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Abstract: This paper addresses the problem of pitch and depth control of an
underwater towed vehicle. A nonlinear adaptive Lyapunov-based controller is
designed and proven to regulate the pitch and depth tracking errors to zero. When
in the presence of external disturbances and parameter uncertainties, the errors are
shown to converge to a neighbourhood of the origin that can be made arbitrarily
small. We show through computer simulations that the controlled system exhibits
good performance about different operating conditions when subjected to sea-wave
driven disturbances and in the presence of sensor noise.
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1. INTRODUCTION

Underwater towed vehicles (towfish) are com-
monly employed as sensor platforms for oceano-
graphic data acquisition. Their widespread ap-
plication in marine geophysics includes Side-
Scan-Sonar systems, marine magnetometers, and
gravimeters. See for example (Zumberge et al.,
1997; Parker, 1997). In physical oceanography
towed vehicles are used, for example, to deploy
current profilers for sampling of small-scale ocean
turbulence (Gargett, 1994; Schuch, 2004). In these
applications the attitude of the towfish may af-
fect significantly the quality of the data acquired
(Preston, 1992; Perrault et al., 1997). To meet the
requirements of a great number of oceanographic
missions, two related control problems may be
posed. The first one consists of tracking a depth
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profile where the desired depth depends on the
horizontal position of the vehicle or is simply
a function of time but does not depend on the
bottom profile. The second problem arises in the
context of bottom-following missions and consists
of maintaining a desired altitude above the sea-
bottom; the latter is a common requirement, in
particular for marine geophysical data acquisition,
see e.g. (Tivey and Schouten, 2003).

This paper addresses the simultaneous problem
of pitch and depth control of a towed underwa-
ter vehicle. A towing arrangement is considered
where the nose of the towfish is connected via a
small umbilical (the pigtail section) to a depressor,
which is in turn connected to and towed by a
support ship using a long tow line (the main cate-
nary), see Figure 1. When compared to a single-
part towing, this arrangement is better suited to
bottom-following surveys and has proven to yield
good stability and significant rejection of external
disturbances due to ship motion.



1.1 Prior and related work

The dynamics of towing cables and towed ve-
hicles have been studied by (Abkowitz, 1969).
The effects of wave-driven motions of the tow-
ing vessel on a sonar platform are discussed in
(Preston, 1992), which contains the results of sea-
trials with different tow configurations employed
to reduce external disturbances. In particular, the
towfish pitch and heave obtained with a direct
tow configuration is compared with the pitch ob-
tained with a two-part tow with different pigtail
lengths. The results show that a two stage towing
arrangement can significantly attenuate towfish
attitude disturbances due to the surface ship mo-
tion. Simultaneous 2-D modeling of the towing
cable and towed vehicle is a problem addressed in
(Perrault et al., 1997), where the cable is modeled
employing a lumped mass model and a PD closed-
loop controller is developed to accomplish bottom
following and pitch stabilization. Good altitude
control is obtained at the expense of pitch control
and vice-versa. A 3-D model of a two-part towing
arrangement is studied in (Wu and Chwang, 2000)
using a finite difference method. The results of the
study show that a two-part towed system is an ef-
fective way of decoupling the towship motion from
the towed vessel and emphasize the importance
of the secondary cable length for the stability of
the towfish. The concept of active stabilization of
a towfish (using an internal servo-actuated mass
which can trim the vehicle’s centre of mass) is
applied in (Woolsey and Gargett, 2002), resorting
to LQR control techniques. A related problem
of simultaneous control of yaw and depth of an
autonomous underwater vehicle was posed and
solved in (Aguiar, 1996) by resorting to sliding-
mode control theory. A list of additional references
reporting background work on the above and re-
lated problems may be found in (Schuch, 2004).

The problem of following a desired depth profile
while the vehicle is being towed falls in the scope
of trajectory-tracking control. The related prob-
lem of maintaining a constant altitude relative
to the sea-bottom requires additional sensors to
measure the altitude of the vehicle. Alternatively,
the altitude of the towfish may be estimated on-
line based on the position of the towing vessel,
using a more complex cable model and an existent
bathymetric map. The problem of accurate esti-
mation of the position of a towed underwater body
in the vertical plane during short periods of time
has been addressed in (Damy et al., 1994). The
approach adopted in that study uses a numerical
model of the towing cable, in order to transform
GPS measurements of the towing vessel position
into measurements of the towfish position and
integrating this information with inertial sensor
data acquired at the towfish. The position accu-
racy expected with the approach described is 10
cm.

Because depth control tends to affect the pitch
angle of the vehicle being towed, which is also af-
fected by disturbances transmitted via the towing
cable, accurate pitch control becomes one of the
key requirements of a good towing system. This
motivated the problem addressed in the paper:
develop a closed-loop control system to drive pitch
to zero while tracking a desired depth reference.
We assume that the towfish is stable in roll and
controlled independently in yaw. We therefore re-
strict ourselves to controlling the vehicle in the
vertical plane.

1.2 Proposed approach and main contribution of
this work

The strategy adopted in the present paper for
control system design borrows from nonlinear con-
trol theory. This choice was largely dictated by
the requirement that the controller should yield
good performance when the vehicle undergoes mo-
tions about different equilibrium conditions and
exhibit robustness against vehicle parameter un-
certainty. The equilibrium conditions are deter-
mined by, among other factors, the pigtail length
and the towing speed. The towfish dynamic model
that we adopted builds on the work reported in
(Schuch, 2004). However, the problem that we
tackle consists of controlling attitude and depth,
and not just attitude.

The key contribution of the present work is the de-
velopment of an adaptive controller that exhibits
good performance about different equilibrium (op-
erating) conditions and is robust against vehicle
parameter uncertainty. The nonlinear control law
derived is proven to stabilize the system even
in the presence of bounded external disturbances
and unmodeled dynamics.

The organization of the paper is as follows: Section
2 describes the dynamical model of the vehicle and
formulates the corresponding problem of depth
tracking and pitch regulation in the presence of
parametric model uncertainty. In Section 3, a so-
lution to this problem is proposed in terms of a
nonlinear adaptive control law. Section 4 evalu-
ates the performance of the control algorithms
developed using computer simulations. Finally,
Section 5 contains some concluding remarks and
discusses problems that warrant further research.

2. VEHICLE MODEL AND CONTROL
PROBLEM FORMULATION

2.1 Towfish characteristics and main assumptions

The towing system consists of the two-part tow-
ing arrangement described before and depicted
in Figure 1. The vehicle is equipped with two
control surfaces - bow and stern planes - equidis-
tant from the centre of mass. The sensor suite



Fig. 1. Towing arrangement. h-altitude above the
seabed; z-depth.

includes an Attitude and Heading Unit (AHU), a
depth sensor, an (optional) sonar altimeter, and
a Doppler Velocity Logger (DVL) that measures
the velocity of the vehicle relative to the water.
The towfish has a slightly positive buoyancy and
the metacentric height is such that the vehicle is
naturally stabilized in roll.

2.2 System modelling

In the present paper we adopt the approach pro-
posed in (Schuch, 2004), leading to a simplified
model where the perturbations induced by sea-
waves are transmitted to the tow-fish by the
depressor-pigtail subsystem, where the latter is
modelled as a spring-damper system. The length
of the pigtail can be used as a design parameter to
filter the effect of the disturbances transmitted to
the depressor by the towing vessel. To model the
wave induced perturbations we apply the JON-
SWAP wave spectrum, see e.g. (Fossen, 2002).

Reference trajectory. The reference trajectory is
defined to be a sufficiently smooth signal zd(t),
which may be a function of the horizontal dis-
placement x(t). In computer simulations we ap-
proximate zd(x(t)) by cubic-splines, thus ensuring
that the reference trajectory is twice differentiable
in time.

Nomenclature. We follow the standard convention
of North-East-Down coordinate systems (Fossen,
2002). In the sequel, {I} represents an inertial
coordinate frame and {B} denotes the body-
fixed frame that moves with the vehicle. In a
reference frame restricted to the vertical plane xz,
vector [x, z, θ]′ represents the pose of the vehicle
expressed in {I}, with θ denoting the pitch angle.
The vector ν = [u,w, q]′ represents the surge,
heave, and pitch rate components of the velocity
of the vehicle expressed in {B}.
Kinematics. In our simplified kinematic model
the pose and the velocity of the vehicle relative to
{I} are represented by vectors X1 := [z, θ]′ and
X2 := Ẋ1 = [ż, q]′, respectively with

ż = −u sin(θ) + ω cos(θ),
θ̇ = q.

(1)

Table 1. System parameters

Type of Parameter Symbol Value Units
Added mass Mu̇ 0 Kg

Mẇ −78.14 Kg
Zu̇ 0 Kg
Zẇ −18.64 Kg

Added Inertia Mq̇ −260.55 Kg m2

Zq̇ 170.90 Kg m2

Mom. of Inertia Iyy 174.49 Kg m2

Hydrodyn.Damping M|q|q 0.1 Kg m2 s−2

Z|q|q −0.1 Kg m s−2

Mass of the towfish m 113.5 Kg
Towfish dry weight W 1112 N
Length of the body lb 2.59 m
Buoyancy coef. bW 0.05 −
Body parameters Kfb 0.351 −

Kmα 1.31 −
Elevators’ param. Kfs 2.62 −

Kmd 0 −

Dynamics. Neglecting the influence of the mo-
tions in sway and roll, the simplified body-fixed
dynamic equations of interest are given by

(m− Zẇ)ẇ − Zu̇u̇− Zq̇ q̇ + (m− Zẇ)uq
+Z|q|q|q|q + fw(V, θ) + gw(θ) =
uδc(ν, δ, θ) + τ e

w

(2)

and
(Iyy −Mq̇)q̇ −Mu̇u̇−Mẇẇ
+(Zẇ −Xu̇)uw + M|q|q|q|q + fθ(V, θ)
+gθ(θ) = uδd

(ν, δ, θ) + τe
θ ,

(3)

where V = [u,w]′, fw(.), and fθ(.) represent hy-
drodynamic forces and moments associated with
heave and pitch, respectively, gw(.) and gθ(.) cap-
ture the restoring forces and moments, and τe

w and
τe
θ denote unknown external forces and moments,

including the towing force and the external dis-
turbances. The variables uδc and uδd

represent the
forces and moments due to the common mode and
the differential mode control actions, respectively.
The constants Mq̇, Mu̇, Mẇ, Zq̇, Zu̇, and Zẇ

represent added mass coefficients according to the
notation of (SNAME, 1950). The symbols M|q|q,
and Z|q|q denote nonlinear damping coefficients
of hydrodynamic origin. The parameter m is the
mass of the vehicle including fluid inside the hull,
and Iyy is the y-axis moment of inertia. The values
used for these parameters are presented in Table 1.

2.3 Problem Formulation

Let zd : [0,∞) → IR be a sufficiently smooth
time-varying reference trajectory with a uniformly
bounded time-derivative and let the desired pitch
angle be θd = 0. The problem that we address can
be formally described as follows:
Consider the vehicle model represented by equa-
tions (1),(2), and (3). Design a state-feedback
control law such that all closed-loop signals are
bounded and the tracking error norm ‖[z−zd, θ]‖
converges exponentially fast to a neighbourhood of
the origin that can be made arbitrarily small in
the presence of parameter model uncertainty.



3. CONTROLLER DESIGN

We propose a Lyapunov-based adaptive control
law to solve the trajectory tracking problem for-
mulated in section 2.

3.1 Nonlinear controller design

Let X1d(t) := [zd(t), 0]′ represent the desired
trajectory and define e := X1 −X1d.

Step1. Convergence of e. Consider the Lyapunov
control function V1 := 1

2e′e whose time-derivative
is

V̇1 = (X1 −X1d)′(X2 − Ẋ1d). (4)
To make V̇1 negative definite (n.d.) we can regard
X2 as a virtual control and set X2 = Ẋ1d−Kae, for
some positive definite (p.d.) diagonal matrix Ka.
Introducing the error variable z̄ = X2 − (Ẋ1d −
Kae), where X1d is required to be bounded and
twice time-differentiable, we rewrite (4) as

V̇1 = −e′Kae + e′z̄. (5)

Step2. Backstepping for z. Define the following
model parameters calculated from the vehicle’s
parameters (see Table 1 for the definitions of
the vehicle’s parameters used in the forthcoming
expressions):

a1 := − 1
m− Zẇ

; a2 := − 1
(Iyy −Mq̇)

Γ1 :=
1

(m− Zẇ)
[Kfb,Kfs,Wz, (m−Xu̇)]′

Γ2 :=
1

(Iyy −Mq̇)
[M|q|q, Xu̇,Kmd,Kmα,Wθ]′

and take Γ := diag(Γ′1,Γ
′
2), A := diag(a1, a2) > 0,

with Wz := bW W and Wθ := (1 + bW )W sin θ.
Consider also the following functions of the mea-
sured variables:

g1 := −u̇ sin θ − uq cos θ − wq sin θ; g2 := 0

β1 := cos θ[−fv(V )θ,−2fv(V )θ, cos θ, uq]′

β2 := [−|q|q, uw, fv(V ), fv(V )θ, sin θ]′

with fv(V ) = 1
2ρ|V |2. Define also β := [β′1, β

′
2]
′,

f := Γβ, and g := [g1, g2]′. Using the above def-
initions,simple manipulations of equations (1),(2)
and (3) yield

Ẋ2 = f + Aū + g + d

where d := P (θ)Aτe, with τe := [τ e
w, τe

θ ]′, P (θ) =
diag(cos θ, 1), and ū := [uδc , uδd

]′ is the control
action to be determined. For simplicity of pre-
sentation, at this stage we consider that d = 0.
This is appropriate to do when θ ≈ 0, the towing
force has no vertical component, and there exist
no external disturbances. These assumptions will
be lifted later. Neglecting the term −u̇ sin θ in g1,
the dynamic equation of the error z̄ can be written
as

˙̄z := f + Aū + g + Kaė− Ẍ1d (6)
where Ẍ1d is the second time-derivative of the
reference trajectory.

We introduce the augmented Lyapunov function

V2 := V1 +
1
2
z̄′z̄ =

1
2
e′e +

1
2
z̄′z̄ (7)

and write its time-derivative, applying (6), as

V̇2 = −e′Kae+ z̄′[e+f +Aū+g+Kaė−Ẍ1d]. (8)

At this stage, one could use the control ū to drive
z̄ to zero if we knew exactly the remaining terms
inside the brackets in (8). This is not practical to
do, because some of the parameters of the vehicle
are not known with good accuracy . Hence, we
define the variables â1, â2, Γ̂1, and Γ̂2 to represent
estimates of a1, a2, Γ1, and Γ2, respectively,
and set the control using the estimated model
parameters as follows:

ū = −Â−1[e + f̂ + g + Kaė− Ẍ1d + Kbz̄], (9)

where Kb is a p.d. diagonal matrix, Â :=
diag(â1, .̂a2), and f̂ := Γ̂β = diag(Γ̂′1, Γ̂

′
2)β. We

require that Ẍ1d be bounded in order to guarantee
boundedness of the control signal.

Define the estimation errors Ã := A− Â, Γ̃ := Γ−
Γ̂, and Π̃ := Π − Π̂ with Π := [Γ, A]′, Π̂ :=
[Γ̂, Â]′, and take Φ := [β′,−(A−1(Γ̂β + e + g +
Kaė − Ẍ1d + Kbz̄))′]′. Using the control law (9),
straightforward algebraic manipulations yield the
time-derivative of V2 as

V̇2 = −e′Kae− z̄′Kbz̄

+z̄′[Γ̃β − Â−1Ã(Γ̂β + e + g + Kaė− Ẍ1d + Kbz̄)]
= −e′Kae− z̄′Kbz̄ + z̄′Π̃′Φ

(10)
Step3. Adaptive control. We introduce a third
Lyapunov function

V3 := V2 +
1
2r

∥∥∥Π̃
∥∥∥

2

F
=

1
2
e′e +

1
2
z̄′z̄ +

1
2r

∥∥∥Π̃
∥∥∥

2

F
(11)

for some scalar r > 0, where ‖.‖F stands for the
Frobenius norm.

The time-derivative of V3 is

V̇3 = −e′Kae− z̄′Kbz̄ + tr(Π̃′(Φz̄′ − 1
r

˙̂Π)). (12)

Let Π0 represent an initial estimate of Π. Setting
˙̂Π = r[Φz̄′ − s(Π̂−Π0)] (13)

for some scalar s > 0 yields

V̇3 = −e′Kae− z̄′Kbz̄ + tr(sΠ̃′(Π̂−Π0)).

Making Π̃0 := Π − Π0 and applying the equality

tr(sΠ̃′(Π̂− Π0)) = − 1
2s

∥∥∥Π̃
∥∥∥

2

F
− 1

2s
∥∥∥Π̂−Π0

∥∥∥
2

F
+

1
2s

∥∥∥Π̂−Π0

∥∥∥
2

F
it follows that

V̇3 ≤ −e′Kae− z̄′Kbz̄ − 1
2
s
∥∥∥Π̃

∥∥∥
2

F
+

1
2
s
∥∥∥Π̃0

∥∥∥
2

F
(14)

Although we cannot ensure that V̇3 is always neg-
ative, it is possible to show that this is sufficient



to ensure practical stability. Note also that the
dynamics of Π̂ established in (13) ensure that
the values of the parameters estimated by the
adaptive controller do not diverge from the cor-
responding initial values.

External forces. Let ftd := [ftdx, ftdz]′ be the vec-
tor representing the sum of the towing force and
the external disturbances, expressed in {I}. The
corresponding terms in the dynamics equations
(2) and (3) are represented by τe := [τe

w, τ e
θ ]′ =

Q(θ)ftd, with

Q(θ) :=

[
sin θ cos θ

−lb
2

sin θ
−lb
2

cos θ

]

where lb is the length of the towfish (see Table
1). These unknown terms cannot be taken into
account in the control law (9) yielding, instead of
(10),

V̇2 = −e′Kae− z̄′Kbz̄ + z̄′Π̃′Φ + z̄′d (15)

and

V̇3 ≤ −e′Kae−z̄′Kbz̄− 1
2
s
∥∥∥Π̃

∥∥∥
2

F
+

1
2
s
∥∥∥Π̃0

∥∥∥
2

F
+z̄′d.

(16)

3.2 Stability analysis

We now apply a reasoning similar to the one in
the proof of Theorem 1 in (Aguiar and Hespanha,
2003) to prove the following theorem:

Theorem I Consider the closed-loop system Σ
consisting of the vehicle model (1),(2),(3) and
the adaptive feedback controller (6), (9), and
(13). Given a bounded, sufficiently smooth time-
varying reference trajectory Xd : [0,∞) → IR ×
{0}, the following holds:

i) For any initial condition, the solution to Σ
exists globally, all the closed-loop signals are
bounded, and the tracking error e satisfies

‖e‖ ≤ e−λtc0 + ε (17)

where λ, c0, and ε are positive constants, and
c0 depends on the initial conditions.

ii) By appropriate choice of the controller pa-
rameter Kb, the rate of convergence λ and the
radius ε can be chosen at will.

Proof Starting with (16) we apply Young’s in-
equality to show that for any scalar constant γ > 0

V̇3 ≤ −e′Kae− z̄′(Kb − γ

2
I)z̄ − 1

2
s
∥∥∥Π̃

∥∥∥
2

F
+

1
2
∆2,

(18)
where ∆ = ‖d‖√

γ +
√

s
∥∥∥Π̃0

∥∥∥
F
. From (11) and

(18), and assuming that Kb satisfies Kb > γ
2 I

we conclude that there exists a sufficiently small
constant λ > 0 such that the following inequality
holds:

V̇3 ≤ −λV3 +
1
2
∆2. (19)

We prove (i) by applying the Comparison Lemma
(Khalil, 2002) and showing that along the solu-
tions of Σ

V3(t) ≤ e−λtV3(0) +
1
2λ

∆2. (20)

This shows that all the control signals remain
bounded and the solutions of the system exist
globally and are ultimately bounded with ultimate
bound 1

2λ∆2. Considering the definition of V3, ‖e‖
converges to a ball of radius ∆√

λ
. From (20) we can

also conclude that the close-loop system is input-
to-state stable (ISS) with respect to bounded
parametric uncertainties and bounded external
disturbances.

To prove (ii) we show that it is possible to make
the radius ∆√

λ
arbitrarily small by an appropriate

choice of the controller parameters. For a given
limiting radius ε and a given convergence rate λ
it can be shown that

∆√
λ
≤ ε =

‖db‖√
λγ

+
√

s

λ

∥∥∥Π̃0

∥∥∥
F

with db := sup
t≥0

‖d‖. Thus, we can select

γ := ‖db‖2/λ

(
ε−

√
s

λ

∥∥∥Π̃0

∥∥∥
)2

provided that we make

Kb − γ

2
I = Kb − ‖db‖2

2λ
(
ε−√

s
λ

∥∥∥Π̃0

∥∥∥
)2 I ≥ 1

2
I > 0

and choose s sufficiently small to make γ > 0.
Thus it is shown that (19) is verified and therefore
(20) holds.

4. SIMULATION RESULTS

In this section we illustrate the performance of
the controll algorithms developed, using computer
simulations. We simulated the system at the ap-
proximate towing speeds of 4 knts, 6 knts, and
8 knts using pigtail lengths of 50 m and 100 m.
The results presented below correspond to the
towing speed of 6knts which do not differ consid-
erably from those obtained at the other speeds.
The pigtail length is 100 m. The control planes
have a maximum deflection of ±30 deg and the
actuators’ dynamics are approximated by a first
order system with a time constant equal to 0.1 s.

In the simulations, the vehicle is made to track
the desired depth profile represented in Figure
2(a) while regulating the pitch angle to zero. The
initial conditions for the towfish are (z, θ, ż, q) =
(24.7, 0, 0, 0). The simulation starts with velocities
u = 3m/s, w = 0, and q = 0. The controller
parameters have been set as follows: Ka = 0.05I2,
Kb = 1.1I2, r = 10−6, s = 10−6. The initial
estimates of the model parameters represented by
Π0 are set to ±10% of the corresponding true
values.
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Measurement noise. To test the robustness of
the proposed adaptive controller with respect to
sensor noise, the measurements of u, w, q, z, and
θ used in the simulations are affected by mutually
independent additive gaussian white noise whose
intensities are the following, respectively: σ2

u =
(0.05m/s)2, σ2

w = (0.1m/s)2, σ2
q = (0.5deg/s)2,

σ2
z = (0.1m)2, and σ2

θ = (0.1deg)2.

Results. The intensity of the force caused by sea
waves is plotted in Figure 2(b). The velocities of
the towfish are shown in Figure 3. The tracking
errors achieved by the system, and the actuation
of the control surfaces are depicted in Figure 4. We
observe that in general the depth and pitch errors
verify |ez| ≤ 50 cm and |eθ| ≤ 1 deg, respectively.

5. CONCLUSIONS AND FUTURE WORK

The paper addressed the problem of pitch and
depth control of an underwater towed vehicle.
A nonlinear adaptive Lyapunov-based controller
was designed and tested in simulation. The re-
sults obtained show that the nonlinear Lyapunov-
based controller proposed is adequate for depth

or bottom following missions and precise control
of the attitude of a towed vehicle. The controller
proved to be robust against vehicle parameter un-
certainty and bounded external disturbances. The
controlled system exhibits good performance at
different equilibrium conditions, in the presence of
sensor noise and external disturbances, and meets
the requirements of the envisioned applications of
a towfish.

Future work on this subject will start by extend-
ing the application of these developments to the
control in both yaw and pitch. We expect to apply
these techniques to the control of an actual towfish
used in marine geophysical surveying.
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