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Abstract: This paper addresses the problem of steering a group of underactuated
Autonomous Underwater Vehicles (AUVs) along given spatial paths, while holding
a desired inter-vehicle formation pattern. We show how Lyapunov-based techniques
and graph theory can be brought together to yield a decentralized control structure
where the dynamics of the cooperating vehicles and the constraints imposed by
the topology of the inter-vehicle communications network are explicitly taken into
account. Path-following for each vehicle amounts to reducing an appropriately
defined geometric error to a small neighborhood of the origin. Vehicle coordination
is achieved by adjusting the speed command of each vehicle along its path
according to information on the positions of a subset of the other vehicles, as
determined by the communications topology adopted. Convergence and stability
of the overall system are proved formally. This holds true in the presence of
arbitrary bounded communication delays as well as communication failures under
some mild condition on the nature of the failures. Simulations results are presented
and discussed.
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1. INTRODUCTION

Increasingly demanding scientific and commer-
cial mission scenarios and the advent of power-
ful embedded systems and communication net-
works have spawned widespread interest in the
problem of coordinated motion control of mul-
tiple autonomous vehicles. The types of appli-
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cations envisioned are numerous and include
spacecraft formation flying (Beard et al., 2001),
(Mesbahi and Hadaegh, 2001); control of multi-
ple unmanned aerial vehicles (Song et al., 2005),
(Stipanovic et al., 2004); coordinated control of
land robots (Desai et al., 2001), (Ogren et al.,
2002), (Ghabcheloo et al., 2006); and control of
surface and underwater vehicles (Encarnacao and
Pascoal, 2001), (Skjetne et al., 2002), (Lapierre et
al., 2003), (Stilwell and Bishop, 2000).

To meet the requirements imposed by these appli-
cations, a new control paradigm is needed that de-
parts considerably from classical centralized con-
trol strategies. Centralized controllers deal with



systems in which a single (local) controller pos-
sesses all the information needed to achieve the
desired control objectives (including stability and
performance requirements). However, in many of
the applications envisioned here, because of the
highly distributed nature of the sensor and actu-
ation modules and the very nature of the inter-
vehicle communications network, it is impracti-
cal to exchange all relevant information among
the vehicles and to tackle the problems in the
framework of centralized control theory. For these
reasons, there has been over the past few years a
flurry of activity in the area of multi-agent net-
works with application to engineering and science
problems. Namely, parallel computing (Tsitsiklis
and Athans, 1984); synchronization of oscillators
(Sepulchre et al., 2003); collective behavior and
flocking (Jadbabaie et al., 2003); consensus (Lin
et al., 2005); formation of multi-vehicle system
(Egerstedt and Hu, 2001); asynchronous protocols
(Fang et al., 2005); graph theory and graph con-
nectivity (Kim and Mesbahi, 2006).

In spite of significant progress in these exciting
areas, much work remains to be done to develop
strategies capable of yielding robust performance
of a fleet of vehicles in the presence of com-
plex vehicle dynamics, severe communication con-
straints, and partial vehicle failures. These dif-
ficulties are specially challenging in the field of
marine robotics for two main reasons: i) the dy-
namics of marine vehicles are often complex and
cannot be simply ignored or drastically simplified
for control design purposes, and ii) underwater
communications and positioning rely heavily on
acoustic systems, which are plagued with inter-
mittent failures, latency, and multipath effects.

Inspired by the developments in the field, we
consider the problem of coordinated path-following
where multiple wvehicles are required to follow
pre-specified spatial paths while keeping a desired
inter-vehicle formation pattern in time. These ob-
jectives must be met in the presence of communi-
cation related failures and delays. This problem
arises for example in the operation of multiple
autonomous underwater vehicles (AUV) for fast
acoustic coverage of the seabed. In this applica-
tion, two or more vehicles are required to fly above
the seabed at the same or different depths, along
geometrically similar spatial paths, and map the
seabed using identical suites of acoustic sensors.
By requesting that the vehicles traverse identi-
cal paths so that the projections of the acoustic
beams on the seabed exhibit some overlapping,
large areas can be covered in a short time. These
objectives impose constraints on the inter-vehicle
formation pattern. A number of other scenarios
can of course be envisioned that require coordi-
nated motion control of marine vehicles.

In this paper, we solve the coordinated path-
following problem for a general class of under-
actuated underwater vehicles moving in three-
dimensional space. Using the technique proposed,
the problem is divided into two sub-problems.
At the lower level, the path-following problem
is solved for individual vehicles, each having ac-
cess to a set of local measurements. Coordina-
tion is then achieved by synchronizing the so-
called coordination states that capture the along
path distances between vehicles. Because of the
network faults, the problems brought about by
temporary communication losses and delays must
be addressed explicitly. To this effect, this paper
proposes a framework to study the effect of com-
munication failures and delays on the stability of
the overall vehicle formation.

The paper is organized as follows. Section 2 de-
scribes the model of an underactuated AUV and
formulates the path-following and vehicle coordi-
nation problems. Section 3 gives solutions to the
problems of single vehicle path-following as well
as multiple vehicle coordinated path-following in
the case where the communications network is
subjected to communication losses and time de-
lays. Section 4 describes the results of simula-
tion results. Finally, Section 5 contains the main
conclusions and describes problems that warrant
further research.

2. PROBLEM STATEMENT

Consider an underactuated autonomous underwa-
ter vehicle (AUV) not necessarily neutrally buoy-
ant. Let {Z} be an inertial coordinate frame and
{B} a body-fixed coordinate frame whose origin is
located at the center of mass of the vehicle. The
configuration (R, p) of the vehicle is an element
of the Special Euclidean group SE(3) := SO(3) x
R3, where R € SO(3) := {R € R** : RR" =
I5,det(R) = +1} is a rotation matrix that de-
scribes the orientation of the vehicle and maps
body coordinates into inertial coordinates, and
p € R3 is the position of the origin of {B} in
{Z}. Denoting by v € R? and w € R? the linear
and angular velocities of the vehicle relative to
{Z} expressed in {B}, respectively, the following
kinematic relations apply:

b = Rv, (1a)
R = RS(w), (1b)
where
0 p—y
S(z) == [ w5 0 31] . Vo= (z1,22,23)" € R%.
—T2 I 0

We consider AUVs with dynamic equations of
motion of the following form:



Moy = —S(w)Mv + f, (v, R) + Byuq, (2a)
Ju=-Sw)Mv - S(w)Jw+ f,(v,w, R) + Baua,
(2b)

where M € R?**3 and J € R®**? include the so-
called hydrodynamic added-mass M4 and added-
inertia J4 matrices, that is, M = Mgrp + My,
J = Jgp + Ja. The symbols Mgrp and Jrp
denote the rigid-body mass and inertia matrices,
respectively. The functions f,(-) and f,(-) cap-
ture hydrodynamic damping effects and restoring
forces and moments, and are defined by

fo= _Dv(v)v - gl(R)a fo= _Dw(w)w _§2(R)a
where

D’U(U) = diag{le + X|U1|U1|Ul|7YUz + )/\v2|v2|v2|a
ng + Z\v3|v3‘v3|}

Dw(w) = diag{le + K|w1|w1|w1|’ sz + M\w2\w2‘w2‘7

NU.)3 + N‘W3‘W3‘w3‘}

_ _ pT 0
(R =R (0

). aa(®) = Sts)R(§)

The gravitational and buoyant forces are given
by W = mg and B = pgV, respectively, where
m is the vehicle’s mass, p is the mass density
of the water and V is the volume of displaced
water. We assume that there are available a pure
body-fixed control force 7, in the xp direction,

that is, B; = [é

torques 7, and 7, about the yz and z3 axes of the

} and two independent control

vehicle, that is, By = {g Eﬂ. We also assume that
the metacentric height of the AUV is sufficiently
large to provide adequate static stability in roll
motion. The particulars of the AUV used in the
simulations at the end of the paper are those
of the Sirene underwater shuttle described in
(Aguiar, 2002; Aguiar and Pascoal, 1997).

For our purposes, we consider a fleet of n > 2
vehicles. For i = 1,...,n we let p;(t) € R and
pa, (7i) € R? denote the position of vehicle i and
its assigned (desired) path, where the latter is
parameterized by v; € R. We further let v, (t) €
R denote the desired speed assignment for vehicle
i defined in terms of parameters ;. Finally, u; =
[u1,i,u2,;] and z,, denote the control vector and a
conveniently defined path-following state vector,
respectively, of vehicle i.

Equipped with above notation, the problems
of path-following (PF) and coordinated path-
following (CPF) are defined next. For the sake of
clarity, the presentation is informal at times.

Path following problem. Given vehicle ¢ and a
desired path pg,, design feedback controller laws
for u; such that all the closed-loop signals are
bounded, the position of the vehicle converges to

and remains inside a tube centered around the
desired path, and the vehicle travels at a desired
speed assignment vy, .

In the approach to the problem of coordinated
path-following considered here we first require
that each vehicle be attracted to and follow its as-
signed path; this is followed by a synchronization
phase where the commanded speeds of the vehicles
are adjusted so that the fleet of vehicles will reach
a desired formation pattern at a desired formation
speed. Obviously, the choice of pattern adopted
impacts on the parameterizations v; of the path
P4, to be followed. Define the along-path distance
between vehicle i and j as 7,;(t) := v;i(t) — v;(t).
Then, coordination is said to be achieved if v;; = 0
for all 4,5 € {1,...,n}; (Ghabcheloo et al., 2006).
This will result in an in-line formation if the paths
P4, are obtained as simple parallel translations of
a “template” path. The above circle of ideas leads
naturally to the following problem formulation.

Coordination problem. For each vehicle i =
1,...,n derive a control law for v,,(.) as a function
of vj, j € Nip such that v;—;, Vi, j approach zero
as t — oo and the formation travels at an assign
speed vy, that is, |¥; — vr| tends to zero.

Before we present the solutions to above problems,
we summarize some background material. We
start with a brief review of algebraic graph theory.
See (Godsil and Royle, 2001) for details.

2.1 Graph theory

The communication constraints are modeled by
a digraph (directed graph) consisting of n nodes
where each node corresponds to a vehicle. The set
of vehicles from which vehicle i receives informa-
tion is denoted by N;. If j € N;, then there is
an arc from node ¢ to node j and we say that
i reaches (or is adjacent to) j. A path of length
r starting at node j and ending at ¢ comsist of
r + 1 consecutive adjacent nodes. If there is a
path from node j to node i, then 7 is said to be
reachable from j. Node k is globally reachable if it
is reachable from every other node. The adjacency
matrix of a digraph, denoted A, is a square matrix
with rows and columns indexed by the nodes, such
that the 4, j-entry of A is 1 if j € N; and zero
otherwise. The degree matrix D of a digraph G is
a diagonal matrix where the ¢, i-entry equals | N,
the cardinally of N;. The Laplacian of a digraph
is defined as L = D — A.

To model a switching graph, consider the com-
plete graph G defined on n nodes, with arcs num-
bered 1,...,m. Let p;;7 = 1,...,m be a piecewise-
continuous time-varying binary function indicat-
ing the existence or absence of arc ¢ in the graph.
Let p = [p;]mx1 and call the corresponding switch-



ing graph G,,;) defined as follows: if arc i exists (is
active) in the graph at time ¢, then p;(t) = 1 and
pi(t) = 0 otherwise. Denote by L, the explicit
dependence of the graph Laplacian on p(t) and
extend the notation to the degree matrix D,
the adjacency matrix A,, and the neighboring set
Ni,.

At this point it is important to summarize some
key results on the stability and convergence
of continuous-time distributed consensus algo-
rithms.

2.2 Distributed consensus algorithms (Moreau,
2004)

Consider an n x n matrix L = [I; ;]. Define the §-
digraph associated to L as the digraph with node
set {1,...,n} and such that an arc from i to j exists
if {; ; > 0 for some 6 > 0. Let

_ t+T
L(t,T) := / Lp(s)ds
t

for some T > 0 and associate a J-digraph to it.
In the context of this paper, this construction will
ensure that the resulting digraph has an arc from
node ¢ to node j if vehicle j sends information
to vehicle i for at least § seconds during any time
interval of length T'. Let # € R™ be a vector which
we shall later relate to the coordination states ~;,
and consider the linear time-varying system

6= K (t)Lyw0 3)

where K (t) is a positive definite diagonal matrix.
The following theorem applies.

Theorem 1. If there is an index k € {1,...,n}, a
threshold value § > 0, and an interval time length
T > 0 such that for all ¢ > 0, node k is globally
reachable in the §-digraph associated to L(t,T),
then the equilibrium set of consensus states 6 is
uniformly exponentially stable. In particular, all
components of any solution 6(t) of (3) converge
to a common value as ¢t — oo. O

As shown in (Moreau, 2004), a similar result holds
true for the linear system

0(t) = —K(t) Dpy0(t) + K () Ap)0(t — 7)

and for any time delay 7 > 0. We are now ready
to prove the main results of the paper.

3. PROBLEM SOLUTION

This section offers a solution to the coordinated
path-following problem posed before. We start by
summarizing a key result on PF.

3.1 Path-Following

A solution to the path-following problem (de-
fined in Section 2) was given in (Aguiar and Hes-
panha, 2004; Aguiar and Hespanha, 2006) where
the control laws require that §; and 4; be known.
Set 4;(t) = v, (t) = vr + Dy, . Notice that only the
time derivative of vy, can be computed accurately.
However, it can be shown that in the control
laws of (Aguiar and Hespanha, 2004; Aguiar and
Hespanha, 2006), if the terms 4; and %; are re-
placed with vy, and vy, respectively, the resulting
path-following closed-loop system becomes input-
to-state stable (ISS) with input o,, and state zp,.
This leads to the following result that we state
without proof.

Theorem 2. There is a control law for u; as a
function of z,, vz, and vz, that renders the closed-
loop PF system ¢ ISS with Lyapunov function W;
satisfying

Wi < =MW + |6, + d2, (4)
oy llzp, [I* < Wi < |y, |12 (5)

where A\y >0, p3 >0, @y >0, and d; > 0.

3.2 Coordination

Consider now the coordination control (CC) prob-
lem with a switching communication topology pa-
rameterized by p, as defined in Section 2, and
with a communication delay of 7 > 0 from any
transmitter to any receiver.

Recall that coordination states =y; are governed
by 4; = v,,. We let the decentralized feedback law
for the reference speeds v,, be a function of the
information obtained with time delay 7 from the
neighboring vehicles as follows:

v =vp—ki Y ) —yt—1) (6)

JEN; p(t)
where vy, is the assigned speed to the fleet of
vehicles and k; > 0. Notice that with this choice

of control law, the term ., in v,, for which the
time derivative is not available is

b=k Y WO -pu-1). (@)

JEN: p(t)

Theorem 3. [No delays] Under the conditions of
Theorem 1 and communications with no delays
(t = 0), control law (6) solves the coordination
problem, that is, |¥; —vy | and |v; —,|, Vi, j tend to
zero. Moreover, v, = [0y, |nx1 vanishes as ¢t — oco.

Proof: When there are no communication delays,
the coordination system is described by

y=wvrl— KLp(t)'yv



where 1 = [1,...,1]T and K =diag[k;]. Consider
the change of variables 8; = v; — vpt. Then,

0(t) = —K Ly0(t).

Using Theorem 1, |0; — ;| and therefore |y; —
;| converge to zero exponentially. Thus, L,y
vanishes and consequently ¥; — vy and 9,; tend
to zero as t goes unbounded. |

Theorem 4. [Finite delays] For any delay 7 > 0,
Theorem 3 holds true provided that each vehicle
receives information from at least one of the other
vehicles at all time, that is, |N; | # 0, V¢, 1.

Proof: In this case the coordination dynamics can
be written as

Y(t) = vl = K(t)Dpyy(t) + K () Apyy(t — 7).
(8)
Define 0; = ~; — vpt with v; = - and
ki(t) = \N7k<)| for some k > 0, that is, K(t) =
1,p(t
kD, 1. With this coordinate transformation, the
coordination dynamics take the simple form

0 =—k0+ kD, A0(t — 7).

The rest of the argument is similar to that in
Theorem 3. a

Notice that in the presence of communication
delays the variables 4; tend to v} and not to
the correct assigned speed vr,. Moreover, the error
vy, — v}, is amplified for large delays.

The main result of the paper is stated next.

Theorem 5. [PF-CC combination] Consider the
system that is obtained by putting together the
path-following and the coordination subsystems
studied before. With the control law defined for
the two subsystems, the complete system is ISS
with input d; and states z, = [z,,] and 7.

Proof: Close examination of (4), (7), and (8) shows
that the path-following and coordination control
subsystems form an interconnected cascade sys-
tem. Since the cascade interconnection of two ISS
system is ISS, the result follows. O

Remark 6. We can lift the constraint |N; ,| # 0
from Theorem 4 and drive the variables 7; to vy,
by using
k
B N, Z Yi(t) =7t = 7), Nip #
UT‘i = ,pP jeNi,p
vL, N’L p —

U1, —

instead of (6), where o, = (14+k7)vr. However, in
this case we need to know the delay 7 to compute
oL

4. AN ILLUSTRATIVE EXAMPLE

Consider the CPF control of three underactuated
AUVs. Vehicle 2 is allowed to communicate with
vehicles 1 and 3, but the latter two do not commu-
nicate between themselves directly. To simulate
losses in the communications, we considered the
situation where both links fail 75% of the time,
with the failures occurring periodically with a
period of 10[sec]. Moreover, the information trans-
mission delay is 5[sec]|. Notice that during failures
all the links become deactivated. Therefore, from
Theorem 4 the control law (6) cannot be applied.
To overcome this problem we used the control
proposed in Remark 6 with k& = 0.1[sec™!]. The
AUVs are required to follow paths of the form

Pud; ('Yi) 2: 9
™ . i
(1 cos( 7% + ¢a), ersin(==7i + da), 27 + 20,],

T
with ¢; = 20m, ¢ = 0.05m, T = 400, ¢g = — 27,
and zp, = —10m,z2p, = —5m, 2y, = Om. The
initial conditions are p; = (5m,—10m,—5m),

p2 = (bm,—15m,0m), ps = (5m,—20m,5m),
Ri=Ry=Rs=1I and vy =vy =v3 =w =
wo = w3 = 0. The reference speed vy, was set to
vy, = 0.5[sec™1].

The vehicles are also required to keep a formation
pattern that consists of having them aligned along
a common vertical line. Figure 1 shows the trajec-
tories of the AUVs. Figure 2 illustrates the evolu-
tion of the coordination and path-following errors
while the communication links fail periodically.
Clearly, the vehicles adjust their speeds to meet
the formation requirements and the coordination
errors yig 1= 71 — 2 and 713 := 1 — Y3 converge
to zero.

5. CONCLUSIONS

The paper addressed the problem of steering a
group of underactuated AUVs along given spatial
paths, while holding a desired inter-vehicle forma-
tion pattern (coordinated path-following) in the
presence of communication failures and delays.
The solution proposed builds on Lyapunov based
techniques and addresses explicitly the constraints
imposed by the topology of the inter-vehicle com-
munications network. Furthermore, it leads to a
decentralized control law whereby the exchange
of data among the vehicles is kept at a minimum.
Simulations illustrated the efficacy of the solu-
tion proposed. Further work is required to extend
the methodology proposed to address more gen-
eral problems in the presence of communication
failures and delays; for example, state-dependent
time delays which occur naturally due to the
spreading in the relative positions of the AUVs
and because of the reduced speed of propagation
of acoustic waves in water.
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Fig. 1. Coordination of 3 AUVs, with communication failures and delay
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