Specifically, we consider the problem of coordinated path-
following where multiple vehicles are required to follow
pre-specified spatial paths while keeping a desired inter-
vehicle formation pattern in time. This problem arises for
example in the operation of multiple autonomous underwater
vehicles (AUV) for fast acoustic coverage of the seabed.
In this application, two or more vehicles are required to
fly above the seabed at the same or different depths, along
geometrically similar spatial paths, and map the seabed using
identical suites of acoustic sensors. By requesting that the
vehicles traverse identical paths so that the projections of
the acoustic beams on the seabed exhibit some overlapping,
large areas can be covered in a short time. These objectives
impose constraints on the inter-vehicle formation pattern. A
number of other scenarios can of course be envisioned that
require coordinated motion control of marine vehicles.
We solve the coordinated path-following problem for a

general class of underactuated vehicles moving in either two
or three-dimensional space. The solution adopted is well
rooted in Lyapunov-based theory and addresses explicitly
the vehicle dynamics as well as the constraints imposed by
the topology of the inter-vehicle communications network.
The latter are tackled in the framework of graph theory
[12], which seems to be the tool par excellence to study
the impact of communication topologies on the performance
that can be achieved with coordination [8]. The class of
vehicles for which the design procedure is applicable is
quite general and includes any vehicle modeled as a rigid-
body subject to a controlled force and either one controlled
torque if it is only moving on a planar surface or two
or three independent control torques for a vehicle moving
in three dimensional space. Furthermore, contrary to most
of the approaches described in the literature, the controller
proposed does not suffer from geometric singularities due to
the parametrization of the vehicle’s rotation matrix. This is
possible because the attitude control problem is formulated
directly in the group of rotations SO(3).
With the set-up adopted, path-following (in space) and

inter-vehicle coordination (in time) are essentially decoupled.
Path-following for each vehicle amounts to reducing a con-
veniently defined error variable to zero. The desired spatial
paths do not need to be of a particular type (e.g., trimming
trajectories) and can be any sufficiently smooth curves.
Vehicle coordination is achieved by adjusting the speed of



each of the vehicles along its path, according to information
on the relative position and speed of the other vehicles, as
determined by the communications topology adopted. No
other kinematic or dynamic information is exchanged among
the vehicles.
This paper builds upon and combine previous results

obtained by the authors on path-following control [2], [4]
and coordination control [9], [10].

II. PROBLEM STATEMENT

Consider an underactuated vehicle modeled as a rigid body
subject to external forces and torques. Let {I} be an inertial
coordinate frame and {B} a body-fixed coordinate frame
whose origin is located at the center of mass of the vehicle.
The configuration (R, p) of the vehicle is an element of
the Special Euclidean group SE(3) := SO(3) ×R3, where
R ∈ SO(3) := {R ∈ R3×3 : RR′ = I3,det(R) = +1} is a
rotation matrix that describes the orientation of the vehicle
by mapping body coordinates into inertial coordinates, and
p ∈ R3 is the position of the origin of {B} in {I}. Denoting
by v ∈ R3 and ω ∈ R3 the linear and angular velocities of
the vehicle relative to {I} expressed in {B}, respectively,
the following kinematic relations apply:

ṗ = Rv, (1a)

Ṙ = RS(ω), (1b)

where

S(x) :=
[ 0 −x3 x2

x3 0 −x1−x2 x1 0

]
, ∀x := (x1, x2, x3)′ ∈ R3.

We consider here underactuated vehicles with dynamic equa-
tions of motion of the following form:

Mv̇ = −S(ω)Mv + fv(v, p,R) + g1u1, (2a)

Jω̇ = −S(v)Mv − S(ω)Jω + fω(v, ω, p,R) + G2u2,
(2b)

where M ∈ R3×3 and J ∈ R3×3 denote constant symmetric
positive definite mass and inertia matrices; u1 ∈ R and
u2 ∈ R3 denote the control inputs, which act upon the
system through a constant nonzero vector g1 ∈ R3 and a
constant nonsingular matrix1 G2 ∈ R3×3, respectively; and
fv(·), fω(·) represent all the remaining forces and torques
acting on the body. For the special case of an underwater
vehicle, M and J also include the so-called hydrodynamic
added-mass MA and added-inertia JA matrices, respectively,
i.e., M = MRB+MA, J = JRB+JA, where MRB and JRB

are the rigid-body mass and inertia matrices, respectively.
For an underactuated vehicle restricted to move on a planar

surface, the same equations of motion (1)–(2) apply without
the first two right-hand-side terms in (2b). Also, in this case,
(R, p) ∈ SE(2), v ∈ R2, ω ∈ R, g1 ∈ R2, G2 ∈ R,
u2 ∈ R, with all the other terms in (2) having appropriate
dimensions, and the skew-symmetric matrix S(ω) is given
by S(ω) =

(
0 −ω
ω 0

)
.

For each vehicle, the problem of following a predefined
desired path is stated as follows:

1See [4, Remark 4] for the special case of G2 ∈ R3×2.

Path-following problem: Let pdi
(γi) ∈ R3 be a desired

path parameterized by a continuous variable γi ∈ R and
vri

(γi) ∈ R a desired speed assignment for the vehicle
i. Suppose also that pdi

(γi) is sufficiently smooth and its
derivatives (with respect to γi) are bounded. Design a
controller such that all the closed-loop signals are bounded,
and the position of the vehicle i) converges to and remains
inside a tube centered around the desired path that can be
made arbitrarily thin, i.e., ‖pi(t)− pdi

(γi(t))‖ converges to
a neighborhood of the origin that can be made arbitrarily
small, and ii) satisfies a desired speed assignment vri

along
the path, i.e., |γ̇i(t) − vri

(γi(t))| → 0 as t → ∞.

We now consider the problem of coordinated path-
following control. In the most general set-up, one is given
a set of n ≥ 2 autonomous underactuated vehicles and a
set of n spatial paths pdi

(γi); i = 1, 2, ..., n and require
that vehicle i follow path pdi

. As will become clear, the
coordination problem will be solved by adjusting the speeds
of the vehicles as functions of the “along-path” distances
among them. Formally, the along-path distance between
vehicle i and j is defined as γij := γi−γj , and coordination
achieved when γij = 0 for all i, j ∈ {1, ..., n} [10].
Let Ji be the index set of the vehicles that vehicle i com-

municates with. Assume that the underlying communication
graph is undirected and connected (i.e., the communication
links are bidirectional and there exists a path connecting
every two vehicles). In this case the graph Laplacian L ∈
Rn×n is symmetric, with a simple eigenvalue at zero and
an associated eigenvector 1 = [1]n×1. The other eigenvalues
are positive. See [12] for the definitions and the properties
of graphs. The Laplacian can be decomposed as L = MM ′,
where M ∈ Rn×n−1, Rank M ′ = RankL = n − 1 and
M ′1 = 0. Define the “graph-induced coordination error” as
θ := Mγ ∈ Rn−1, where γ := [γi]n×1. From the properties
of M , it can be easily seen that θ = 0 is equivalent to γi =
γj ,∀i, j. Consequently, if θ is driven to zero asymptotically,
so are the coordination errors γi − γj and the problem of
coordinated path-following is solved.
Coordination problem: Derive a control law for γ̈i as a

function of γj and γ̇j where j ∈ Ji such that θ approaches a
small neighborhood of zero as t → ∞. Each of the n vehicles
has access to its own states and exchanges information on
its coordination state γi and speed γ̇i with some or all of
the other vehicles defined by sets Ji.

III. MAIN RESULTS

A. Path-following

In this section, we briefly discuss the results presented
in [2], [4] to solve the path-following problem. Let ei :=
R′

i

[
pi(t) − pdi

(γi(t))
]
be the path-following error of the

vehicle i expressed in its body-fixed frame. Borrowing from
the techniques of backstepping, in [2], [4] a feedback law
for u1i

, u2i
was derived that makes the time-derivative of

the Lyapunov function

Vi :=
1
2
e′iei +

1
2
ϕ′

iM
2
i ϕi +

1
2
z′2i

Jiz2i
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Fig. 1. Coordination of 3 AUVs in in-line formation.

take the form

V̇i = −kei
e′iM

−1
i ei + e′iδi − ϕ′

iKϕi
ϕi − z′2i

Kz2iz2i
+ µiηi

where ϕi and z2i
are linear and angular velocity errors (see

[2], [4] for details), kei
, Kϕi

, Kz2i are positive definite
matrices, δi is a small constant vector, and µi captures the
terms associated to the speed error ηi := γ̇i − vri

. At this
point we remark that if all that is required is to solve a pure
path-following problem then one can augment Vi with the
quadratic term 1

2η2
i and utilize the freedom of assigning a

feedback law to γ̈i in order to make V̇i negative definite (see
details in [2], [4]). This strategy must be modified to address
coordination as shown below.

B. Coordinated path-following

This section presents a solution to the coordinated path-
following problem. Let η := γ̇ − vL1 be the speed vector
error, where vL is a desired speed profile assigned to the
formation. Consider the composite (coordination + path-
following) Lyapunov function

Vc :=
1
2
θ′θ +

1
2
z′z +

n∑
i=1

Vi

where z := η + A−1
1 µ + A−1

1 Mθ. Computing the time-
derivative of Vc and assigning the following feedback law
for γ̈

γ̈ = −A−1
1 µ̇ − A1η − A−1

1 Lη − A2z, (3)

where A1, A2 are diagonal positive definite matrices, we
obtain

V̇c = −η′A1η − z′A2z −
n∑

i=1

[
kei

e′iM
−1
i ei − e′iδi

+ ϕ′
iKϕi

ϕi + z′2i
Kz2iz2i

]
.

It is now straightforward to prove the following result:

Theorem 1: The feedback laws for u1i
, u2i

for each
vehicle i obtained in [2], [4] together with (3) solve the
coordination and the path-following problems.

IV. AN ILLUSTRATIVE EXAMPLE

This section illustrates the application of the previous
results to underwater vehicles moving in three-dimensional
space.

A. Path-following and coordination of underwater vehicles
in 3-D space

Consider an ellipsoidal shaped underactuated autonomous
underwater vehicle (AUV) not necessarily neutrally buoyant.
Let {B} be a body-fixed coordinate frame whose origin is
located at the center of mass of the vehicle and suppose that
we have available a pure body-fixed control force τu in the
xB direction, and two independent control torques τq and τr

about the yB and zB axes of the vehicle, respectively. The
kinematics and dynamics equations of motion of the vehicle
can be written as (1)–(2), where

M = diag{m11,m22,m33}, u1 = τu

J = diag{J11, J22, J33}, u2 = (τq, τr)′

Dv(v) = diag{Xv1 + X|v1|v1 |v1|, Yv2 + Y|v2|v2 |v2|,
Zv3 + Z|v3|v3 |v3|}

Dω(ω) = diag{Kω1 + K|ω1|ω1 |ω1|,Mω2 + M|ω2|ω2 |ω2|,
Nω3 + N|ω3|ω3 |ω3|}

g1 =
(

1
0
0

)
, G2 =

(
0 0
1 0
0 1

)
,

ḡ1(R) = R′
(

0
0

W−B

)
, ḡ2(R) = S(rB)R′

(
0
0
B

)
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fv = −Dv(v)v − ḡ1(R), fω = −Dω(ω)ω − ḡ2(R).

The gravitational and buoyant forces are given by W = mg
and B = ρg∇, respectively, where m is the mass, ρ is the
mass density of the water and ∇ is the volume of displaced
water. The numerical values used for the physical parameters
match those of the Sirene AUV, described in [1], [3].

B. Simulation results

This section contains the results of simulations that illus-
trate the performance obtained with the coordinated path-
following control laws developed in the paper. Figures 1– 3
illustrate the situation where three underactuated AUVs are
required to follow paths of the form

pdi
(γi) =

[
a1 cos(

2π

T
γi+φd), a1 sin(

2π

T
γi+φd), a2γi+z0i

]
,

with a1 = 20m, a2 = 0.05m, T = 400, φd = − 3π
4 , and

z01 = −10m, z02 = −5m, z03 = 0m. The initial conditions
of the AUVs are p1 = (x1, y1, z1) = (10m,−10m,−5m),
p2 = (x2, y2, z2) = (5m,−15m, 0m), p3 = (x3, y3, z3) =
(0m,−20m, 5m), R1 = R2 = R3 = I , and v1 = v2 =
v3 = ω1 = ω2 = ω3 = 0. The vehicles are required to keep
a formation pattern whereby they are aligned along a vertical
line. In the simulation, vehicle 1 is allowed to communicate
with vehicles 2 and 3, but the last two do not communicate
between themselves directly. The reference speed vL was
set to vL = 0.5 s−1. Notice how the vehicles adjust their
speeds to meet the formation requirements. Moreover, the
coordination errors γ12 := γ1 − γ2 and γ13 := γ1 − γ3 and

the path-following errors converge to a small neighborhood
of the origin.

V. CONCLUSIONS

The paper addressed the problem of steering a group
of underactuated autonomous vehicles along given spatial
paths, while holding a desired inter-vehicle formation pattern
(coordinated path-following). A solution was derived that
builds on recent results on path-following control [2], [4]
and state-agreement (coordination) control [9], [10] obtained
by the authors. The solution proposed builds on Lyapunov
based techniques and addresses explicitly the constraints
imposed by the topology of the inter-vehicle communications
network. Furthermore, it leads to a decentralized control law
whereby the exchange of data among the vehicles is kept
at a minimum. Simulations illustrated the efficacy of the
solution proposed. Further work is required to extend the
methodology proposed to address the problems of robustness
against temporary communication failures.
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