Cooperative AUV Motion Planning using Terrain
Information

Andreas J. Hauslér Alessandro SacconAnténio M. Pascodl John Hausér and A. Pedro Aguidr
* Laboratory of Robotics and Systems in Science and Engimgelmstituto Superior Técnico, Lisbon, Portugal
ahaeusler@isr.ist.utl.pt, antonio@isr.ist.utl.pt
T Department of Mechanical Engineering, Eindhoven Unitgrsf Technology, Eindhoven, The Netherlands
a.saccon@tue.nl
1 Electrical, Computer, and Energy Engineering Departminiyersity of Colorado at Boulder, Boulder, Colorado, USA
john.hauser@colorado.edu
§ Faculdade de Engenharia, University of Porto, Porto, Battu
pedro.aguiar@fe.up.pt

Abstract—There is widespread interest in the deployment of
fleets of marine robots with the potential to roam the oceans frdg
and collect data at an unprecedented scale. This calls for the
development of efficient algorithms for multiple vehicle motion
planning that can take directly into account the capabilities of
each vehicle as well as the environmental conditions and lend
themselves to seamless integration with control and navigation
systems. The latter connection is for the most part eschewed in
the literature, in spite of the obvious fact that in order for the
vehicles to execute the planned motions they must at a later stage
navigate with great accuracy and follow the trajectories using
control algorithms that take explicitly into account the dynamical
constraints of the vehicles involved. Among the methods available
for underwater vehicle navigation, terrain-based techniques hag
recently come to the fore. These techniques avoid the use of olser
expensive inertial-like motion sensor units and hold considerable
promise for the development of a new breed of affordable long
range navigation systems.

Motivated by these considerations, we tackle in the present
paper the problem of multiple vehicle motion planning by taking
explicitly into consideration inter-vehicle collision avoidance, to-
gether with a number of criteria that may include simultaneous
times of arrival at assigned target points, energy minimization,
acoustic communication constraints, and the maximization of
terrain information along the vehicle paths (as measured by some
appropriate criterion) for terrain-based navigation purposes.

I. INTRODUCTION

and navigation systems, and that can take into account the
requirements that are at the core of the demand for coopera-
tive motion planning: each vehicle’s (individual and prblya
unique) capabilities, environmental conditions, and isih
avoidance and communication constraints.

A cooperative motion planning system as envisioned here
goes hand-in-hand with trajectory tracking mechanismsgusi
control algorithms that take explicitly into account the-dy
namical constraints of the vehicles involved. This, in turn
demands accurate means of navigation during mission exe-
cution. Among the methods available for underwater vehicle
navigation, terrain-based techniques have recently came t
the fore, see for example [22], [23], [34] and the references
therein. Each map-based navigation method, however, ierord
to achieve accurate feature matching and thus self-latadiz
along a trajectory, can only be as good as the quality of infor
mation available to the vehicle at mission execution timés |
therefore important to already include a means of maxirgizin
the obtainable sensor information at the level of trajgctor
planning. In other words, the goal is to investigate a novel
planning framework that incorporates e.g. bathymetricadat
to plan missions for multiple AUVs such that the trajecterie
ensure that the vehicle is located over information-righaia,
while still being “as optimal as possible” in accordancehat
given cost criterion, e.g. total energy requirement. Thatred
idea followed in this paper is to employ a pre-planner thasus
rrain elevation information to plan a globally optimaltipa

Over the past decade, there has been an exponential'i . f ¢ X LI
increasing interest and demand for fleets of marine robats th OV€r & given seafloor map, before a trajectory optimization
method generates a trajectory that is feasible in terms ef th

have the capability to exploit the advantages of cooperatio =" ’ ; o
among small-scale, low-cost, and heterogeneous vehioles yehicle dynamics and subject to a global cost criterion and
obably constraints.

overcome the disadvantages, and to exceed the performanB&S
of manned submersibles and remotely operated vehicles in

high-profile marine applications by roaming the oceanslyree a Cooperative AUV Motion Planning

and collecting data at an unprecedented scale. This calls fo

the development of efficient algorithms for multiple vekicl
motion planning that achieve seamless integration withrobn
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In [26], trajectories are designed to meet the scientific
objectives of a mission, and adapted in case of vehicler&slu
Instead of aiming for single-track trajectories with sitamle-
ous arrival, the objective is rather a closed shape that ean b
executed repeatedly; if more than one vehicle follows such
a trajectory, they need to maintain a fixed distance. Vehicle
models are explicitly incorporated, but used only for gosit



prediction; trajectory planning is done using a simplifiexinp-
mass model.

full dynamical model of a representative AMV, but also a
model of its propulsion system (energy source, motors, and

. : ropellers) so as to compute trajectories that optimize the
The authors of [32] propose optimal control techniques forg\ctual energy drawn in the course of a complete maneuver.

path planning with respect to minimum energy requirem'entThis work is extended in the current paper in three ways:
where the energy is computed as the mechanical power input '

to the propeller shaft, which, according to [19], means that 4

the performance index does not exactly represent the energy
consumed by the thrusters. By defining path constraints, the
trajectories are planned in a way that obstacles are avoided
The vessel model is explicitly incorporated. This is alsaalo

in [18], but here, energy-minimal trajectories are comguig
assuming the instantaneous power to be constant.

B. Terrain-Based Planning

The vast majority of terrain-based planning literature is
related to path planning for unmanned ground vehicles (UGVs
such as the Mars rovers. To the best of our knowledge, the only
paper that directly relates to an AUV application of terrain
based planning is [29] where the authors use a particle swarm
optimization approach to enable an AUV to do what they call
“terrain matching trials” for map building purposes. Ténra
information is computed as a “terrain entropy metric” based
on pure elevation information.

In our approach, we make use of the Cramér-Rao lower

We introduce a means of coordination space planning
[20, Sec. 7.2] to ensure an already collision-free initial
condition to our main trajectory optimization algo-
rithm, thereby significantly speeding up the computa-
tion of a optimal solution to multiple vehicle problems.

For the planning phase, the vehicle model has two
first-order integrators on the system inputs that achieve
a prevention of instantaneous turns with unfeasibly
high thruster values as part of the resulting optimized
trajectories.

The planning framework is enhanced by adding the ca-
pability of generating desired trajectories that are glob-
ally optimal with respect to the information content
of the terrain the vehicles will cover. The optimizer
will, according to its weight settings, then compute
an overall solution to the planning problem that is
a trade-off between electrical energy spent and the
terrain information content, collision-free, and feasibl

in terms of the vessel dynamical models.

bound (or equivalently, the Fisher Information matrix)ses- ) . ) )

tially taking the terrain gradient as a measure of how righ th ~ The remainder of this paper is organized as follows: we
terrain is in terms of features available to navigation rodth ~ Start by giving a detailed problem formulation in Sec. Il.amt
thus defining the “information content” of a map. This is muchWe also introduce the vehicle model at hand. The planning
in the line of the “traversability index” described in [15]the ~ framework is described in Sec. Ill with a short background
“inclination measure” of [5]. In [17], the authors only coser ~ Summary of the core trajectory optimization approach, al we
a binary terrain information measure (i.e. if a given patéh o as the coordination space and terrain information prereles
terrain can be crossed or not) by putting the terrain vagancSimulation results are shown and discussed in Sec. IV, and we
in relation to the diameter of a UGV's wheels. As such, theconclude the paper with comments and an outlook in Sec. V.
measure is more related to terrain roughness than teriae sl

(i.e. fine granular information) and not useful in our comtex Il. PROBLEM FORMULATION

Most terrain-based path planners in the literature are, at The problem we aim to solve in this work is achieve
their core, based o®* search[27] or a modification of it. collision-free trajectories for multiple AUVs, that areafgble
In [17], the authors use a model-based evaluation proceses terms of the vehicle dynamics (and thus, executable in the
(for checking the UGV’s configuration, stability, and force sense of a trajectory tracking approach). The traject@iss
conditions) on the result of Ato determine a path’s feasibility have to be optimal in terms of a given cost criterion, which,
before going into path following mode. A smooth referencein our case, is taken as the overall electrical power expecte
trajectory for tracking by an UGV is generated from the resul to be consumed per vehicle when executing the resulting set
of A* in [10], using geometric methods such as spline approxief trajectories. For trajectory tracking and navigatiomgmses,
mation. The authors of [15] use a trade-off between pathtkeng i.e. self-localization along a planned trajectory, we alsmt to
and traversability cost to influence the “aggressivene§®’o  incorporate known terrain information already at the piagn
search, i.e. to influence the importance of terrain infoiomat stage. This information may be incorporated into the plagni
to the path planner. Rapidly exploring random trees (RR8s, s framework as a set of desired trajectories, whose weighted
[20]) are the method of choice for terrain-based planning indistance to the vehicle trajectories may form a further pért
[5]. The authors state that the problem of their implemémat the integral cost, and/or a cost-to-go like measure of tiraite
of RRT is that they experience a performance decrease imformation itself along the optimized trajectory, whichthe
the planning process in the presence of more than one localbject of currently ongoing research.
optimum, which they successfully resolve in [4] by locally

invoking further instances of the RRT algorithm. A. Overview of the Complete Planning Process

Before going into further detail in the subsequent sections
we give a brief overview of what we envision as a complete

The research discussed in this paper builds upon anglanning framework at a more abstract level. The concept of
extends the cooperative autonomous marine vehicle (AMV)he framework at hand is illustrated in Fig. 1: the pre-pkmn
motion planning results presented in [13], where we intoedu uses a bathymetric map to compute a trajectory that yielgts hi
a planning approach that does not only take into account th&errain excitation for terrain-based navigation purpoSéss

C. Contribution
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Fig. 1. The trajectory planning framework, including botte tierrain-based
pre-planner as well as the core trajectory optimizer. In ordensure a cleaner
presentation, the coordination space pre-planner is midded in this figure.

trajectory is the initial condition for a dynamical optireizat . . .
the first iteration (i.e., “desired trajectory”) in the sefarfor Fig. 2. The MEDUSAs surface craft. The thrusters are mounted in the middle

fi | Ut that includ tight d ical . between both hull parts on the-z-plane (body coordinates) and produde
an optimal solution that includes tight dynamical COnsi®i  ;ompjetely from the body on the-y-plane.

as well as collision avoidance requirements.

Further inputs to the core planner are the same initial and ) ) -
final values of the kinematic states as used in the pre-ptannd he model inputsips and nsp, are the rotational velocities of
as well as appropriate values of the additional dynamicathe MEDUSA's actuators, the port side and starboard propeller,
states and system inputs, and further mission- and envieabm respectively, obtained by multiplying a percentage conminan
related data such as obstacle information or collisiondamie ~ With the maximally admissible rotational velocitynax,
radii. Using an appropriate cost criterion, in our case the

electrical energy taken from the batteries, the trajeesori Nps = Ppslimax
are then optimized to achieve a minimum value of the cost Nisb = Psbiimax
function.
Maneuvering is done using common and differential thrust,

B. Vehicle Model resulting in the external force vector

The MEDUSA AMYV is a vessel developed at the Dynamical Tps+ Tsp
Systems and Ocean Robotics laboratory at ISR/IST in Lisbon. 7= 0
Its hull consists of two torpedo shaped tubes that lie palrall U(Tps— Tsp)

to the water surface, but with a vertical displacement, so

that one tube is fully submerged at all times (see Fig. 2)ynere; is the displacement of the propellers from the center
In its MEDUSA flavor, it is an autonomous surface vehicle ¢ {B}, see Fig. 3. The force%s and Ty, are functions of
(ASV), whereas the recently developed=BDUSA, has diving 4, 1 and the two propellers’ rotational velocities,s andngp,
capability and can thus be classified as a “true” AUV. respectively, both given in [rps].

1) Kinematic and Dynamic EquationSince the McDUSA
is conceptually a semi-submersible, the mathematical tnode\:,es
can be considered to be that of a planar vehicle. Using thﬁ;] ¢
notation of [6], the model is

Placing the center of B} at the center of mass of the
sel, the rigid body and hydrodynamic added mass matrices
he dynamics (2) can be written as

=t SRV | IV
(Mip+ Ma) v+ (Cio(v) + Ca(v)) v+ (D + Dn(v))v = 7 (2) oo L) Lo o ow

where the kinematic states= [z,y,1] express the vessel's ) o ) )
pose in the inertial reference franjé}, and the dynamic state Wherem is the body mass and.. the rigid body inertia. The
vectorv = [u,v, 7] represents the velocities in the body frameigid body and hydrodynamic centripetal and Coriolis nas

{B}. In (1), R(n) is a rotation matrix such that are
T costy —siny 0] [u 0 —mr O 0 0 —Yyv
y| = |sinyy cosyp 0| |v Cip(v)=|mr 0 0 Calv)=]| 0 0 Xuu
¢ 0 0 1 r 0 0 0 Yiv —Xyu 0
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Fig. 3. Conceptual drawing of the MEDUSA as seen from abobe.drrows  Fig. 4. A cross-section of the propeller bladetaT R showing the forces

illustrate the velocities experienced at different powitthe body for a system  and velocities acting on the propeller blade (the force orscare enlarged).

that is undergoing a right turn while moving forward. The Blawordinate  The propeller runs counter-clockwise in order to achievevéod thrustT,

axes represent the body frani®}, the grey axes the inertial fram{d }. moving the system upwards in this picture. To avoid overlagmrrows, the
tangential component of the propeller torg@peat 0.7R is shown here with
a negative sign. Propeller lift and dragD and total hydrodynamic forcé’

and the linear and nonlinear drag is expressed as are only shown for reference.
X, 0 0
D=- [ 0 Y, 0 1 and [14] give an illustration of the concepts involved. Inawvh
0 0 N follows,
Hupulul 0 ’ — 0.7Rwps=0.TR2
Da)=—| 0  Yiul| 0 Upys = 0. Rewps = 0.71 2 nips ©)
0 0 Nl,r,l,,,|7“ 'Upsb:()’?Rwa:O?RQ’/Tnsb

The hydrodynamic derivatives are known, but not given herere the propeller lateral velocities of the port side anchstard
due to space limitations, and have been obtained by scalirigiruster, respectively. When the vessel is rotating aboaitth
from a different vehicle model, a detailed explanation ofakih ~ axis, we need to account for the fact that the advance vidscit
is out of the scope of this paper. Trials are planned in theeclo at the propellers are different from each other, which tesul
future to obtain the exact values of those derivatives fer th in the side-dependent expressions
MEDUSA.

Vags = —DyT +U

Vag = Pyr 1

2) Thrust, Torque, and Input DynamicS§ince the model ()
inputs are the propellers’ rotational velocitiegs and nsp, a
mapping between those and the thrligt and T, needs to  Here, (p,,py) is the offset of the propellers from the vessel's
be defined. Following our argumentation in [13], we use thecenter of mass in body coordinates, ahis their absolute
so-called “four-quadrant propeller model” described iB][3 distance to the center of mass (see Fig. 3). Since (6) and (7)
which is valid in all regions of motion (i.e. ahead, back,stra are dependent on the vessel side, it needs to be kept in mind
back and crash ahead). The coefficients used by this model atieat the advance angle (5), and thus both the thrust (3) and th
given in terms of the advance angbeat the propeller blade, torque (4) need to be computed separately for each propeller
and data is available in the form of at2@rder Fourier series _ )

for various ducted propellers and nozzles [25]. A smoothing "€ MEDUSA uses Seabotix HPDC 1507 thrusters, which
procedure that makes the coefficients more usable for Newtofy/n in @ Type 37 Kort nozzle and have a pitch ratio of roughly

descent methods such as the one employed at the core of ofifd ~ 1.4. A correction factor was applied to achieve the
trajectory optimization approach is described in [14]. bollard-pull conditions that Seabotix indicates for thisuster

_ _ model in the following manner: from the manufacturer’s spec
In this propeller model, the thrust and torque equations argications, the maximum propeller velocity can be obtained,

1 5 ) which is sufficient to compute the values of thrust (3) and
T= QPCT(B) (vi+uvg)TR (3)  torque (4) at bollard-pull conditions (i.eq = 0.0T) for the

1 Wageningen Ka 4-70 propeller witf/d = 1.4, running in
Q= §PCQ(ﬂ) (v§+v§)7rR2d (4) a Type 37 Kort nozzle [25]. These values can be compared

) ) o ) with the manufacturer data of maximum continuous thrust and
whered is the propeller diameter anft = d/2 is its radius. torque at bollard-pull conditions achievable with the Seab
The advance angle can be computed as thrusters, which leads to a multiplicative correction dador

_ ct andco. Thanks to the particular body shape of the dMsA
§ =atanZva, vp) ®) (see Fig. 2), we may regard propeller-hull interactions as
where v, is the advance velocity of the propeller, angl is negligible and treat the propellers as if they were runnimg i
the lateral velocity of the propeller blade at radiu§R as  open water, simply employing the four quadrant model just
a function of the rotational velocity. Figure 4, as well a$ [1 described.



In order to prevent the optimizer from creating instantawherex!?! (t) denotes the-th vehicle’s state vector. An addi-
neous turning maneuvers with unachievably high inputstfer t tional cost term expressings trajectory optimization can be
vessel model, we do not use the system inputs directly in (3prmulated as
and (4). Instead, we treat the inputss andng, as additional ) )
states, and instead let the optimizer treat the rate of éhafg  laesx " (t),ull (), 1) =

these states as system inputs, defined as: 1w (i 9 1 . [i 9
“x @) —xp |15 + =l @) —ull (1) (11)
nps = wetanheps (8a) 2 I desl HQto 2 [[07() —uged HRto

fsp = wetanhcsp (8b)  Where Qi and Ry, are positive definite weight matrices that
_ _ have to be chosen appropriately, and the subsggigdenotes

Here, cps and csp are the new system inputs, antt is &  rejation to the “desired trajectory”.
weighting factor. This achieves a transient in the realesyst _ _ o _ _
inputsnps andnsp that prevents the optimizer from generating '_I'he |nter-ve_h|cle collision avoidance constraint between
instantaneous turns. The optimizer returns the trajexgoof Vvehiclesi andj is
nps and ns, as model inputs for the solution of the given , ,
optimization problem. In total, the Ebusa vessel model is ceal(x!(t),xV1 (1)) =

thus comprised of (1), (2), and (8a) and (8b). (x[i} (t) _ ld] (t))2 (y[i} (t) —yld] (t))2

~1 (12
C. Static D/C Motor Equations (2rc)? (2rc)?

Itis a common and widely spread approach in the literaturdvhereé rc is the minimum safety distance that must be
to compute energy minimal trajectories subject to the kinet K€Pt betwee'; two vehicles. The obstacle avoidance constrai
energy required for an AUV's motion, see e.g [16], [18], [19] obs(x"/(t),0!*]) between vehiclei and obstaclek is can
[31], [32]. This, however, is only a crude approximation of P& formulated in a similar manner. (Herg,c {1,...,No},
the energy really required to propulse an AUV along a gi\,eryvhereN0 is t_he total number (_)f obstacles in the e_nvwonr_nent.)
trajectory. To that avail, we want the trajectories to beropt ~ IMplementation-relevant details of how to deal with a gener
in terms of the actual power taken from the batteries, soragwh Number of constraints, including indexing with tensoelik
in the line of [2]. To this effect, we formulate an additiorssit ~ CONStructs, are given in [28].
of static equations that are based on the D/C motor model for Obviously, (12) is based on th&, norm, while it was

the thrusters, and which will be used as means of computinghown in [24] that the Sobole¥l! norm gives better results

the required electrical energy along a trajectory to allow f for multiple encounters with obstacles per trajectory ie th

the computation of energy-related quantities that makeesen presence of uncertainties on the vehicle and obstacleiquasit

in a physically sound manner. information. However, since we use one collision avoidance
Since the terminal inductance of the thrusters (Seabotifunction per obstacleand for each trajectory instead of an

HPDC 1507) is small I, ~ 5001.H), we can neglect the overall function that includes all obstacles for each tiey,

fast dynamics of the electric part of the standard D/C motoke can capture multiple encounters easily with fhenorm.

equation, [7], and write the relation of the rotational \afies Using the power function (10), the desired trajectory func-
of the propellers to the voltage as tion (11), the inter-vehicle collision avoidance functi¢t?),
Vossb= Ralpssb+ Kewpssh= Ralpssh+ Ke2mnpssh and the obstacle avoidance function, the vehicle trajestor

are obtained by solving the optimization problem

where Vpssh Ipssh and R, are the armature voltage, current T Ny
and resistance of the (portbside/starboard) D/C maiaris i Z (lpow(x[i] (T)MM (1) +

its electrical constant, andpss, its rotational velocity. From 0 =
measurements conducted with theeMusA, we could deter- = ) )
mine armature current of the port side and starboard thsuste lges(x1 (7),ul” (T)vT))dTer(w(T))
as functions of the propeller rotational velocities—see].[13 1] ] il 6 il [i]
Considering the different inputs for port side and starboar St X Zf(x YU 1), x19(0) =xq", x"(T") = x{
propeller, the electrical power consumed by the motors thus Ceol (x["} (t),X[JIj (t)) >0, i#j

P = Vpslps+ Vaplso+ Py cabs(x!" (1), 0"1) = 0

9 ) )
= (Ralps+ Kenps) Ips+ (RaIsb+ Kensh) Ish+ P, ® itn ije{l,...,N} andk € {1,...No}, andx}/ and x!’

with P, as the constant power required by the on-boarcfre the initial and final condition on theth vehicle.
computers.
Ill. THE PLANNING FRAMEWORK

D. The Optimization Problem Our trajectory generation and optimization is shown as

Our goal is to minimize the energy spent by each vehicleconceptual overview in Fig. 1. The execution flow can be
when moving from a given initial to a given final configuration categorized in three main stages, the last of which may be
Using (9), the total power consumption of thie vehicle is repeated in the presence of optimization constraints,irtey-
vehicle collision avoidance as in (12). Those stages are:

lpon(xU(£), ul (1)) = (Ra I3 (t) + Kenpb (1)) 153 (¢) o
[i] [i] [i] Stage 1— A desired trajectory is generated for each vessel
+ (Ralgy (t) + Kengy () Igp (1) + B, (10) separately as part of a terrain-based pre-planning



step. These paths are usually not feasible in term$or their “inclination measure”, defining some global “cdost
of the vessel dynamics and other optimization con<leness” of the terrain.

straints. In a second step, using a desired grid resolutignand
Stage 2— To obtain a valid initial condition for the main . : P, 9 9 Q
, in z andy (it usually makes sense to selegt=r,), the

lanning process, the paths are then projected ont T X
Fhe trajgc?ory manifoldpby virtue of (1p7).1 Further- @erram information mapV/; can be downsampled to get what

more, in case of conflicting paths from Stage 1 theVe call theexcitation mapby using the arithmetic mean of an
' ! area of sizer, xr, as

optimization process of Stage 3 can be significantly

sped up by computing a timing law that ensures 1 o,
temporal deconfliction [12]. Me(z,y) = Taly Z M(2"y") (14)
Stage 3— The main trajectory optimization is done within the T a'e [L%m,[%wgg]
PRONTO toolkit, iteratively computing an optimal y’e[Lier (lh«y]
Ty Ty

solution to the planning problem by use of New-
ton’s descent method. If required, this last stage
can be repeated after changing parameters relatelga
to the constraint functions, thus achieving a tighter
fit to the energy-minimal optimization criterion. Mc(z,y) = cos (gME(axy))

A final step in our approach is the computation of a “cost
p” Mc defined as

A. Terrain-Based Path Planning based on the observation that high values)M € [0,1] are
associated with high values of terrain information content
In order to explicitly incorporate terrain-based inforioat  \vhereas, for a proper cost function, we want to have the
in the process of multiple vehicle motion planning, we availcontrary. In addition to that, the mapping éfe to terrain
ourselves of results available in the literature that emergt  information is linear, and it might be useful for the cost to
of examining the Cramér-Rao lower bound (or equivalentlyexhibit a nonlinear behavior, i.e. being high for a widergan
the Fisher Information matrix), that yield measures of howof “undesirable” terrain excitation, and then decreasinigkly
accurately the position of a vehicle along a trajectory can bto zero for high terrain excitation. The cosine function has
obtained with any unbiased estimator [36] Stated in Simp'Q)oth desired properties on the inter\,{al%]_ A* search on
terms, the larger the magnitude of the gradient of the terrai Mc(z,y) leads to a set of globally optimal (in terms of terrain

along a given trajectory, the better the accuracy with whichnformation content) paths for a given multiple AUV plangin
its position can be estimated. In line with this observationproblem.

we propose to solve the multiple vehicle motion planning . . )
problem in its first stage with a pre-planning mechanismthase  1he Euclidean distance between the current and the final
on a simplified kinematic vehicle model, and using a graphposnmn is in this context chosen as h_eurlst|c function Adr,
based search method that operates on a terrain-related c&§d the data represented by the map is properly scaled so that
criterion to be defined. The solution of that planning step ishe Euclidean distance becomes an admissible and cortsisten
then projected onto the manifold of feasible system trajges ~ heuristic [27]. This is simply possible by adding an offset t
defined by the full dynamical model(s) of the vessel(s). a scaled version oMc(z,y):

In the current implementation, this first stage involves a Mc(z,y) = w+wMc(z,y) (15)
version of A" search [3] in an 8-neighbor implementation [8], \yhereq > /2. To achieve a more accessible range of values,
adequately modified to take into account positional and @ngu e chosew — 10.
information in relation to a geophysical map, in order toaiit
for each vehicle, a path between the vehicle’s initial andlfin It is relevant to point out that the trajectories generated
kinematic boundary conditions that maximizes a cost ¢ater in stage 1 are not necessarily twice differentiable, which
related to the integral of the magnitude of the terrain gratli precludes their use in a normal second order descent dyamic
along its trajectory. The terrain information is represenas  Optimization method. By virtue of the underlyirgRrojection
point cloud, i.e. a 2D array whose cells contain elevatiom da Operator basedvewton method forTrajectory optimization
(the z value of the coordinate tripletr,y,z)). The row and (PRONTQ see the last part of this section), however, the tra-
column numbers of each cell correspond to the valuesafd  jectories are simply used as “desired trajectories” andlitiéa
y in a localized coordinate frame (and can easily be mappe@nes (closest to the original in thé, sense) that verify the
to e.g. UTC, if desired); terrain information content isthe dynamical equations of motion of the vehicles are obtained
computed as [33] by projecting the trajectories onto the so-called trajscto

) oM manifolds of the different vehicle dynamical models.

02 max,s , VMs(z',y) B. Temporal Deconfliction on the Coordination Space

where we assume local coordinatese [1,2,...,2max and To achieve an initial condition to the trajectory optiminat
y€[L,2,...,ymax, and wherevV Mg(z,y) denotes the gradient algorithm that is already free of collisions, we follow [9] i
of the bathymetric map. The original terrain map is given asnaking use of the coordination space formulation. For an in-
Mg(x,y), probably with an associated standard deviatign depth treatment of this concept, we refer the reader to [20,
and the information map i8/i(z,y); low values of M|(z,y)  Sec. 7.2]; in a rough outline, the approach can be described a
are related to a low information content of the terrain. Weplanning on aN,-dimensional space whose dimensions repre-
choses =1 in (13), which is exactly what is done in [5] sent the spatial or temporal coordinates of the trajecdrie



question (Vy is the number of vehicles involved). The original ~ Suppose that(¢) = (a(t),u(t)), t > 0, is a bounded
set of paths is a (hyper-)line that crosses this “coordimati curve (e.g., an approximate trajectory 6§ and letn(t) =
space” diagonally. Collisions among pairs of vehiclesh@itn  (x(t),u(t)), t > 0, be the trajectory off determined by the
space or in time) are represented as (hyper-)cylindersio@s nonlinear feedback system

that space—see the excellent illustration in [20, Fig. 7] f #(t) = f(x(t),u(t), D),

an extended treatise of that idea. 2(0) = zo

u(t) =p(t) + K(t)(a(t) —x(t
A planning algorithm can then be used to find a path_ . (t) = pu(t) .()( ®) (_)) .
through the coordination space connecting the two diagonaihis feedback system defines a continuous, nonlipeajec-
extrema, but without traversing through any (hyper-)ayéin 10N operator

The solution of this planning problem is a new trajectory Pe=(al),u() = n=(z(),ul)) (17)
traversal law that guarantees that the vehicles are camtin
in such a manner that collisions are avoided. This allows us to formulate the following algorithm for inifie-

dimensional optimization, similar to the Newton method for

Currently, we use a weighted*Asearch on the coordination optimization of a functiony(-), e.g., in finite dimensions:

space to find the globally optimal solution to the temporal
deconfliction problem. We again chose the Euclidean distanc
as heuristic for this planning problem, where > \/Ny. PROJECTIONOPERATORNEWTON METHOD
Weighting the A search speeds up the problem solving tol Init initial trajectory§p € 7

be efficiently enough for up to 4 vehicles and trajectories?2 for k=0,1,2,...

of a length of 60 seconds with a gridding of 0.01 seconds3 do design feedback(-) defining? about¢;
Since there is no necessity of the deconfliction law to be thé search direction
globally optimal solution, however, one can easily thinkat Ci = argminger, 7 Dh(&)-C+ $D%g(&) - (¢,0)
speeding up the process further by the use df[RL], [37] 5 step sizey; = argmin, ¢ (g,1)9(& +7G)
or a bidirectional RRT approach [20], for instance. Becauses updatet; 1 = P (& +7:G)
there is only one call to th_e_ dec_onfliction pre-planner, ihis ‘
currently not a highly prioritized issue. whereT7 is the trajectory manifold € 7, andg () := h(P(¢))
C. Projection Operator Trajectory Optimization with T
In the third stage, the main trajectory optimization algo- 7€) ::/0 Hod7), 1), 7) dr +m(a(T))
rithm takes over control of the optimization process, refini
the trajectories of the vehicles by taking explicitly intccaunt Since our problem formulation demands having additional

their dynamics, together with appropriate constraintsdsgal  collision avoidance constraints, we have in fact a constici
by collision avoidance and communication requirements(in optimal control problem

simplified set-up, the latter may for example capture theé fac T

that the distance between selected pairs of vehicles smatild ~ qin Uz (7),u(r),7)dT +m(z(T))

exceed a fixed value). This stage is firmly rooted in solid 0 (18)
dynamical optimization theory and borrows from previous s.t. z(t) = f(z(¢),u(t),t), z(0)==zq

collective work by the authors. In the optimizer developeat, cj(x(t),u(t),t) >0, tel0,7],j€{1,...,k}

only do we take into account the full dynamical model of a
representative AMV, but also a model of its propulsion syste . . ; .
(erF:ergy source, motors, and propellers) 20 F;s to ggﬁ]pu@ethod mtrod_uced m_[l;]. The method requires the approxi-
trajectories that optimize the actual energy drawn in thege Mate l0g barrier functior;(-), 0 <4 < 1 defined as

of a complete maneuver [13]. —logz Z2>0
Bs(z) = {

In the remainder of this section, we give a quick introduc- k-1 ( 2 kb )k 1l Ctoes s<s A9
tion to the concepts involved. Our approach to the solution o k (k—1)6 & =

optimal control problems is projection operatormethod that
allows expressing the dynamically constrained optimdzrati
problem

We incorporate the constrainig(-) using the barrier functional

wherek > 1 is an even integer. This allow us to express (18)
in the shape of (16) as

T . T
minimize / Wx(r),u(r),7) dr + m(z(T)) mm/o (Z(I(T)’U(T)’T)
0
subject to  #(t) = f(z(t),u(t),t), @(0)=umo N (el () ) dr
as an unconstrained one, and use Newton’s method to find * ]Z_:lﬁé( (@), ulr) 7)) Fm(=(T)
an optimal solution. This is centered around the realimatio .
that g trajectory tracking controller defines a functioncgpa stoa(t) = f(a(t)ut),t), 2(0) =20
operatorthat maps a desired trajectory ¢arve to a system wheree andd express the “sharpness” of the barrier and are,
trajectory (an element of the trajectory manifold). Composing over successive calls to the trajectory optimization athor
the optimization objective (dunctiona) with the (trajectory (where the previously attained locally optimal result isdigs
tracking) projection operatorconverts the dynamically con- initial condition for the next iteration of the problem sily
strained optimal control problem into an essentially unconprocess), are simultaneously reduced to force the trajesto
strained optimization problem. into the valid region of the optimization space.

(16)



We found it necessary to slightly modify (19), since it
assumes (unbounded) negative values fas 1. This may

result in a domination of the negative part in the cost iraggr 400 f _;g
thereby, in relation to our application, effectively pogfia 350 - _30
reward on staying away from the other vehicle (or obstacle)3oo _35
as far as possible in addition to the cost for avoiding doltis. 250 ‘.‘ - 40
Since this is not desirable in minimum energy scenarios, anego ‘ _45
counterproductive in scenarios involving desired trajges, 159 _50
we extended (19) by forming a composition with t#é- t‘ - 55
smooth “hockey stick” function 50 = 2 —60
0 100 200 300 400 500 600 700 800
o(z) = {tanh(z) if z>0 (@) The D. Jodo de Castro seamount usedfgz,y).
z otherwise
1
defining the new barrier functional 400
- 350 0.8
Bs(2) == Bs(o(2)) 300
: - 250 0.6
that behaves as the standard barrier functignfor small -
and negative z, but goes to zero for oo [28]. Using this 0.4
barrier functional, we can express the constrained opitita
problem in Sec. II-D as an uncostrained problem with the!% 0.2
integral cost 50
N %0 100 200 300 400 500 600 700 800 0
ZV: Loow(x7 (1)) + (b) The obtained information mapf; (z, y).
i=1
N—1 Ny
> S ool (ccal6e (1), x5 (1)) + 100 02
i=1 j=i+1 350
Ny 300 0.15
Zfobsﬂéobs(cobs(x[z] (t))) 250
= 200 0.1
150
with a probably different set ot and ¢ for collision and 100 0.05
obstacle avoidance. 50
%0 100 200 300 400 500 600 700 800
IV. " SIMULATION RESULTS (c) The excitation mapVe(z,y) after downsampling.
In what follows, we give an overview of the different stages
of the planning process using a typical planning scenanio, i
which two vehicles have to cross an area where the “informaygg f .
tion content” is highly concentrated along a underwategeid 35 " 19.9
while other areas of the map are relatively featureless. Thgg, 19.8
area in question is the D. Jodo de Castro seamount close t;,
the Azores islands in the Atlantic ocean, see Fig. 5a. 500 19.7
After computing the information map, the downsampled 150 190
excitation map, and finally the nonlinear cost map (see Big. 5100 L =~ 19.5
A* is used to compute a set of globally optimal paths. Figure 6,50 19.4

shows the solution to the energy-optimal trajectory plagni 0

problem for two AUVs going from initial to a final pose

while keeping its actual path closest to the one that yields (d) The nonlinear cost map/c(z,y).

good terrain-based information Tor_ na_wgatlon pur_poseh;e T Fig. 5. The stages of pre-processing the terrain map to aeldeviap that

result of the path pre-planner is indicated as pink coloredan be used for terrain-based path planning. The cost Mafi,y) shown

lines. Although a portion of about 100 meter length of bothhere is already scaled as described in Sec. IlI-A, using aevaf w = 10,

paths is initially overlapping in space as well as in timee th Lhus essegtiall); repre_ster&ting a “scaled shift” of the oagirange of values
P _ P y one order of magnitude.

coordination s_pace pre-planner ensures temporal d_eo:umnc The values ofr andy in these maps are in local coordinates; the colored

the green vehicle slows down and always stays behind the bluges of the seafloor map represent actual depth. The ugitmeters.

one.

0 100 200 300 400 500 600 700 800



V. CONCLUSION

This paper introduced a multiple AUV trajectory planning
approach, taking explicitly into account the vehicle dymnzsn
and achieving trajectories that are minimal in terms of gper
usage with a trade-off that ensures that the vehicles sts
over terrain that yields high sensor excitation and thus aid
in terrain-based navigation along the planned trajectotie
comparison to previous work, we enhanced the approach i
three ways: 1) a terrain-based pre-planner computes patl
that are globally optimal with respect to a terrain inforioat
measure and can be used as desired trajectories in theadrgjec
optimization part of the approach; 2) a coordination map
planner guarantees a collision-free initial condition twet
trajectory optimizer and thus significantly speeds up caingu
a solution to the multiple AUV trajectory planning prob-
lem; and 3) added thruster dynamics ensure that the plann
achieves feasible model inputs. The problem can of cours
be enrichened by considering that navigation may be don
by resorting to geophysical data such as that related to th
geomagnetic field of Earth.

Our future research will be directed towards several differ
ent golas:

e Terrain information so far is only used in the pre-
planning step of our approach. For the future, we aim
to include the terrain information content in the core
optimization approach as well, thus achieving a finer
level of control over the trade-off between maximizing
the terrain information content and minimizing the
energy used along the trajectories. In addition to that
the inclusion of communication network data could
also lead to trajectories where one vehicle is going
over terrain with sufficiently high information content,
while the other might e.g. be crossing the D. Joéo
de Castro map in the relatively information-less mid-
dle by virtue of localization information exchanged
among the vehicles.

e Regardless whether we discretize the terrain informa
tion content by (14) or not, we essentially are working
on non-continuous “elevation plateaus”. This is of 560 580 600 620 640 660
no further importance to the pre-planner, but if the
terrain information is to be used withiPRONTQ we

680

do have to think about approximating the terrain (Orrig. 6. Result of the trajectory optimization process for tessels going
the excitation map) in e.g. a similar manner as [30],from south to north over the eastern rim of the D. Jodo de Gastamount.
i.e. a cubic B-spline mesh. The initially specified minimum energy problem would have tessels go in

straight, parallel lines. Making use of the terrain inforioatlets the vehicles

e In our current implementation, we use the discretizago over more “information rich” terrain.
tion grid (14) to shape a “terrain grapl¢ = (V. E)
upon which A" acts, with the set of verticeg defined

as and the edge weight function defined as
L x ; Y ~ritk o+l
V= {p” te [0’ [rﬂ +1} € [0’ {ry] +1]} w((pij,prt)) = T( 5 Tx,jTTy)
and edges defined as which means that the graph represents an evenly
T spaced grid with horizontal, vertical, and diagonal
E= {(pij,pkz)‘ie [0, [7~|:|7 connections between adjacent nodes, and an edge
r I'x y weight that is the excitation value of the patch of
ke [17[—] +1},j € [07 [—”, Mg that is crossed by that edge. In other words,
e Ty this weight function currently assigns the excitation
le [17 [i] + 1} G+l=Fkj+1= l} value of adjacent cells of/g(z,y) to horizontal and
Ty vertical edges, not the value of the crossed terrain (15).



This is a more or less minor issue, depending on theie]
resolution of the excitation map (14), but with a “crude
enough” approximation (that might be required with
big maps), this might become an issue. (17]

e  Further work will aim at including extra operational

constraints in line with the work pursued in [38]. [18]

e The avoidance of static obstacles, especially determin-
ing if they better be circumnavigated on the relative[ig
“right” or on the relative “left”, might be made easier
by including the obstacles at the pre-planning phase
already, as done e.g. in [30], or by an infinite terrain[20]

cost as e.g. in [9]. 21
Finally, a major step aimed for in the close future is the

implementation and test of the proposed algorithm on thg22]
MEDUSA platform during sea trials.
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