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Abstract

This paper derives hybrid control laws for the ex-
tended nonholonomic double integrator (ENDI).
A new logic-based hybrid controller is proposed
that yields global stability and convergence of the
trajectories of the closed loop system to an ar-
bitrarily small neighborhood of the origin. The
problem of practical stabilization of the ENDI
system under input saturation constraints and in
the presence of small input additive disturbances
is also posed and solved. Stability and conver-
gence proofs are presented. Simulations illustrate
the performance of the controllers derived.

1 Introduction

Control of nonholonomic systems has been the
subject of considerable research effort over the
last few years. From a practical point of view,
nonholonomic systems often arise in the form
of robot manipulators, mobile robots, and space
and marine robots that are either designed with
fewer actuators than degrees of freedom or must
be able to function in the presence of actua-
tor failures. From a theoretical stand point,
there is considerable challenge in the synthesis
of control laws for nonholonomic systems since,
as pointed out in a famous paper of Brockett [8],
they cannot be stabilized by continuously differ-
entiable, time invariant, state feedback control

laws. To overcome the limitations imposed by
the Brockett’s celebrated result, a number of ap-
proaches have been proposed for the stabilization
of nonholonomic control systems to equilibrium
points. See [16] and the references therein for a
comprehensive survey of the field. Among the
proposed solutions are smooth time-varying con-
trollers [22, 23, 24, 11, 18, 20], discontinuous or
piecewise smooth control laws [9, 5, 12, 3, 4], and
hybrid controllers [6, 10, 13].
Despite the vast amount of papers published on
the stabilization of nonholonomic systems, the
majority has concentrated on kinematic models of
mechanical systems controlled directly by veloc-
ity inputs. Although in certain circumstances this
can be acceptable, many physical systems (where
forces and torques are the actual inputs) will not
perform well if their dynamics are neglected.
As a contribution to overcome this limitation, this
paper derives a hybrid control law for the so-
called ENDI system under input saturation con-
straints, in the presence of small input additive
disturbances. The ENDI system can be viewed
as an extension of the so called nonholonomic in-
tegrator [8]. Its importance stems from the fact
that it captures the dynamics and kinematics of
a nonholonomic system with three states and two
first-order dynamic control inputs, (e.g., the dy-
namics of a wheeled robot subject to force and
torque inputs).
The paper proposes a switching control law for
the ENDI system. Control system design bor-
rows from hybrid control theory and is greatly
inspired by the work of Hespanha [13] for the
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nonholonomic integrator. The main result shows
that for any bounded input additive disturbances
and any initial condition, the closed loop hybrid
system possesses strong practical stability with
bounded control input. Control system design
is done by mapping the state-space into a two
dimensional closed positive quadrant space and
dividing it into four overlapping regions followed
by the assignment of a suitable feedback law for
each region.
The paper is organized as follows: Section 2 in-
troduces the ENDI system and discusses its con-
trollability and stabilizability properties. Section
3 derives a hybrid controller for the ENDI. Sec-
tion 4 extends the control law proposed to the
bounded input case. Section 5 presents a solution
to the problem of practical stability of the ENDI
subject to input saturation constraints and in the
presence of small input additive disturbances. Fi-
nally, Section 6 contains simulation results that
illustrate the performance of the control laws de-
rived. Concluding remarks are given in Section
7.

2 The Extended Nonholonomic
Double Integrator

In [8], Brockett introduced the nonholonomic in-
tegrator system

ẋ1 = u1, ẋ2 = u2, ẋ3 = x1u2 − x2u1,

where (x1, x2, x3)
′ ∈ R3 is the state vector and

(u1, u2)
′ ∈ R2 is a two-dimensional input. This

system displays all basic properties of nonholo-
nomic systems and is often quoted in the liter-
ature as a benchmark for control system design
[5, 13, 3, 19].
The nonholonomic integrator captures (under
suitable state and control transformations) the
kinematics of a wheeled robot. However, the non-
holonomic integrator model fails to capture the
case where both the kinematics and dynamics of
a wheeled robot must be taken into account. To
tackle this realistic case, the nonholonomic inte-
grator model must be extended. It is shown in [2]
that the dynamic equations of motion of a mobile
robot of the unicycle type can be transformed into

the system

ẍ1 = u1, ẍ2 = u2, ẋ3 = x1ẋ2 − x2ẋ1, (1)

where x =
(

x1, x2, x3, ẋ1, ẋ2

)′ ∈ R5 is the

state vector and u =
(

u1, u2

)′ ∈ R2 is a two-
dimensional control vector. In this paper, system
(1) will be referred to as the extended nonholo-
nomic double integrator (ENDI).

Controllability and stabilizability proper-
ties
The ENDI system fall into the class of control
affine nonlinear systems with drift

ẋ = f(x) +
m
∑

i=1

gi(x)ui

where x ∈M , M is a smooth n-dimensional man-
ifold, u ∈ Rm and the mappings f, g1, . . . , gm are
smooth vector fields on M . The following result
summarizes the controllability and stabilizability
properties of the ENDI [1]. See [14, 25, 21] for
relevant background.

Theorem 1 Consider the ENDI system de-
scribed by (1). Let Me be the set of equilib-
rium solutions corresponding to u = 0, that is,
Me = {x ∈ R5 : ẋ1 = ẋ2 = 0}. Then, the ENDI
system satisfies the following properties:

1. There is no time-invariant continuously dif-
ferentiable feedback law that asymptotically
stabilizes the closed loop to xe ∈Me.

2. The ENDI system is locally strongly accessi-
ble for any x ∈ R5.

3. The ENDI system is small time locally con-
trollable (STLC) at any equilibrium xe ∈Me.

3 Hybrid Controller Design

This section proposes a simple piecewise smooth
controller to stabilize the ENDI. The key ideas
involved borrow from hybrid system theory. Hy-
brid systems are specially suited to deal with the
combination of continuous dynamics and discrete
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events. The literature on hybrid systems is exten-
sive and discusses different modeling techniques
[7, 26].
In this paper, a continuous-time hybrid system Σ
is defined as [13]

ẋ(t) = fσ(t)

(

x(t), t
)

, t ≥ t0 (2a)

σ(t) = φ
(

x(t), σ(t−)
)

(2b)

where σ(t) ∈ I 4
= {1, . . . , N} and x(t) ∈ X 4

=
∪Nσ=1Xσ ⊂ Rn. Here, the differential equation
(2a) models the continuous dynamics, where the
vector fields fσ : Xσ × R+ → X , σ ∈ I are each
locally Lipschitz continuous maps from Xσ to X .
The algebraic equation (2b), where φ : X × I →
I, models the state of the decision-making logic.
The discrete state σ(t) is piecewise constant. The
notation t− indicates that the discrete state is
piecewise continuous from the right. The dy-
namics of the system Σ can now be described as
follows: starting at (x0, i) with x0 ∈ Ri ⊂ Xi,
the continuous state trajectory x(t) evolves ac-
cording to ẋ = fi(x, t). When φ

(

x(·), i
)

becomes
equal to j 6= i, (and this could only happen when
x(·) hits the set X\Ri), the continuous dynamics
switches to ẋ = fj(x, t), from which the process
continues. As in [13], the ”logical dynamics” will
be determined, recursively by equation (2b) with
σ−(t0) = σ0 ∈ I where σ−(t) denotes the limit
of σ(τ) from below as τ → t and the transition
function φ is defined by

φ(x, σ) =

{

σ if x ∈ Rσ,

maxI
{

k : x ∈ Rk

}

otherwise.
(3)

We now review the concept of stability of a hybrid
system [13].

Definition 1 (Stability) The equilibrium point
x = 0 of the hybrid system Σ is Lyapunov stable if
for every ε > 0 and any t0 ∈ R+ there exists δ =
δ(ε, t0) > 0 such that for every initial condition
{x0, σ0} ∈ X × I with ‖x0‖ < δ, the solution
{x(t), σ(t)} satisfies ‖x(t)‖ < ε, for all t ≥ t0. If
in the above definition δ is independent of t0, i.e.,
δ = δ(ε), then the origin is said to be uniformly
stable.

Consider now the ENDI system (1). When the
state variables x1 and x2 are both zero, ẋ3 will
also be zero and, consequently, x3 will remain
constant. Thus a possible strategy to steer an
initial state to the vicinity of the origin is the fol-
lowing (see [13] where similar ideas were applied
to the control of the nonholonomic integrator):
i) first, make the state variable x3 converge to
zero while keeping x1 and x2 away from the axis
x1 = x2 = 0; ii) next, freeze x3 (ẋ3 = 0), and
force x1 and x2 to converge to zero.
In order to derive a hybrid controller for the
ENDI, it is convenient to define the function
W (x) : R5 → Ω ⊂ R2 as

ω
4
= (ω1, ω2)

′ = W (x) =
(

s2, (x1)
2 + (x2)

2
)′
,

where s = ẋ3+λx3 and λ is a strictly positive con-
stant. The image of W is the two-dimensional
closed positive quadrant space Ω = {(ω1, ω2) ∈
R2 : ω1 ≥ 0, ω2 ≥ 0}. This mapping has sev-
eral properties, which are listed in the following
lemma.

Lemma 1 The mapping W (·) : R4 → Ω ⊂ R2

has the following properties:

1. W (0) = 0.

2. if w converges to zero as t→∞, then x also
converges to zero as t→∞.

3. if x3(t0) = 0 and ω1 ≤ ε for all t ≥ t0, then

|x3(t)| ≤
√
ε

λ
for all t ≥ t0. For the case

where x3(t0) 6= 0, the bound of x3(t) is given

by |x3(t)| ≤ e−λ(t−t0)|x3(t0)|+
√
ε

λ
.

Divide now Ω into three overlapping regions (see
Figure 1)

R1 = {(ω1, ω2) ∈ Ω : ω1 > ε1 ∧ ω2 ≤ γ2}
R2 = {(ω1, ω2) ∈ Ω : ω1 > ε1 ∧ ω2 ≥ γ1}
R3 = {(ω1, ω2) ∈ Ω : ω1 ≤ ε2}

(4)

where ε2 > ε1 > 0 and γ2 > γ1 > 0.
Consider the following dynamical system as a
candidate control law to steer the ENDI trajec-
tories to a small neighborhood of the origin:

u = gσ (x) , (5)
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Figure 1: Definition of regions R1, R2, and R3.

where the vector fields gσ : R5 → R2, σ ∈ I =
{1, 2, 3} are given by1

g1(x) =

[

−λẋ1 + x1

−λẋ2 + x2

]

, g2(x) =

[

−λẋ1 + x1 + x2s

−λẋ2 + x2 − x1s

]

,

g3(x) =

[

−λẋ1 − x1

−λẋ2 − x2

]

. (6)

The control laws for each region were designed
according to the following simple rules: while
σ = 1, ω1(t) must decrease or remain constant
and ω2(t) must grow without bound as t → ∞;
when σ = 2, ω1(t) must decrease and reach a
determined bound in finite time; and finally
when σ = 3, ω1(t) must again remain constant
and ω2(t) must converge to zero. A sketch of
a typical trajectory of W is shown in Figure 2.
The region that is the intersection of R2 and R3

can be seen as a hysteresis region. Its aim is to
avoid the possibility of infinitely fast switching
when ω1 is near ε1.

e1 e2 W1

W2

g2
s = 1

s = 2

s = 3

g1

Figure 2: Image of a representative trajectory in
the (ω1, ω2) plane.

The following theorem can now be stated.

1For σ = 1, if λ does not satisfy the relation − 1
2

(

1 +√
λ2 + 4

)

x1(t0) 6= ẋ1(t0) ∨ − 1
2

(

1 +
√
λ2 + 4

)

x2(t0) 6=
ẋ2(t0), then the unstable mode of the corresponded closed
loop system is not excited. In this case, g1(x) has to

be modified to g1(x) =
[

−λẋ1+x1+sgn(c2) sgn(s)
−λẋ2+x2−sgn(c1) sgn(s)

]

where

sgn(x) = 1 if x ≥ 0, sgn(x) = −1 if x < 0, ci =
ẋi(t0)−xi(t0)s1

s2−s1
, i = 1, 2, and s1,2 = − 1

2 ± 1
2

√
λ2 + 4.

Theorem 2 Consider the hybrid system Σ de-
scribed by (1), (2b), (3), and (5)-(6). Let
{x(t), σ(t)} = {x : [t0,∞) → R5, σ : [t0,∞) →
I} be a solution to Σ. Then, the following prop-
erties hold.

1. Given an arbitrary pair {x0, σ0} ∈ R5 × I
(initial condition), there exists a unique so-
lution {x(t), σ(t)} for all t ≥ t0 such that
{x(t0), σ−(t0)} = {x0, σ0}.

2. For any set of initial conditions
{x(t0), σ−(t0)} = {x0, σ0} ∈ R5 × I,
there exists a finite time T ≥ t0 such that for
t > T the state variables x1(t), ẋ1(t), x2(t),
and ẋ2(t) converge uniformly exponentially
to zero and ω1(t) ≤ ε2, where ε2 > 0 is
a controller parameter that can be chosen
arbitrarily small.

3. The origin x(t) = 0 is a Lyapunov uniformly
stable equilibrium point of Σ.

Proof. See [1, 2]. 2

4 Boundedness of control inputs

In this section the hybrid control law proposed
is extended to the bounded input case, that is,
when the ENDI system is subject to the input
constraints |u1(t)| ≤ ū1 and |u2(t)| ≤ ū2, where
ū1, ū2 are positive constants. It will be shown
that by adding one more region associated with
an extra control field the control problem can be
solved. The objective of the extra region is to
bring the state variables (if they have large am-
plitude values) to a region where the inputs con-
straints are satisfied.
Consider the function WB(x) : R5 → Ω ⊂
R2, mapping the state-space x into the two-
dimensional closed positive quadrant space Ω,

ω
4
= (ω1, ω2)

′ = WB(x) =
(

s2, (x1)
2 + (x2)

2 +

(ẋ1)
2 + (ẋ2)

2
)′
, where s = ẋ3 + λx3 and λ is a

strictly positive constant. Notice that WB(·) sat-
isfies the same properties as W (·) described in
Lemma 1.
Consider also the following four overlapping re-
gions (see Figure 3)

R1 = {(ω1, ω2) ∈ Ω : ω1 > ε1 ∧ ω2 ≤ γ2},
R2 = {(ω1, ω2) ∈ Ω : ω2 ≥ γ2},
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R3 = {(ω1, ω2) ∈ Ω : ω1 > ε1 ∧ γ1 ≤ ω2 ≤ γ4},
R4 = {(ω1, ω2) ∈ Ω : ω1 ≤ ε2 ∧ ω2 ≤ γ5}
∪ {(ω1, ω2) ∈ Ω : ω1 > ε1 ∧ γ3 ≤ ω2 ≤ γ5},
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Figure 3: Definition of regions R1, R2, R3, and
R4.

where εi+1 > εi > 0 for i = 1, 2 and γi+1 > γi > 0
for i = 1, 2, 3, 4. The new control law is given by2

u = gσ (x) , (7)

g1(x) =

[

−λẋ1 + x1

−λẋ2 + x2

]

, (8)

g2(x) =

[

−k11 sat(k12x1 + ẋ1)− k12 sat(ẋ1)
−k21 sat(k22x2 + ẋ2)− k22 sat(ẋ2)

]

, (9)

g3(x) =

[

−λẋ1 + x1 + k1x2 sgn(s)
−λẋ2 + x2 − k2x1 sgn(s)

]

, (10)

g4(x) =

[

−λẋ1 − x1

−λẋ2 − x2

]

, (11)

where σ ∈ I = {1, 2, 3, 4}, ki, ki1, and ki2 are
positive constants that satisfy ki1 + ki2 = ūi and
ki2 > ki1 for all i = 1, 2.

Figure 4 shows a typical trajectory of WB.

The following theorem can be proved [1].

Theorem 3 Consider the hybrid system ΣB de-
scribed by (1), (7)-(11), and the switching logic
defined in (3). Let {x(t), σ(t)} = {x : [t0,∞) →
R5, σ : [t0,∞) → I} be a solution to ΣB. Then,
the following properties hold.

2The term sgn(s) that appears in the vector field g3(x)
does not introduce chattering since s will never change its
signal while σ = 3.
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Figure 4: Image of a representative trajectory in
the (ω1, ω2) plane.

1. Given an arbitrary pair {x0, σ0} ∈ R5 × I
(initial condition), there exists a unique so-
lution {x(t), σ(t)} for all t ≥ t0 such that
{x(t0), σ−(t0)} = {x0, σ0}.

2. For any set of initial conditions
{x(t0), σ−(t0)} = {x0, σ0} ∈ R5 × I,
there exists a finite time T such that for
t > T the state variables x1(t), ẋ1(t), x2(t),
and ẋ2(t) converge uniformly exponentially
to zero, and ω1(t) ≤ ε2, where ε2 > 0 is
a controller parameter that can be chosen
arbitrarily small.

3. The origin x(t) = 0 is a Lyapunov uniformly
stable equilibrium point of ΣB.

4. Let ε3 and γ5 be positive constants such that
ε3 ≤ ε? and γ5 ≤ γ?, where the vector (ε?, γ?)′

is an admissible or feasible parameter vector,
such that the inequalities

λ|ẋ1|+ |x1|+ k1|x2| ≤ ū1,

λ|ẋ2|+ |x2|+ k2|x1| ≤ ū2,
(12)

hold for all ω1 ≤ ε? and ω2 ≤ γ?. Then, for
any arbitrary large and bounded continuous
state initial conditions x0 the control signals
satisfy the constraints

|ui| ≤ ūi, i = 1, 2 (13)

and limt→∞ ui(t) = 0, i = 1, 2 along the
trajectories of the closed loop system ΣB,

5 Stability analysis under Persis-
tent Disturbances

Consider now the ENDI system subject to mag-
nitude limitations on their inputs and in the pres-
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ence of small input additive disturbances, i.e.,

ẍ1(t) = u1(t) + d1(t),

ẍ2(t) = u2(t) + d2(t),

ẋ3(t) = x1(t)ẋ2(t)− x2(t)ẋ1(t),

(14)

where x = (x1, x2, x3, ẋ1, ẋ2)
′ ∈ R5 is a state vec-

tor and u = (u1, u2)
′ ∈ R2 is a two-dimensional

control vector subject to the constraints |ui(t)| ≤
ūi. The disturbance vector d = (d1, d2)

′ with
di : [t0,∞) → R piecewise continuous in t, satis-
fies |di(t)| ≤ δ for all i = 1, 2.
Before presenting the main result we now intro-
duce the following definitions that extend to a
hybrid control setting the usual definitions of ul-
timate boundedness and practical stability [17].

Definition 2 (Unif. Ultimate Boundedness)
The solutions of the hybrid system Σ (see ex-
pression (2)) are said to be uniformly ultimately
bounded (with bound b) if there exist positive
constants b and c, and for every α ∈ (0, c),
any t0 ∈ R+ and every initial condition
{x0, σ0} ∈ X × I with ‖x0‖ < α there exists
a positive constant T = T (α) independent of
t0 such that the continuous state solution x(t)
of Σ satisfies ‖x(t)‖ < b for all t ≥ t0 + T .
The solutions are said to be globally uniformly
ultimately bounded if the above condition holds
for arbitrarily large α.

Consider now the hybrid system Σd defined by

ẋ(t) = fσ(t)

(

x(t), t
)

+ d(x, t), t ≥ t0

σ(t) = φ
(

x(t), σ(t−)
)

,

where the only difference between Σ and Σd is the
presence of a perturbation term d that for phys-
ical systems may represent input disturbances or
capture unknown modeling parameters. In prac-
tice d may be an unknown function of (x, t) but
it satisfies the constraint

‖d(x, t)‖ ≤ δ, ∀t ≥ t0 ∀x ∈ X . (15)

Definition 3 (Practical Stability) Let δ be a
positive constant and let R ⊂ X and R0 be two
sets where R is a closed and bounded set contain-
ing the origin and R0 is a subset of R. Let SD

be the set of all perturbations d satisfying (15).
The origin x = 0 is said to be practically stable
if for each d ∈ SD, any t0 ∈ R+, and for every
initial condition {x0, σ0} ∈ R0 × I, the contin-
uous solution of Σd, x(t) is in R for all t ≥ t0.
That is, the solutions that start initially in R0×I
remain thereafter in R× I. If, in addition, each
solution of the hybrid system Σd for each d ∈ SD
is ultimately in R, then one says that the hybrid
system Σ (see expression (2)) has strong practi-
cal stability.

To solve the problem of practical stability for Σd,
the control law developed in Section 4 is used,
together with a slight modification of the vectors
fields gσ(x) as follows:

g1(x) =

[

−λẋ1 + x1 + k1 sgn(x2) sgn(s)
−λẋ2 + x2 − k2 sgn(x1) sgn(s)

]

, (16)

g2(x) =

[

−k11 sat(k12x1 + ẋ1)− k12 sat(ẋ1)
−k21 sat(k22x2 + ẋ2)− k22 sat(ẋ2)

]

(17)

g3(x) =

[

−λẋ1 + x1 + k1h(
x2

δ
) sgn(s)

−λẋ2 + x2 − k2h(
x1

δ
) sgn(s)

]

, (18)

g4(x) =





−λẋ1 − x1 + k1 sgn(x2) sat
(

s
η

)

−λẋ2 − x2 − k2 sgn(x1) sat
(

s
η

)



 , (19)

where

h(x) =

{

x if |x| ≥ 1,
sgn(x) otherwise,

λ > 0, η is a positive constant that satisfies
η2 < ε2, k1 > δ, k2 > δ, ki1 and ki2 are positive
constants such that ki1 + ki2 = ūi, ki2 > ki1 + δ,
and ki1 > δ for all i = 1, 2. Furthermore,
εi+1 > εi > 0 for i = 1, 2, γi+1 > γi > 0 for
i = 1, 2, 3, 4, and γ5 satisfies

β2
1 + β2

2 ≤ γ5, (20)

where

βi =

√

λmax(P )

λmin(P )

√
λ2 + 4

λ

ki + δ

θ
, i = 1, 2 (21)

for some positive constant θ < 1, λmax(P ) =
λ
4
+ 1

λ
+
√
λ2+4
4

, and λmin(P ) = λ
4
+ 1

λ
−
√
λ2+4
4

.

The following theorem establishes the main result
of the paper.
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Theorem 4 Consider the hybrid system Σd de-
scribed by (7), (14) (16)-(19) and the switching
logic defined in (3). Let {x(t), σ(t)} = {x :
[t0,∞) → R5, σ : [t0,∞) → I} be a solution to
Σd. Then, the following properties hold.

1. Given an arbitrary pair {x0, σ0} ∈ R5 × I
(initial condition), there exists a unique so-
lution {x(t), σ(t)} for all t ≥ t0 such that
{x(t0), σ−(t0)} = {x0, σ0}.

2. The solutions of the hybrid system Σd are
globally uniformly ultimately bounded.

3. The origin x(t) = 0 is practically stable rel-
ative to the positive constant δ and the two
sets R and R0, where R0 ⊂ R, |d(t)| ≤ δ,

R0 = {x ∈ R5 : ω1 ≤ η2 ∧ ω2 ≤ µ2
1 + µ2

2},
R = {x ∈ R5 : ω1 ≤ ε2 ∧ ω2 ≤ β2

1 + β2
2},

βi, i = 1, 2 is given by (21) and

µi =

√
λ2 + 4

λ

ki + δ

θ
, i = 1, 2

for some positive constant θ < 1.
Furthermore, the hybrid system composed by
Σd without the perturbation term d possesses
strong practical stability.

4. Let ε3 ≤ ε? and γ5 ≤ γ?, where the vector
(ε?, γ?)′ is an admissible or feasible param-
eter vector, for which the inequalities (12)
and

λ|ẋi|+ |xi|+ ki ≤ ūi, i = 1, 2 (22)

hold with ω1 ≤ ε? and ω2 ≤ γ?. Then, for
any arbitrary large and bounded continuous
state initial conditions x0 the control signals
satisfy the constraints |ui| ≤ ūi, i = 1, 2.

Proof.
Existence and Uniqueness

For each i ∈ I the vector field gi(x) is globally
Lipschitz. Furthermore, the distance between
two points in the (ω1, ω2)-space where consecutive
switchings can occur is always nonzero. It now
follows from classical arguments [15] that the hy-
brid system Σd has exactly one solution for each
initial condition {x0, σ0} ∈ R5 × I.
Global uniform ultimate boundedness

To show global uniform ultimate boundedness of
system Σd consider first the following claims:

Claim 1 Consider the system

ẍ = −k1 sat (k2x+ ẋ)− k2 sat (ẋ) + d(t), (23)

where the disturbance term d(t) satisfies |d(t)| ≤
δ, and k1 and k2 are positive constants that satisfy
k1 + k2 = ū, k2 > k1 + δ, and k1 > δ. Then,
for any initial condition (x(t0), ẋ(t0))

′ ∈ R2, there
exist a finite time T ≥ t0 and a positive constant
γ given by

γ =
δ

k1k2
2

√

4k1
2 + k2

2 + 4k1k2 + 4k1
2k2

2 (24)

such that for all t ≥ T ,

x2(t) + ẋ2(t) ≤ γ2. (25)

Proof. Let y = (y1, y2)
′, y1 = k2x+ ẋ, and y2 =

ẋ. Then, system (23) can be rewritten as

ẏ1 = k2y2 − k1 sat(y1)− k2 sat(y2),

ẏ2 = −k1 sat(y1)− k2 sat(y2) + d.

Clearly, for any initial condition y(t0) = y0 there
exists a finite time T such that |y2(t)| ≤ 1 for all
t ≥ T since

y2ẏ2 ≤ −|y2|(k2 − k1 − δ) < 0. (26)

Notice that the state y1 = k2x+ ẋ satisfies

y1ẏ1 ≤ −|y1| (k1 | sat(y1)| − δ) .

This, coupled with the fact that k1 > δ, shows
that after a finite time y1 will enter and stay
in the set |y1| ≤ δ

k1
. It then follows that

y2 will enter and stay in the set |y2| ≤ 2δ
k2
.

Condition (25) holds since the set given by

R =
{

(x, ẋ) ∈ R2 : |k2x+ ẋ| ≤ δ
k1
∧ |ẋ| ≤ 2δ

k2

}

is

a subset of Ωγ = {(x, ẋ) ∈ R2 : x2 + ẋ2 ≤ γ2}.
Claim 2 Consider the system

ẍ1 = −λẋ1−x1+k+d(t)⇔ ẋ = Ax+g(t), (27)

where x = (x1, ẋ1)
′, A =

(

0 1
−1 −λ

)

, g(t) = (0, k +
d)′, k and λ are positive constants, and the distur-
bance term d(t) satisfies |d(t)| ≤ δ. Then, there
exist a finite time T ≥ t0, a 2 × 2 real symmet-
ric positive definite matrix P and finite positive
constants γ, ξ, β, and θ < 1 such that for any

7



initial condition x0 = (x1(t0), ẋ1(t0))
′, the solu-

tion x(t) = (x1(t), ẋ1(t))
′ of (27) satisfies

‖x(t)‖ ≤ γe−ξ(t−t0)‖x(t0)‖, ∀t0 ≤ t < T

and

‖x(t)‖ ≤ β, ∀t ≥ T (28)

where

γ =

√

λmax(P )

λmin(P )
, ξ = − 1− θ

2λmax(P )
, β =

√

λmax(P )

λmin(P )

√
λ2 + 4

λ

k + δ

θ
.

Proof. Let V (x) = xTPx be a Lyapunov func-
tion candidate, where P is a real symmetric pos-
itive definite matrix that satisfies the Lyapunov
equation PA + ATP = −I. The derivative of
V (x) along the trajectories of (27) satisfies

V̇ ≤ −(1− θ)‖x‖2, ∀ ‖x‖ ≥ µ

where µ =
√
λ2+4
λ

k+δ
θ

and 0 < θ < 1. Since

λmin(P )‖x‖2 ≤ V (x) ≤ λmax(P )‖x‖2,

V̇ ≤ − 1−θ
λmax(P )

V for all ‖x‖ ≥ µ and consequently

‖x(t)‖ ≤
√

λmax(P )

λmin(P )
exp

[

− 1− θ

2λmax(P )
(t− t0)

]

‖x(t0)‖.

(29)

for all ‖x‖ ≥ µ. Let β =
√

λmax(P )
λmin(P )

µ and Ωβ a

set defined by

Ωβ = {x ∈ R2 : V (x) ≤ λmin(P )β2}.

The set Ωβ contains the ball Bµ(0) = {x ∈
R2 : ‖x‖ ≤ µ}, since ‖x‖ ≤ µ =

√

λmin(P )
λmax(P )

β

⇒ λmax(P )‖x‖2 ≤ λmin(P )β2 ⇒ V (x) ≤
λmin(P )β2. Therefore, any solution that starts
inside Ωβ cannot leave it because V̇ is negative
on the boundary. Consequently, for a solution
starting inside Ωβ, the inequality (28) is satis-
fied for all t ≥ t0, since V (x) ≤ λmin(P )β2 ⇒
λmin(P )‖x‖2 ≤ λmin(P )β2 ⇒ ‖x‖ ≤ β. If the so-
lution starts outside Ωβ it follows from (29) that
‖x(t)‖ → 0 as t → ∞. Thus, there is a finite
time T after which ‖x(t)‖ ≤ µ and consequently
the solution enter the set Ωβ in finite time. Once
inside the set, the solution remains inside for all
t ≥ T .

Claim 3 There exists a finite time T ≥ t0 such
that for all t ≥ T , σ(t) = 4.

Proof. It can be easily checked that the vector
fields gi(x) for i ∈ I has the following properties:

σ = 1 : ω̇1 < 0 if k1, k2 > δ, and ω2 → ∞ as
t→∞.

σ = 2 : From Claim 1, it follows that ω2(t)
reaches the boundary ω2 = γ2 in finite time
if its initial condition satisfies ω2(t0) ≥ γ2 ≥
γ2

21 + γ2
22, where γ2i; i = 1, 2 is given by (24)

by replacing k1 and k2 with ki1 and ki2, re-
spectively.

σ = 3 : ω̇1 < 0 if k1, k2 > δ.

σ = 4 : There exists a finite time T > t0 such
that for all t ≥ T one obtains ω2(t) ≤ β2

1+β
2
2 ,

where βi is given by (21) (see Claim 2). If
k1, k2 > δ, then ω̇1 ≤ 0 while |s| ≥ η.

Using the arguments invoked in the proof of The-
orem 2, and since η2 < ε2 and β

2
1+β

2
2 ≤ γ5, Claim

3 can be easily established.

It now follows, from Claim 2 and Claim 3 that
for each {x0, σ0} ∈ R5 × I the solution of the
hybrid system Σd is globally uniformly ultimately
bounded.

Practical stability

To prove practical stability, one must show that
for each initial condition {x0, σ0} ∈ R0 × I and
for each d ∈ SD (where SD is the set of all per-
turbations such that |d(t)| ≤ δ), the continuous
solution x(t) of the closed loop system Σd must
remain in R for all t ≥ t0.
From the proof of Claim 2, one can conclude that
for all t ≥ t0 with σ(t0) = 4

x2
i (t0)+ẋ

2
i (t0) ≤ µ2

i ⇒ x2
i (t)+ẋ

2
i (t) ≤ β2

i , i = 1, 2

and, thus, ω2(t) ≤ β2
1 + β2

2 . Since R0 ⊂ R ⊂ R4,
and since for σ = 4, ω̇1 ≤ 0 for |s| ≥ η, it follows
that for all t ≥ t0 and x0 ∈ R0, x(t) ∈ R.

Since each solution of the hybrid system Σd for
each d ∈ SD is ultimately in R, it can be con-
cluded that the hybrid system Σ possesses strong
practical stability.
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Boundedness of control inputs

The boundedness of the control inputs can be eas-
ily proved by adopting the main guidelines set
forth in the proof of boundedness in Theorem 3.
This completes the proof of Theorem 4. 2

6 Simulation Results

This section illustrates the performance of the hy-
brid control law developed in Section 5 when the
ENDI is subject to input saturations and input
additive disturbances. The control parameters
were chosen as follows: λ = 1.0, ε1 = 0.001,
ε2 = 0.1, ε3 = 0.9, γ1 = 0.1, γ2 = 0.3, γ3 =
0.35, γ4 = 1.0, γ5 = 1.1, k1 = k2 = 0.101,
η = 0.05, k11 = k21 = 0.4, k12 = k22 = 0.6, and
δ = 0.1. In the simulation, a disturbance vector
d(t) = [d1(t), d2(t)]

′ given by d1(t) = 0.1 sin (t),
and d2(t) = 0.1 sin

(

t+ π
2

)

was considered. No-
tice that γ5 satisfies condition (20), where for
this case β1 = β2 = 0.7346 (with θ = 0.99).
Notice also that for these parameters one has
ū1 = ū2 = 1.57 (with γ? = γ5 and θ = 0.99).

0 5 10 15 20 25 30 35 40 45 50
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1

2
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0 5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

time [s]

x 3 

Figure 5: Time evolution of the state variables
x1(t), x2(t), and x3(t).

Figures 5-7 show the simulation results for the
initial condition x(0) = [x1, x2, x3, ẋ1, ẋ2]

′(0) =
[0, 2m,−2m, 0, 0]′ and σ(0−) = 2. The state x
converges to a neighborhood of the origin. Notice
the oscillatory behavior of ω2(t) that is due to
input saturations.

7 Conclusions

A hybrid control law was derived for the ENDI
system that captures any kinematic completely

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
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1
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Figure 6: Trajectory evolution in Ω-space.
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Figure 7: Time evolution of the variables ω1(t),
ω2(t), and σ(t).

nonholonomic model with three states and two
first-order dynamic control inputs, e.g., the dy-
namics of a wheeled robot subject to force and
torque inputs. The hybrid controller yields global
stability and convergence of the closed loop sys-
tem to an arbitrarily small neighborhood of the
origin. An extension of the controller was done
to the bounded input case. It was shown that,
despite the saturations, the ENDI system can be
stabilized for any initial condition and any bound
(even arbitrarily small) on the inputs signals. Fi-
nally, with a slightly modification of the control
law, the problem of practical stabilization was
solved. The main result shows that for any in-
put additive disturbances bounded by a constant
δ, the closed loop hybrid system possesses strong
practical stability with bounded control. Simula-
tion results captured some of the features of the
proposed control laws and illustrate their perfor-
mance.
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