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Abstract—There is widespread interest in the deployment of
fleets of marine robots with the potential to roam the oceans freely
and collect data at an unprecedented scale. This calls for the
development of efficient algorithms for multiple vehicle motion
planning that can take directly into account the capabilities of
each vehicle as well as the environmental conditions and lend
themselves to seamless integration with control and navigation
systems. The latter connection is for the most part eschewed in
the literature, in spite of the obvious fact that in order for the
vehicles to execute the planned motions they must at a later stage
navigate with great accuracy and follow the trajectories using
control algorithms that take explicitly into account the dynamical
constraints of the vehicles involved. Among the methods available
for underwater vehicle navigation, terrain-based techniques have
recently come to the fore. These techniques avoid the use of overly
expensive inertial-like motion sensor units and hold considerable
promise for the development of a new breed of affordable long
range navigation systems.

Motivated by these considerations, we tackle in the present
paper the problem of multiple vehicle motion planning by taking
explicitly into consideration inter-vehicle collision avoidance, to-
gether with a number of criteria that may include simultaneous
times of arrival at assigned target points, energy minimization,
acoustic communication constraints, and the maximization of
terrain information along the vehicle paths (as measured by some
appropriate criterion) for terrain-based navigation purposes.

I. I NTRODUCTION

Over the past decade, there has been an exponentially
increasing interest and demand for fleets of marine robots that
have the capability to exploit the advantages of cooperation
among small-scale, low-cost, and heterogeneous vehicles to
overcome the disadvantages, and to exceed the performance,
of manned submersibles and remotely operated vehicles in
high-profile marine applications by roaming the oceans freely
and collecting data at an unprecedented scale. This calls for
the development of efficient algorithms for multiple vehicle
motion planning that achieve seamless integration with control
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and navigation systems, and that can take into account the
requirements that are at the core of the demand for coopera-
tive motion planning: each vehicle’s (individual and probably
unique) capabilities, environmental conditions, and collision
avoidance and communication constraints.

A cooperative motion planning system as envisioned here
goes hand-in-hand with trajectory tracking mechanisms using
control algorithms that take explicitly into account the dy-
namical constraints of the vehicles involved. This, in turn,
demands accurate means of navigation during mission exe-
cution. Among the methods available for underwater vehicle
navigation, terrain-based techniques have recently come to
the fore, see for example [22], [23], [34] and the references
therein. Each map-based navigation method, however, in order
to achieve accurate feature matching and thus self-localization
along a trajectory, can only be as good as the quality of infor-
mation available to the vehicle at mission execution time. It is
therefore important to already include a means of maximizing
the obtainable sensor information at the level of trajectory
planning. In other words, the goal is to investigate a novel
planning framework that incorporates e.g. bathymetric data
to plan missions for multiple AUVs such that the trajectories
ensure that the vehicle is located over information-rich terrain,
while still being “as optimal as possible” in accordance with a
given cost criterion, e.g. total energy requirement. The central
idea followed in this paper is to employ a pre-planner that uses
terrain elevation information to plan a globally optimal path
over a given seafloor map, before a trajectory optimization
method generates a trajectory that is feasible in terms of the
vehicle dynamics and subject to a global cost criterion and
probably constraints.

A. Cooperative AUV Motion Planning

In [26], trajectories are designed to meet the scientific
objectives of a mission, and adapted in case of vehicle failures.
Instead of aiming for single-track trajectories with simultane-
ous arrival, the objective is rather a closed shape that can be
executed repeatedly; if more than one vehicle follows such
a trajectory, they need to maintain a fixed distance. Vehicle
models are explicitly incorporated, but used only for position



prediction; trajectory planning is done using a simplified point-
mass model.

The authors of [32] propose optimal control techniques for
path planning with respect to minimum energy requirement,
where the energy is computed as the mechanical power input
to the propeller shaft, which, according to [19], means that
the performance index does not exactly represent the energy
consumed by the thrusters. By defining path constraints, the
trajectories are planned in a way that obstacles are avoided.
The vessel model is explicitly incorporated. This is also done
in [18], but here, energy-minimal trajectories are computed by
assuming the instantaneous power to be constant.

B. Terrain-Based Planning

The vast majority of terrain-based planning literature is
related to path planning for unmanned ground vehicles (UGVs)
such as the Mars rovers. To the best of our knowledge, the only
paper that directly relates to an AUV application of terrain-
based planning is [29] where the authors use a particle swarm
optimization approach to enable an AUV to do what they call
“terrain matching trials” for map building purposes. Terrain
information is computed as a “terrain entropy metric” based
on pure elevation information.

In our approach, we make use of the Cramér-Rao lower
bound (or equivalently, the Fisher Information matrix), essen-
tially taking the terrain gradient as a measure of how rich the
terrain is in terms of features available to navigation methods,
thus defining the “information content” of a map. This is much
in the line of the “traversability index” described in [15] or the
“inclination measure” of [5]. In [17], the authors only consider
a binary terrain information measure (i.e. if a given patch of
terrain can be crossed or not) by putting the terrain variance
in relation to the diameter of a UGV’s wheels. As such, the
measure is more related to terrain roughness than terrain slope
(i.e. fine granular information) and not useful in our context.

Most terrain-based path planners in the literature are, at
their core, based onA⋆ search [27] or a modification of it.
In [17], the authors use a model-based evaluation process
(for checking the UGV’s configuration, stability, and force
conditions) on the result of A⋆ to determine a path’s feasibility
before going into path following mode. A smooth reference
trajectory for tracking by an UGV is generated from the result
of A⋆ in [10], using geometric methods such as spline approxi-
mation. The authors of [15] use a trade-off between path length
and traversability cost to influence the “aggressiveness” of A⋆

search, i.e. to influence the importance of terrain information
to the path planner. Rapidly exploring random trees (RRTs, see
[20]) are the method of choice for terrain-based planning in
[5]. The authors state that the problem of their implementation
of RRT is that they experience a performance decrease in
the planning process in the presence of more than one local
optimum, which they successfully resolve in [4] by locally
invoking further instances of the RRT algorithm.

C. Contribution

The research discussed in this paper builds upon and
extends the cooperative autonomous marine vehicle (AMV)
motion planning results presented in [13], where we introduce
a planning approach that does not only take into account the

full dynamical model of a representative AMV, but also a
model of its propulsion system (energy source, motors, and
propellers) so as to compute trajectories that optimize the
actual energy drawn in the course of a complete maneuver.
This work is extended in the current paper in three ways:

• We introduce a means of coordination space planning
[20, Sec. 7.2] to ensure an already collision-free initial
condition to our main trajectory optimization algo-
rithm, thereby significantly speeding up the computa-
tion of a optimal solution to multiple vehicle problems.

• For the planning phase, the vehicle model has two
first-order integrators on the system inputs that achieve
a prevention of instantaneous turns with unfeasibly
high thruster values as part of the resulting optimized
trajectories.

• The planning framework is enhanced by adding the ca-
pability of generating desired trajectories that are glob-
ally optimal with respect to the information content
of the terrain the vehicles will cover. The optimizer
will, according to its weight settings, then compute
an overall solution to the planning problem that is
a trade-off between electrical energy spent and the
terrain information content, collision-free, and feasible
in terms of the vessel dynamical models.

The remainder of this paper is organized as follows: we
start by giving a detailed problem formulation in Sec. II, where
we also introduce the vehicle model at hand. The planning
framework is described in Sec. III with a short background
summary of the core trajectory optimization approach, as well
as the coordination space and terrain information pre-planners.
Simulation results are shown and discussed in Sec. IV, and we
conclude the paper with comments and an outlook in Sec. V.

II. PROBLEM FORMULATION

The problem we aim to solve in this work is achieve
collision-free trajectories for multiple AUVs, that are feasible
in terms of the vehicle dynamics (and thus, executable in the
sense of a trajectory tracking approach). The trajectoriesalso
have to be optimal in terms of a given cost criterion, which,
in our case, is taken as the overall electrical power expected
to be consumed per vehicle when executing the resulting set
of trajectories. For trajectory tracking and navigation purposes,
i.e. self-localization along a planned trajectory, we alsowant to
incorporate known terrain information already at the planning
stage. This information may be incorporated into the planning
framework as a set of desired trajectories, whose weightedL2

distance to the vehicle trajectories may form a further partof
the integral cost, and/or a cost-to-go like measure of the terrain
information itself along the optimized trajectory, which is the
subject of currently ongoing research.

A. Overview of the Complete Planning Process

Before going into further detail in the subsequent sections,
we give a brief overview of what we envision as a complete
planning framework at a more abstract level. The concept of
the framework at hand is illustrated in Fig. 1: the pre-planner
uses a bathymetric map to compute a trajectory that yields high
terrain excitation for terrain-based navigation purposes. This
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Fig. 1. The trajectory planning framework, including both the terrain-based
pre-planner as well as the core trajectory optimizer. In order to ensure a cleaner
presentation, the coordination space pre-planner is not included in this figure.

trajectory is the initial condition for a dynamical optimizer at
the first iteration (i.e., “desired trajectory”) in the search for
an optimal solution that includes tight dynamical constraints
as well as collision avoidance requirements.

Further inputs to the core planner are the same initial and
final values of the kinematic states as used in the pre-planner,
as well as appropriate values of the additional dynamical
states and system inputs, and further mission- and environment-
related data such as obstacle information or collision avoidance
radii. Using an appropriate cost criterion, in our case the
electrical energy taken from the batteries, the trajectories
are then optimized to achieve a minimum value of the cost
function.

B. Vehicle Model

The MEDUSA AMV is a vessel developed at the Dynamical
Systems and Ocean Robotics laboratory at ISR/IST in Lisbon.
Its hull consists of two torpedo shaped tubes that lie parallel
to the water surface, but with a vertical displacement, so
that one tube is fully submerged at all times (see Fig. 2).
In its MEDUSAS flavor, it is an autonomous surface vehicle
(ASV), whereas the recently developed MEDUSAD has diving
capability and can thus be classified as a “true” AUV.

1) Kinematic and Dynamic Equations:Since the MEDUSA
is conceptually a semi-submersible, the mathematical model
can be considered to be that of a planar vehicle. Using the
notation of [6], the model is

η̇ =R(η)ν (1)
(

Mrb +Ma
)

ν̇+
(

Crb(ν)+Ca(ν)
)

ν+
(

D+Dn(ν)
)

ν = τ (2)

where the kinematic statesη = [x,y,ψ] express the vessel’s
pose in the inertial reference frame{I}, and the dynamic state
vectorν = [u,v,r] represents the velocities in the body frame
{B}. In (1), R(η) is a rotation matrix such that





ẋ
ẏ
ψ̇



 =

[

cosψ −sinψ 0
sinψ cosψ 0

0 0 1

][

u
v
r

]

Fig. 2. The MEDUSAS surface craft. The thrusters are mounted in the middle
between both hull parts on thex-z-plane (body coordinates) and produde
completely from the body on thex-y-plane.

The model inputsnps andnsb are the rotational velocities of
the MEDUSA’s actuators, the port side and starboard propeller,
respectively, obtained by multiplying a percentage command
with the maximally admissible rotational velocitynmax,

nps = ppsnmax

nsb = psbnmax

Maneuvering is done using common and differential thrust,
resulting in the external force vector

τ =

[

Tps+Tsb
0

l(Tps−Tsb)

]

where l is the displacement of the propellers from the center
of {B}, see Fig. 3. The forcesTps and Tsb are functions of
u, r, and the two propellers’ rotational velocities,nps andnsb,
respectively, both given in [rps].

Placing the center of{B} at the center of mass of the
vessel, the rigid body and hydrodynamic added mass matrices
in the dynamics (2) can be written as

Mrb =

[

m 0 0
0 m 0
0 0 Izz

]

Ma = −
[

Xu̇ 0 0
0 Yv̇ 0
0 0 Nṙ

]

wherem is the body mass andIzz the rigid body inertia. The
rigid body and hydrodynamic centripetal and Coriolis matrices
are

Crb(ν) =

[

0 −mr 0
mr 0 0
0 0 0

]

Ca(ν) =

[

0 0 −Yv̇v
0 0 Xu̇u
Yv̇v −Xu̇u 0

]
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Fig. 3. Conceptual drawing of the MEDUSA as seen from above. The arrows
illustrate the velocities experienced at different pointsof the body for a system
that is undergoing a right turn while moving forward. The black coordinate
axes represent the body frame{B}, the grey axes the inertial frame{I}.

and the linear and nonlinear drag is expressed as

D = −
[

Xu 0 0
0 Yv 0
0 0 Nr

]

Dn(ν) = −





X|u|u|u| 0 0
0 Y|v|v|v| 0
0 0 N|r|r|r|





The hydrodynamic derivatives are known, but not given here
due to space limitations, and have been obtained by scaling
from a different vehicle model, a detailed explanation of which
is out of the scope of this paper. Trials are planned in the close
future to obtain the exact values of those derivatives for the
MEDUSA.

2) Thrust, Torque, and Input Dynamics:Since the model
inputs are the propellers’ rotational velocitiesnps and nsb, a
mapping between those and the thrustTps and Tsb needs to
be defined. Following our argumentation in [13], we use the
so-called “four-quadrant propeller model” described in [35],
which is valid in all regions of motion (i.e. ahead, back, crash
back and crash ahead). The coefficients used by this model are
given in terms of the advance angleβ at the propeller blade,
and data is available in the form of a 20th order Fourier series
for various ducted propellers and nozzles [25]. A smoothing
procedure that makes the coefficients more usable for Newton
descent methods such as the one employed at the core of our
trajectory optimization approach is described in [14].

In this propeller model, the thrust and torque equations are

T =
1

2
ρcT(β)

(

v2
a +v2

p

)

πR2 (3)

Q=
1

2
ρcQ(β)

(

v2
a +v2

p

)

πR2d (4)

whered is the propeller diameter andR = d/2 is its radius.
The advance angle can be computed as

β = atan2(va,vp) (5)

where va is the advance velocity of the propeller, andvp is
the lateral velocity of the propeller blade at radius0.7R as
a function of the rotational velocity. Figure 4, as well as [1]
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Fig. 4. A cross-section of the propeller blade at0.7R showing the forces
and velocities acting on the propeller blade (the force vectors are enlarged).
The propeller runs counter-clockwise in order to achieve forward thrustT ,
moving the system upwards in this picture. To avoid overlapping arrows, the
tangential component of the propeller torqueQ at 0.7R is shown here with
a negative sign. Propeller liftL and dragD and total hydrodynamic forceF
are only shown for reference.

and [14] give an illustration of the concepts involved. In what
follows,

vpps
= 0.7Rωps = 0.7R2πnps

vpsb
= 0.7Rωsb = 0.7R2πnsb

(6)

are the propeller lateral velocities of the port side and starboard
thruster, respectively. When the vessel is rotating about the z
axis, we need to account for the fact that the advance velocities
at the propellers are different from each other, which results
in the side-dependent expressions

vaps = −pyr+u

vasb = pyr+u
(7)

Here,(px,py) is the offset of the propellers from the vessel’s
center of mass in body coordinates, andl is their absolute
distance to the center of mass (see Fig. 3). Since (6) and (7)
are dependent on the vessel side, it needs to be kept in mind
that the advance angle (5), and thus both the thrust (3) and the
torque (4) need to be computed separately for each propeller.

The MEDUSA uses Seabotix HPDC 1507 thrusters, which
run in a Type 37 Kort nozzle and have a pitch ratio of roughly
P/d ≈ 1.4. A correction factor was applied to achieve the
bollard-pull conditions that Seabotix indicates for this thruster
model in the following manner: from the manufacturer’s spec-
ifications, the maximum propeller velocity can be obtained,
which is sufficient to compute the values of thrust (3) and
torque (4) at bollard-pull conditions (i.e.va = 0.0 m

s ) for the
Wageningen Ka 4-70 propeller withP/d = 1.4, running in
a Type 37 Kort nozzle [25]. These values can be compared
with the manufacturer data of maximum continuous thrust and
torque at bollard-pull conditions achievable with the Seabotix
thrusters, which leads to a multiplicative correction factor for
cT andcQ. Thanks to the particular body shape of the MEDUSA
(see Fig. 2), we may regard propeller-hull interactions as
negligible and treat the propellers as if they were running in
open water, simply employing the four quadrant model just
described.



In order to prevent the optimizer from creating instanta-
neous turning maneuvers with unachievably high inputs for the
vessel model, we do not use the system inputs directly in (3)
and (4). Instead, we treat the inputsnps andnsb as additional
states, and instead let the optimizer treat the rate of change of
these states as system inputs, defined as:

ṅps = wctanhcps (8a)
ṅsb = wctanhcsb (8b)

Here, cps and csb are the new system inputs, andwc is a
weighting factor. This achieves a transient in the real system
inputsnps andnsb that prevents the optimizer from generating
instantaneous turns. The optimizer returns the trajectories of
nps and nsb as model inputs for the solution of the given
optimization problem. In total, the MEDUSA vessel model is
thus comprised of (1), (2), and (8a) and (8b).

C. Static D/C Motor Equations

It is a common and widely spread approach in the literature
to compute energy minimal trajectories subject to the kinetic
energy required for an AUV’s motion, see e.g [16], [18], [19],
[31], [32]. This, however, is only a crude approximation of
the energy really required to propulse an AUV along a given
trajectory. To that avail, we want the trajectories to be optimal
in terms of the actual power taken from the batteries, somewhat
in the line of [2]. To this effect, we formulate an additionalset
of static equations that are based on the D/C motor model for
the thrusters, and which will be used as means of computing
the required electrical energy along a trajectory to allow for
the computation of energy-related quantities that make sense
in a physically sound manner.

Since the terminal inductance of the thrusters (Seabotix
HPDC 1507) is small (La ≈ 500µH), we can neglect the
fast dynamics of the electric part of the standard D/C motor
equation, [7], and write the relation of the rotational velocities
of the propellers to the voltage as

Vps,sb =RaIps,sb+Keωps,sb =RaIps,sb+Ke2πnps,sb

whereVps,sb, Ips,sb andRa are the armature voltage, current
and resistance of the (portbside/starboard) D/C motor,Ke is
its electrical constant, andnps,sb its rotational velocity. From
measurements conducted with the MEDUSA, we could deter-
mine armature current of the port side and starboard thrusters
as functions of the propeller rotational velocities—see [13].
Considering the different inputs for port side and starboard
propeller, the electrical power consumed by the motors thusis

P = VpsIps+VsbIsb+Pp

= (RaIps+Kenps)Ips+(RaIsb+Kensb)Isb+Pp
(9)

with Pp as the constant power required by the on-board
computers.

D. The Optimization Problem

Our goal is to minimize the energy spent by each vehicle
when moving from a given initial to a given final configuration.
Using (9), the total power consumption of theith vehicle is

lpow(x[i](t),u[i](t)) =
(

RaI
[i]
ps (t)+Ken

[i]
ps(t)

)

I
[i]
ps (t)

+
(

RaI
[i]
sb (t)+Ken

[i]
sb(t)

)

I
[i]
sb (t)+Pp (10)

wherex
[i](t) denotes thei-th vehicle’s state vector. An addi-

tional cost term expressingL2 trajectory optimization can be
formulated as

ldes(x
[i](t),u[i](t), t) =

1

2

∣

∣

∣

∣

x
[i](t)−x

[i]
des(t)

∣

∣

∣

∣

2

Qto
+

1

2

∣

∣

∣

∣

u
[i](t)−u

[i]
des(t)

∣

∣

∣

∣

2

Rto
(11)

whereQto andRto are positive definite weight matrices that
have to be chosen appropriately, and the subscriptḋes denotes
relation to the “desired trajectory”.

The inter-vehicle collision avoidance constraint between
vehiclesi and j is

ccol(x
[i](t),x[j](t)) =

(

x[i](t)−x[j](t)
)2

(2rc)2
+

(

y[i](t)−y[j](t)
)2

(2rc)2
−1 (12)

where rc is the minimum safety distance that must be
kept between two vehicles. The obstacle avoidance constraint
cobs(x

[i](t),o[k]) between vehiclei and obstaclek is can
be formulated in a similar manner. (Here,k ∈ {1, . . . ,No},
whereNo is the total number of obstacles in the environment.)
Implementation-relevant details of how to deal with a generic
number of constraints, including indexing with tensor-like
constructs, are given in [28].

Obviously, (12) is based on theL2 norm, while it was
shown in [24] that the SobolevH1 norm gives better results
for multiple encounters with obstacles per trajectory in the
presence of uncertainties on the vehicle and obstacle positional
information. However, since we use one collision avoidance
function per obstacleand for each trajectory, instead of an
overall function that includes all obstacles for each trajectory,
we can capture multiple encounters easily with theL2 norm.

Using the power function (10), the desired trajectory func-
tion (11), the inter-vehicle collision avoidance function(12),
and the obstacle avoidance function, the vehicle trajectories
are obtained by solving the optimization problem

min
∫ T

0

Nv
∑

i=1

(

lpow
(

x
[i](τ),u[i](τ)

)

+

ldes
(

x
[i](τ),u[i](τ), τ

)

)

dτ +m(x(T ))

s.t. ẋ
[i] = f(x[i],u[i], t), x

[i](0) = x
[i]
0 , x

[i](T ) = x
[i]
f

ccol
(

x
[i](t),x[j](t)

)

≥ 0, i 6= j

cobs
(

x
[i](t),o[k]

)

≥ 0

with i, j ∈ {1, . . . ,Nv} and k ∈ {1, . . .No}, and x
[i]
0 and x

[i]
f

are the initial and final condition on thei-th vehicle.

III. T HE PLANNING FRAMEWORK

Our trajectory generation and optimization is shown as
conceptual overview in Fig. 1. The execution flow can be
categorized in three main stages, the last of which may be
repeated in the presence of optimization constraints, e.g.inter-
vehicle collision avoidance as in (12). Those stages are:

Stage 1— A desired trajectory is generated for each vessel
separately as part of a terrain-based pre-planning



step. These paths are usually not feasible in terms
of the vessel dynamics and other optimization con-
straints.

Stage 2— To obtain a valid initial condition for the main
planning process, the paths are then projected onto
the trajectory manifold by virtue of (17). Further-
more, in case of conflicting paths from Stage 1, the
optimization process of Stage 3 can be significantly
sped up by computing a timing law that ensures
temporal deconfliction [12].

Stage 3— The main trajectory optimization is done within the
PRONTO toolkit, iteratively computing an optimal
solution to the planning problem by use of New-
ton’s descent method. If required, this last stage
can be repeated after changing parameters related
to the constraint functions, thus achieving a tighter
fit to the energy-minimal optimization criterion.

A. Terrain-Based Path Planning

In order to explicitly incorporate terrain-based information
in the process of multiple vehicle motion planning, we avail
ourselves of results available in the literature that emerge out
of examining the Cramér-Rao lower bound (or equivalently,
the Fisher Information matrix), that yield measures of how
accurately the position of a vehicle along a trajectory can be
obtained with any unbiased estimator [36]. Stated in simple
terms, the larger the magnitude of the gradient of the terrain
along a given trajectory, the better the accuracy with which
its position can be estimated. In line with this observation,
we propose to solve the multiple vehicle motion planning
problem in its first stage with a pre-planning mechanism based
on a simplified kinematic vehicle model, and using a graph-
based search method that operates on a terrain-related cost
criterion to be defined. The solution of that planning step is
then projected onto the manifold of feasible system trajectories
defined by the full dynamical model(s) of the vessel(s).

In the current implementation, this first stage involves a
version of A⋆ search [3] in an 8-neighbor implementation [8],
adequately modified to take into account positional and angular
information in relation to a geophysical map, in order to obtain,
for each vehicle, a path between the vehicle’s initial and final
kinematic boundary conditions that maximizes a cost criterion
related to the integral of the magnitude of the terrain gradient
along its trajectory. The terrain information is represented as
point cloud, i.e. a 2D array whose cells contain elevation data
(the z value of the coordinate triplet(x,y,z)). The row and
column numbers of each cell correspond to the values ofx and
y in a localized coordinate frame (and can easily be mapped
to e.g. UTC, if desired); terrain information content is then
computed as [33]

MI(x,y) =
1

σ2

||∇MB(x,y)||
maxx′,y′ ∇MB(x′,y′)

(13)

where we assume local coordinatesx ∈ [1,2, . . . ,xmax] and
y ∈ [1,2, . . . ,ymax], and where∇MB(x,y) denotes the gradient
of the bathymetric map. The original terrain map is given as
MB(x,y), probably with an associated standard deviationσ,
and the information map isMI(x,y); low values ofMI(x,y)
are related to a low information content of the terrain. We
choseσ = 1 in (13), which is exactly what is done in [5]

for their “inclination measure”, defining some global “obsta-
cleness” of the terrain.

In a second step, using a desired grid resolutionrx and
ry in x and y (it usually makes sense to selectrx = ry), the
terrain information mapMI can be downsampled to get what
we call theexcitation mapby using the arithmetic mean of an
area of sizerx × ry as

ME(x,y) =
1

rxry

∑

x′∈
[

⌊ x
rx

⌋rx,⌈ x
rx

⌉rx

]

y′∈
[

⌊ y
ry

⌋ry,⌈ y
ry

⌉ry

]

MI(x
′,y′) (14)

A final step in our approach is the computation of a “cost
map” MC defined as

MC(x,y) = cos
(π

2
ME(x,y)

)

based on the observation that high values ofME ∈ [0,1] are
associated with high values of terrain information content,
whereas, for a proper cost function, we want to have the
contrary. In addition to that, the mapping ofME to terrain
information is linear, and it might be useful for the cost to
exhibit a nonlinear behavior, i.e. being high for a wider range
of “undesirable” terrain excitation, and then decreasing quickly
to zero for high terrain excitation. The cosine function has
both desired properties on the interval[0, π

2 ]. A⋆ search on
MC(x,y) leads to a set of globally optimal (in terms of terrain
information content) paths for a given multiple AUV planning
problem.

The Euclidean distance between the current and the final
position is in this context chosen as heuristic function forA⋆,
and the data represented by the map is properly scaled so that
the Euclidean distance becomes an admissible and consistent
heuristic [27]. This is simply possible by adding an offset to
a scaled version ofMC(x,y):

MC(x,y) = w+wMC(x,y) (15)

wherew ≥
√

2. To achieve a more accessible range of values,
we chosew = 10.

It is relevant to point out that the trajectories generated
in stage 1 are not necessarily twice differentiable, which
precludes their use in a normal second order descent dynamical
optimization method. By virtue of the underlyingPRojection
Operator basedNewton method forTrajectory Optimization
(PRONTO, see the last part of this section), however, the tra-
jectories are simply used as “desired trajectories” and feasible
ones (closest to the original in theL2 sense) that verify the
dynamical equations of motion of the vehicles are obtained
by projecting the trajectories onto the so-called trajectory
manifolds of the different vehicle dynamical models.

B. Temporal Deconfliction on the Coordination Space

To achieve an initial condition to the trajectory optimization
algorithm that is already free of collisions, we follow [9] in
making use of the coordination space formulation. For an in-
depth treatment of this concept, we refer the reader to [20,
Sec. 7.2]; in a rough outline, the approach can be described as
planning on aNv-dimensional space whose dimensions repre-
sent the spatial or temporal coordinates of the trajectories in



question (Nv is the number of vehicles involved). The original
set of paths is a (hyper-)line that crosses this “coordination
space” diagonally. Collisions among pairs of vehicles (either in
space or in time) are represented as (hyper-)cylinders crossing
that space—see the excellent illustration in [20, Fig. 7.9] for
an extended treatise of that idea.

A planning algorithm can then be used to find a path
through the coordination space connecting the two diagonal
extrema, but without traversing through any (hyper-)cylinder.
The solution of this planning problem is a new trajectory
traversal law that guarantees that the vehicles are coordinated
in such a manner that collisions are avoided.

Currently, we use a weighted A⋆ search on the coordination
space to find the globally optimal solution to the temporal
deconfliction problem. We again chose the Euclidean distance
as heuristic for this planning problem, wherew ≥

√
Nv.

Weighting the A⋆ search speeds up the problem solving to
be efficiently enough for up to 4 vehicles and trajectories
of a length of 60 seconds with a gridding of 0.01 seconds.
Since there is no necessity of the deconfliction law to be the
globally optimal solution, however, one can easily think about
speeding up the process further by the use of R⋆ [21], [37]
or a bidirectional RRT approach [20], for instance. Because
there is only one call to the deconfliction pre-planner, thisis
currently not a highly prioritized issue.

C. Projection Operator Trajectory Optimization

In the third stage, the main trajectory optimization algo-
rithm takes over control of the optimization process, refining
the trajectories of the vehicles by taking explicitly into account
their dynamics, together with appropriate constraints imposed
by collision avoidance and communication requirements (ina
simplified set-up, the latter may for example capture the fact
that the distance between selected pairs of vehicles shouldnot
exceed a fixed value). This stage is firmly rooted in solid
dynamical optimization theory and borrows from previous
collective work by the authors. In the optimizer developed,not
only do we take into account the full dynamical model of a
representative AMV, but also a model of its propulsion system
(energy source, motors, and propellers) so as to compute
trajectories that optimize the actual energy drawn in the course
of a complete maneuver [13].

In the remainder of this section, we give a quick introduc-
tion to the concepts involved. Our approach to the solution of
optimal control problems is aprojection operatormethod that
allows expressing the dynamically constrained optimization
problem

minimize
∫ T

0
l(x(τ),u(τ), τ) dτ +m(x(T ))

subject to ẋ(t) = f(x(t),u(t), t), x(0) = x0

(16)

as an unconstrained one, and use Newton’s method to find
an optimal solution. This is centered around the realization
that a trajectory tracking controller defines a function space
operator that maps a desired trajectory (acurve) to a system
trajectory (an element of the trajectory manifold). Composing
the optimization objective (afunctional) with the (trajectory
tracking) projection operatorconverts the dynamically con-
strained optimal control problem into an essentially uncon-
strained optimization problem.

Suppose thatξ(t) = (α(t),µ(t)), t ≥ 0, is a bounded
curve (e.g., an approximate trajectory off ) and let η(t) =
(x(t),u(t)), t ≥ 0, be the trajectory off determined by the
nonlinear feedback system

ẋ(t) = f(x(t),u(t), t), x(0) = x0

u(t) = µ(t)+K(t)(α(t)−x(t))

This feedback system defines a continuous, nonlinearprojec-
tion operator

P : ξ = (α(·),µ(·)) 7→ η = (x(·),u(·)) (17)

This allows us to formulate the following algorithm for infinite-
dimensional optimization, similar to the Newton method for
optimization of a functiong(·), e.g., in finite dimensions:

PROJECTIONOPERATORNEWTON METHOD

1 Init initial trajectoryξ0 ∈ T
2 for k = 0,1,2, . . .
3 do design feedbackK(·) definingP aboutξi

4 search direction
ζi = argminζ∈Tξi

T Dh(ξi) · ζ+ 1
2 D

2g(ξi) · (ζ,ζ)
5 step sizeγi = argminγ∈(0,1] g(ξi +γζi)
6 updateξi+1 = P(ξi +γiζi)

whereT is the trajectory manifold,ξ ∈ T , andg(ξ) := h(P(ξ))
with

h(ξ) :=

∫ T

0
l(α(τ),µ(τ), τ) dτ +m(α(T ))

Since our problem formulation demands having additional
collision avoidance constraints, we have in fact a constrained
optimal control problem

min
∫ T

0
l(x(τ),u(τ), τ)dτ +m(x(T ))

s.t. ẋ(t) = f(x(t),u(t), t), x(0) = x0

cj(x(t),u(t), t) ≥ 0, t ∈ [0,T ], j ∈ {1, . . . ,k}

(18)

We incorporate the constraintscj(·) using the barrier functional
method introduced in [11]. The method requires the approxi-
mate log barrier functioñβδ(·), 0< δ ≤ 1 defined as

β̃δ(z) =







− logz z > δ

k−1
k

[

(

z−kδ
(k−1)δ

)k

−1

]

− logδ z ≤ δ
(19)

wherek > 1 is an even integer. This allow us to express (18)
in the shape of (16) as

min
∫ T

0

(

l(x(τ),u(τ), τ)

+ ǫ

k
∑

j=1

β̃δ(cj(x(τ),u(τ), τ))
)

dτ +m(x(T ))

s.t. ẋ(t) = f(x(t),u(t), t), x(0) = x0

whereǫ and δ express the “sharpness” of the barrier and are,
over successive calls to the trajectory optimization algorithm
(where the previously attained locally optimal result is used as
initial condition for the next iteration of the problem solving
process), are simultaneously reduced to force the trajectories
into the valid region of the optimization space.



We found it necessary to slightly modify (19), since it
assumes (unbounded) negative values forz > 1. This may
result in a domination of the negative part in the cost integral,
thereby, in relation to our application, effectively putting a
reward on staying away from the other vehicle (or obstacle)
as far as possible in addition to the cost for avoiding collisions.
Since this is not desirable in minimum energy scenarios, and
counterproductive in scenarios involving desired trajectories,
we extended (19) by forming a composition with theC2-
smooth “hockey stick” function

σ(z) =

{

tanh(z) if z ≥ 0

z otherwise z

σ(z)

defining the new barrier functional

βδ(z) := β̃δ(σ(z))

that behaves as the standard barrier functionβ̃δ for small
and negative z, but goes to zero forz → ∞ [28]. Using this
barrier functional, we can express the constrained optimization
problem in Sec. II-D as an uncostrained problem with the
integral cost

Nv
∑

i=1

lpow(x[i](t))+

Nv−1
∑

i=1

Nv
∑

j=i+1

ǫcolβδcol

(

ccol(x
[i](t),x[j](t))

)

+

Nv
∑

i=1

ǫobsβδobs

(

cobs(x
[i](t))

)

with a probably different set ofǫ and δ for collision and
obstacle avoidance.

IV. SIMULATION RESULTS

In what follows, we give an overview of the different stages
of the planning process using a typical planning scenario, in
which two vehicles have to cross an area where the “informa-
tion content” is highly concentrated along a underwater ridge,
while other areas of the map are relatively featureless. The
area in question is the D. João de Castro seamount close to
the Azores islands in the Atlantic ocean, see Fig. 5a.

After computing the information map, the downsampled
excitation map, and finally the nonlinear cost map (see Fig. 5),
A⋆ is used to compute a set of globally optimal paths. Figure 6,
shows the solution to the energy-optimal trajectory planning
problem for two AUVs going from initial to a final pose
while keeping its actual path closest to the one that yields
good terrain-based information for navigation purposes. The
result of the path pre-planner is indicated as pink colored
lines. Although a portion of about 100 meter length of both
paths is initially overlapping in space as well as in time, the
coordination space pre-planner ensures temporal deconfliction:
the green vehicle slows down and always stays behind the blue
one.
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(a) The D. João de Castro seamount used asMB(x,y).
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(b) The obtained information mapMI(x,y).
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(c) The excitation mapME(x,y) after downsampling.
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(d) The nonlinear cost mapMC(x,y).

Fig. 5. The stages of pre-processing the terrain map to achieve a map that
can be used for terrain-based path planning. The cost mapMC(x,y) shown
here is already scaled as described in Sec. III-A, using a value of w = 10,
thus essentially representing a “scaled shift” of the original range of values
by one order of magnitude.
The values ofx and y in these maps are in local coordinates; the colored
values of the seafloor map represent actual depth. The units are meters.



V. CONCLUSION

This paper introduced a multiple AUV trajectory planning
approach, taking explicitly into account the vehicle dynamics,
and achieving trajectories that are minimal in terms of energy
usage with a trade-off that ensures that the vehicles stay
over terrain that yields high sensor excitation and thus aids
in terrain-based navigation along the planned trajectories. In
comparison to previous work, we enhanced the approach in
three ways: 1) a terrain-based pre-planner computes paths
that are globally optimal with respect to a terrain information
measure and can be used as desired trajectories in the trajectory
optimization part of the approach; 2) a coordination map
planner guarantees a collision-free initial condition to the
trajectory optimizer and thus significantly speeds up computing
a solution to the multiple AUV trajectory planning prob-
lem; and 3) added thruster dynamics ensure that the planner
achieves feasible model inputs. The problem can of course
be enrichened by considering that navigation may be done
by resorting to geophysical data such as that related to the
geomagnetic field of Earth.

Our future research will be directed towards several differ-
ent golas:

• Terrain information so far is only used in the pre-
planning step of our approach. For the future, we aim
to include the terrain information content in the core
optimization approach as well, thus achieving a finer
level of control over the trade-off between maximizing
the terrain information content and minimizing the
energy used along the trajectories. In addition to that,
the inclusion of communication network data could
also lead to trajectories where one vehicle is going
over terrain with sufficiently high information content,
while the other might e.g. be crossing the D. João
de Castro map in the relatively information-less mid-
dle by virtue of localization information exchanged
among the vehicles.

• Regardless whether we discretize the terrain informa-
tion content by (14) or not, we essentially are working
on non-continuous “elevation plateaus”. This is of
no further importance to the pre-planner, but if the
terrain information is to be used withinPRONTO, we
do have to think about approximating the terrain (or
the excitation map) in e.g. a similar manner as [30],
i.e. a cubic B-spline mesh.

• In our current implementation, we use the discretiza-
tion grid (14) to shape a “terrain graph”G = (V,E)
upon which A⋆ acts, with the set of verticesV defined
as

V =
{

pij

∣

∣

∣
i ∈

[

0,
⌈ x

rx

⌉

+1
]

, j ∈
[

0,
⌈ y

ry

⌉

+1
]}

and edgesE defined as

E =
{

(pij ,pkl)
∣

∣

∣
i ∈

[

0,
⌈ x

rx

⌉

]

,

k ∈
[

1,
⌈ x

rx

⌉

+1
]

, j ∈
[

0,
⌈ y

ry

⌉

]

,

l ∈
[

1,
⌈ y

ry

⌉

+1
]

, i+1 = k,j+1 = l
}
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Fig. 6. Result of the trajectory optimization process for twovessels going
from south to north over the eastern rim of the D. João de Castro seamount.
The initially specified minimum energy problem would have the vessels go in
straight, parallel lines. Making use of the terrain information lets the vehicles
go over more “information rich” terrain.

and the edge weight functionw defined as

w
(

(pij ,pkl)
)

= T̂
( i+k

2
rx,

j+ l

2
ry

)

which means that the graph represents an evenly
spaced grid with horizontal, vertical, and diagonal
connections between adjacent nodes, and an edge
weight that is the excitation value of the patch of
ME that is crossed by that edge. In other words,
this weight function currently assigns the excitation
value of adjacent cells ofME(x,y) to horizontal and
vertical edges, not the value of the crossed terrain (15).



This is a more or less minor issue, depending on the
resolution of the excitation map (14), but with a “crude
enough” approximation (that might be required with
big maps), this might become an issue.

• Further work will aim at including extra operational
constraints in line with the work pursued in [38].

• The avoidance of static obstacles, especially determin-
ing if they better be circumnavigated on the relative
“right” or on the relative “left”, might be made easier
by including the obstacles at the pre-planning phase
already, as done e.g. in [30], or by an infinite terrain
cost as e.g. in [5].

Finally, a major step aimed for in the close future is the
implementation and test of the proposed algorithm on the
MEDUSA platform during sea trials.
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