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Abstract—Inspired by the previous work of Aicardi et al.[1]
a path following controller for underactuated planar vehicles
is designed by adopting a polar-like kinematic model of the
system. The solution proposed does not generally guarantee
null asymptotic path following error, but only its bounded-
ness below an adjustable upper threshold. However, knowl-
edge of the path curvature is not necessary, thus resulting
in a much easier solution to implement when compared to
the alternative ones available in the literature. Indeed con-
trollers achieving perfect path following usually require not
only the use of the path curvature, but also of its derivative
with respect to the curvilinear abscissa. Furthermore, the
proposed solution may be applied to the control of unicycle
as well as underactuated marine vehicle models. Simulation
results illustrate the performance of the algorithm proposed
for path following.

I. INTRODUCTION

The task of designing path following and trajectory
tracking controllers for underactuated marine vehicles is
very challenging and has received increasing attention in
the past few years. Trajectory tracking deals with the case
where a vehicle must track a time-parameterized reference.
Path following refers to the problem of making a vehicle
converge to and follow a given path, without any tempo-
ral specifications. Among the most relevant recent results,
a backstepping control design technique is employed in [2]
for a surface vessel having an aft propeller along the surge
and sway axis, respectively. In this work, control system
design is done based on a full nonlinear dynamic model
of the ship. The resulting tracking control law is static
(i.e.time invariant) and guarantees global convergence of
the position error to zero in spite of constant unknown en-
vironmental force disturbances, but the orientation of the
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vehicle is left in open loop. In [3] the kinematics of a sur-
face vehicle are considered and a time-varying control law
for the surge and yaw inputs is designed such that the pose
(i.e. position and orientation) error of the vehicle with
respect to a reference trajectory of constant curvature is
practically globally exponentially stabilized to zero. Re-
markably it is not necessary for the reference linear speed
to be nonzero, i.e. the same control law guarantees global
practical stabilization if the reference trajectory should de-
generate to a constant pose. In [4] a similar model is con-
sidered and a static control law is designed that guarantees
exponential, semi-global convergence of the surface vessel
to a desired reference trajectory. The major limit of this
solution is that the reference angular velocity is required
to be always nonzero, namely straight lines are not valid
reference courses. In [5] a 2D path following controller is
designed for the dynamic model a marine vehicle. This
static solution takes explicitly into account constant but
unknown currents and it guarantees global convergence of
the pose error to zero. As explicitly shown in [6], reference
paths are not required to have constant curvature. Re-
markably the same design methodology may be extended
to solve also the 3D path following problem as addressed
in [7]. In [8] a static solution to the 2D problem of stabi-
lizing the kinematic model of a marine vehicle on a linear
course is proposed. The control law is designed exploiting
a potential field -like idea which has been successfully em-
ployed to solve also the unicycle pose regulation problem
[9]. Convergence to the reference linear course is global
and has exponential rate, but environmental disturbances
are not explicitly taken into account. In [10] [11] a posi-
tion (not pose) tracking law is designed for the dynamic
model of a surface vessel having a stern propeller and a



rudder. The solution is static and explicitly takes into ac-
count a constant unknown disturbance force. Interestingly
the idea behind the design of this solution is quite close
to the one adopted in this paper: a virtual reference point
(VRP) is defined at the bow or ahead of the vessel and the
error variable that is globally exponentially stabilized to
zero is precisely the distance between the VRP and a refer-
ence point moving along the reference path. The heading
of the vessel is left in open loop, thus the vessel may rotate
around if the VRP is not suitably chosen with respect to
the center of mass of the vessel.

It should be noticed that some of the above references
refer to trajectory tracking controllers, whereas others re-
fer to path following ones. Nevertheless they all share a
common property: the reference curvature and its deriva-
tive are generally required to compute the control inputs.
This might be a quite demanding issue in real applications.
The ultimate reason for this drawback lays in the extreme
ambition of the control objective, namely perfect tracking
(viz. perfect path following). The solution described in
this paper originates from the observation that if the ob-
jective is relaxed from perfect path following to convergence
inside a “tube” of non null diameter centered on the ref-
erence path, the steering law will not require explicit use
of either the curvature x or its spatial derivative dr/ds.
On the other hand in the great majority of real applica-
tions perfect path following is actually not necessary. In
marine application, moreover, it would not be practically
realizable anyhow because of the limited accuracy of the
vehicles position relative to the reference path. The main
idea underlying the proposed approach is thus to design a
kinematic “tube” path following controller adopting a set
of polar-like variables. It is shown that if the reference path
has bounded curvature there exist initial conditions for the
vehicles position such that convergence is achieved without
any singularity in the control signals.

The paper is organized as follows. Section II introduces
the marine vehicle model. Section III describes a solution
to the problem of path following assuming known currents.
In Section IV, convergence and stability of the of proposed
solution are analyzed. Section V addresses the problem of
current estimation, while Section VI analyzes the combined
observer-controller system. Section VII provides results of
simulations. Finally, Section VIII contains the main con-
clusions.

II. THE MODEL

In the absence of currents, the vehicle kinematics are
described by:

& = wcosy —vsiny (1)
¥y = wusiny + vcosy (2)
b= (3)

where, following standard notation, u (surge speed) and
v (sway speed) are the body fixed frame components of
the vehicle’s velocity relative to the water, x and y are
the cartesian coordinates of its center of mass, ¥ defines

its orientation, and r is the vehicle’s angular speed. In
the presence of a constant current, the variables u and
v in the equations above should be replaced by u —
u+ V. cos(oc — ) and v — v + V. sin(o — 1) respectively,
where V. is the current’s intensity and o defines its ab-
solute direction. With reference to figure (1), consider a
target frame < 7T > moving at velocity $ along a desired
reference path having curvature k = w,/$ : [s[ < 1/R for
some positive R, where w, = ¢ is the angular velocity of
the target frame. The evolution of the position and ori-
entation of the underactuated vehicle with respect to the
target frame may be described by the polar like variables
e = /22 + 92, a,¢ and 6 that are defined in accordance
to figure (1). Notice that by construction a + ¢ = ¢ + 6.
The state variables are e, o, 8 and v and their dynamics are
given by:

e = —(u+V.cos(oc —1))cosa+ scosb
—(v+ Vesin(o — ) sina (4)
& — —ra (u+ V.cos(o — 1)) sina
e
_ (v+ Vesin(o —¢))cosar $sinf (5)
e e
0 = —wot (u+ Ve cos(o — 1)) sina
e
~ (v+ Vesin(o —¢))cosar $sinf (6)
e e
U = —aur—kyv — kyp,v|v| (7)
where a = mn/mgg, kv = |YU|/m22, kv|v\ = |Yv‘v||/m22.

The symbols mq; and mso capture the effect of mass and
added mass terms, whereas Y, and Y,, are hydrodynamic
derivatives [12]. Notice that not only the equations (5)
and (6) for & and 6 are singular in e = 0, but « and 6 are
themselves not defined in e = 0.

III. PATH FOLLOWING CONTROLLER PROBLEM

With the above notation, the problem considered in this
paper can be formulated as follows. Given the underac-
tuated marine vehicle with kinematics equations (1-3) and
sway dynamics (7), together with a reference path to be
followed, derive a feedback control law for u and r so that:
i) the angle a converge to zero, and i¢) the vehicle center of
mass converge to and remain inside a tube centered around
that path with a nonzero desired speed. In order to design
a suitable controller to accomplish this task, assume that
e(t) # 0 : Vt. The closed loop validity of this hypothesis
will be discussed in the following. As far as the angular
velocity is concerned, r may be designed to yield

A= —Yo Yo >0 (8)

in closed loop, namely:

n (u+Vecos(o —9))sina $sinf
e e
(v+ Vesin(o — ¢)) cos a

- o + Yo (9)
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Fig. 1.

where the current intensity and direction are assumed (for
the moment) known. As far as u is concerned, let & be
a constant such that 0 < € < R. A direct inspection of
equation (4) suggests to fix:

u=—V.cos(c — )+ f(t)cosb (10)

where 0 < f(t) < fmax (the applied thrust is assumed
to be positive and bounded) is a function to be specified.
In particular intuitive physical considerations suggest that
f(t) > V. in order to make the path following physically
possible: the convergence analysis outlined in the next sec-
tions confirms that indeed f(t) > V. is a necessary condi-
tion. Replacing the above equation (10) in (4)

é=(=f(t)cosa+35)cosf— (v+V.sin(oc — 1)) sina. (11)

In order to guarantee asymptotic convergence of e to €, s
and f may be chosen such to satisfy:

—f(t)cosa+s$=—v.(e—&)cosf:v. >0 (12)
The target velocity § may be thus fixed to:
$=+f(t)cosa — . (e —€)cosb (13)
yielding in closed loop
é=—9. (e =€) cos’0 — (v+ Vesin(o — ¢))sina.  (14)

Notice that $ may be negative, namely the target may move
"backwards” towards the vehicle. Qualitatively this will
occur if either the vehicle and the target are very distant
from each other and the vehicle has a low velocity ( 7. |(e —
€)| >> f(t)) or if the vehicle is pointing in the ”opposite”
direction of the target (Jar| > 7/2) at high speed compared

to e |(e — €)|. Summarizing the control signals are given

by

u = —V.cos(oc —1)+ f(t)cosd (15)
1

r o= Yaa+ g(f(t) cosfsina — (v + Vesin(o — ¢)) cos a

—(f(t)cosa — 7. (e — &) cosf) sin ) (16)

The model

A. Boundedness of relevant signals

The function f(¢) and the current velocity V. are
bounded by hypothesis. Consequently so is u. As long
as e > ¢ > 0 for some € then v and r will be bounded. This
follows by noticing that as long as e > £ > 0, replacing (15)
and (16) in (7) the following holds: limj,|_. v = —oc.
This implies that both v and the control signal r given by
(16) are bounded if e > ¢ > 0. The point is now to show
that there indeed exist initial conditions for e;—q such that
e>e>0 Vt>0. Cal é =e—é and |v,| the maxi-
mum value of |v + V_sin(o — )| when e(t) # 0. Assume
€jt=o > 0. The closed loop dynamics of € can be derived
from equation (14) and satisfies the following:

6 = —v.écos? 0—(v+V,sin(o—1p))sina > —y. é—|vm||a].

(17)
Considering the closed loop dynamics of a given by equa-
tion (8) (which can be assumed valid as long as e > & > 0),
the solution of the differential equation

£= ez — [vmll (18)

for t > 0 is given by

2(t) =

exp(—7e t) Z|t=0

Vil atj=ol
T [ep(—a t) — ep(—e )] - (19

Notice that if 74 > 7. and z—o > |'Um||05|t:0|/|(76 — %)l
then z(t) >0 V¢ >0 and z(t) — 0 exponentially, namely
z(t) will converge to zero monotonically with exponential

rate. Given this result, by applying the comparison Lemma
[13, Chp. 2, p. 84] to inequality (17) it follows that

> 0

_ |vmllai=ol }

elt=0 > max{e, "Y _7|
e (03

Ya > Ve (20)

(21)



guarantee

e(t)>e V t>0. (22)

The physical interpretation of these results is straightfor-
ward: intuitively v, > 7. guarantees that « converges to
zero faster than €; once that this has occurred it is ap-
parent from figure (1) that the sway component v of the
vehicles velocity will not be able to “push” the vehicle over
the point e = 0 (actually not even over e = €) and the
surge component of the velocity is regulated such that e is
not larger than e (equation (14)). The condition (21) guar-
antees that during the convergence of « to zero, e does not
reach e.

IV. CONVERGENCE AND STABILITY ANALYSIS

Having proven that e(t) > & V t > 0 as long as condi-
tions (20) and (21) hold is sufficient to guarantee that the
steering control (16) and v are bounded and thus that « in-
deed obeys equation (8) at all times. It must still be proven
that e — e. A preliminary inspection of equation (14) sug-
gests that as long as |0| = n7/2 is not an equilibrium for
any positive integer n then e should indeed converge to e.
In order to proof this formally the following assumptions
is first made:

Assumption: (23)
3 ¢t*>0and 0" €[0,7/2):0(t) € (—0%,0%) Vit >t~

Although a proof of this assumption for an arbitrary path
of bounded curvature is not provided, notice that it is most
reasonable to consider it valid on the basis of physical con-
siderations: with reference to figure (1) consider the situ-
ation in which ~, |(e — €)] cos@ is negligible with respect
to f(t) and a has converged to zero (which holds globally
exponentially). In this kind of situation the target frame
will be moving with a speed $ &~ f(t) and |6] could be kept
larger than 7 /2 only if the total inertial speed of the vehicle
was approximately equal (in the vector sense) to the one
of the target. But such circumstance is prevented by the
facts that v is not actuated and highly damped and by the
initial hypothesis that f(t) is larger than V,. To make this
point more precise, consider the closed loop equation of 6
in the limit o = 0, namely:

_v—i—VCSin(a—z/J)_(H+

e

sin 6

9':

(24)
According to the above equation, if the reference path
should be a straight line, the only “driving” input for 6
would be the first term, related to the velocity along the
sway axis, while for all |f| € [r/2,7] the second one is a
nonlinear damping term as can be seen by the facts that
e>¢ Vit>0,cosf <0 and the sign of sinf is the same
of 0 if |0] € [7/2,7].

Given the above assumption, equation (17) describes an
exponentially stable system subject to the exponentially
decaying perturbation —(v + V. sin(o — 4))sin«, thus é
is guaranteed to converge exponentially to zero [13]. At
last it should be noticed that if € < 1/kpmar = R, being

) (f(t)—e(e—€) cos ).

Kmas = Max |k|, from equation (24) it follows that indeed
if

R |vp|
t _— 25
() > Sl (25)
thene=e<R U a=0 =
d 1 .
% 592 = (0 g)wziﬂ/g <0 (26)

9=tm/2

confirming that asymptotically the vehicle will remain
strictly inside a tube of radius R centered on the reference
path and |0| € [0,7/2), namely the vehicle will remain “be-
hind” the origin of the target frame <7 >. Equation (25)
gives a quantitative estimate of how much f(¢) should ex-
ceed |v,,| > V. in order to achieve the control objective.
Summarizing, assuming (23) to hold, the conditions that
must be satisfied in order to achieve exponential conver-
gence and stability of (&, a)T to zero are given by equations
(20), (21) and (25).

V. CURRENT ESTIMATION

If the currents intensity V. and direction ¢ should not
be known, their values must be estimated and the terms
V. and o in equations (15-16) replaced by the estimated
ones V. and 6. Following [5], the constant components
V. =

of the currents velocity ¢, ¢, c2 +c2 may be

estimated by the observer:

i o= Viot cospu+ ¢, + k1 2 T=z—& (27)
0 = Viesinp+é,+kj : G=y—9 (28)
be = ks (29)
ey = kuj (30)

being Vi = vu? + v2 the norm of the total vehicle veloc-
ity with respect to the water and p = ¢ 4 atan2(v, u) its
direction with respect to the = axis. As shown in [5], the
resulting estimation error dynamics is linear, namely:

T = —ki @48 : Cp=Cy— iy (31)
g = —kof+é 1 Gy=cy—0y (32)
6y = —ks3i (33)
éy = —kuy (34)

and it is exponentially stable for any k; > 0,Vi = 1,...4.
The currents intensity and direction may be estimated as
V., =
quadrant inverse tangent function. Notice that given the
above estimation error dynamics (31-34) the state vector
(Z,9,¢z,¢y)" is observable from (Z,7)”. In particular this
means that the initial values (&, &y)|¢t=0 can be computed
knowing (%, )T over a finite time interval ¢ € [0,¢]: assum-
ing to initialize the estimation filter to (s, ¢y)|t=0 = (0,0)
the initial value (&g, ¢,)|t=0 is precisely equal to the un-
known current (¢, cy). Thus it is possible to compute the
current velocity components (¢, c,) measuring the vehi-
cles pose (z,y,v) and velocity with respect to the wa-
ter u,v over a finite time interval ¢ € [0,¢]. Consider-
ing the physics of the problem under investigation, this is

¢2 +¢2 and G = atan2(¢y, ¢;) being atan2 the four
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not surprising: indeed a straightforward application of the
galileian velocity composition rule implies that the total
(inertial) velocity of the vehicle is given by the superposi-
tion of the unknown current velocity plus the velocity with
respect to the water (measured) and this inertial velocity
may be computed over a finite time interval as the ratio of
the traveled distance (measured) over ¢I. Hence one can
compute the unknown current by measuring (z,y,) and
u,v over a finite time. Of course such open loop finite
time estimation will be affected by measurement noise and
is valid in the ideal hypothesis that the current is actually
strictly constant. Nevertheless the above observation is im-
portant as it points out that by performing any manoeuvre
of finite duration prior to starting the path following task,
one can estimate the constant current velocity components
(cz,cy) and then use this initial open loop finite time esti-
mated value to initialize the filter given by equations (27-
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30).

VI. ANALYSIS OF THE CONTROLLER-OBSERVER SYSTEM

In the light of the above observations and by exploiting
perturbation theory results of exponentially stable systems
it can be shown that the combined observer-controller sys-
tem does guarantee local convergence of (€, )T to (0,0)7.
Replacing the estimated values V. and 6 to V, and o in the
control laws given by equations (15-16), the closed loop
dynamics of € and « are:

€ = —n.écos’h
(v+ Vesin(o — 9)) sina + 01 (¢) (35)
& = —yeatol) sin ov —6s(t) cos av (36)
0(t) = Vecos(oc —1) — X:/C cos(6 — 1) (37)
G2(t) = Vesin(o — o) = Vesin(6 — 1) (38)



where given the observer properties described in the pre-
vious paragraph, lim;_ . 01(¢) = lim;_, d2(¢) = 0. Equa-
tions (35-36) can be viewed as perturbed versions of equa-
tions (8) and (17). In particular the dynamics of the vec-
tor p = (&,a)” can be written as p = f(p) + g(p,t) being
f(p) the unperturbed system described by equations (8)
and (17) and g(p,t) a perturbation described by the above
equations (35-36). The unperturbed system p = f(p) has
been shown to be exponentially stable in section IV and
the perturbation g(p,t) can be shown to satisfy the bound
g, DIl < v@)llpl +6(t) V¢ =0, V|| <e : e>0
for some nonnegative, continuous, bounded and asymptot-
ically null functions «(t) and §(¢) that can be chosen to be
linear combinations of |d1 (¢)| and [2(¢)| given in equations
(37-38). As a consequence standard perturbation theory
results of exponentially stable systems may be applied, in
particular under the above conditions Lemma 5.7 [13, Chp.
5, p. 235] guarantees that if ||p|:—o| and sup,s,d(t) are
sufficiently small, then ||p(¢)|| will remain bounded at all
times by a quantity depending on ||p|:—o|| and sup,~q d(t).
Considering that i): §(¢) is a linear combination of |0 ()]
and |02(t)], 49): the exponential convergence properties of
the current estimator filter and 4i): that according to the
observations made in the previous paragraph, V. and &
may be initialized arbitrarily close to the real values, this is
enough to guarantee that e will not reach the singular value
e =0 as long as [[ple=oll = || (&, a){=o || and (&, ¢y)i=0 are
sufficiently small.

At last notice that if e(t) # 0V t > 0 as guaranteed by
the above analysis, the solution of the system p = f(p) +
g(p,t) will be bounded at all times. Moreover thanks to
the global exponential stability and convergence properties
of the current estimator filter, the perturbation g(p,t) is
asymptotically null, thus the largest invariant set of the
vector (€,a,,7, ¢y, ¢y)7 is the origin. Considering now
the following Lemma [13, Chp. 3, p. 114]:

Lemma: If a solution z(t) of £ = f(z) is bounded and
belongs to D for ¢ > 0, then its positive limit set LT
is a nonempty, compact, invariant set. Moreover z(t) —
Lt ast — oo.

It follows that lim;_. (€, &, &, §, ¢z, &) * = (0,0,0,0,0,0)7.

VII. SIMULATION EXAMPLES

Results relative to two simulations are reported. The
first refers to the case of no currents, the second to a con-

stant current of velocity ¢, = —0.2[m/s], ¢, = —0.3 [m/s].
The numerical values of the relevant parameters com-
mon to the two cases are: a = 1k, = 1[s7];kyy

1[m~']; (sway dynamics) & = 1/2[m];7a = 1/2[s7'];7e =
1/4[s71); f(t) = 1[m/s]; (control law parameters) . The
initial pose of the vehicle was (zg,yo,%0) = (0,0,0), the
target path was generated by a “virtual” unicycle starting
in (2,0, Yr0, ¥ro) = (6 [m], 6 [m], 60 [deg]) and having a cur-
vature given by k.(t) = (1/2) exp(—t/7) T = 42.9]s]
such that the “virtual” reference unicycle had angular ve-
locity given by w,(t) = k.(t) $(t). The sway velocity was
initialized to vg = 1[m/s] in both cases. In the simulation
with constant current, the observer gains where chosen as

ki = ky = 2.2[s7 Y, k3 = kg = 1[s7!] and the observer
states were initialized to to 9 = 29, §o = 20, €z0 = Cyo = 0.

VIII. CONCLUSIONS

The most remarkable property of the proposed steering
control law is that according to equation (16) r is computed
without needing to know or to estimate either x or dx/ds
which is indeed required by other tracking laws reported
in the literature. Moreover in the limit & = & = 0 (which
occurs exponentially in time) it can be seen from the state
equations (5) and (6) that r will converge to w, + 6 in spite
of the fact that no explicit use of w, is made in the de-
signed law (16) for r. A second noteworthy property of
the proposed solution is that according to equation (15),
the commanded linear velocity will naturally tend to de-
crease for increasing values of # thanks to the cosf term
multiplying f(¢). Thus if f(¢) should be kept constant, this
would imply to slow down in curves when the misalignment
variable 6 is more likely to grow.
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