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Abstract. Task scheduling is key issue in obtaining high performance
in heterogeneous systems. Task scheduling in heterogeneous systems is
a NP-problem, therefore several heuristic approaches were proposed to
solve it. These heuristics are categorized into several classes, such as list
based, clustering and task duplication scheduling. Here I consider the list
scheduling approach. In this paper, I will have an overview on six well-
known list based scheduling algorithms (HEFT, CPOP, HCPT, HPS,
PETS and lookahead) and compare the results of them.
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1 Introduction

A heterogeneous system can be defined as a range of different system resources,
which can be local or geographically distributed, utilized to executing computa-
tionally intensive application. The efficiency of executing parallel applications on
heterogeneous systems critically depends on the methods used to schedule the
tasks of a parallel application. The objective is to minimize the overall comple-
tion time or makespan. The task scheduling problem for heterogeneous systems is
more complicated than that in the homogeneous computing systems, because of
the different execution rates among processors and possibly different communi-
cation rates between different processors. The DAG scheduling problem has been
shown to be NP-complete [2, 3, 9], even for the homogeneous case, therefore the
research effort in this field has been mainly to obtain low complexity heuristics
that produce good schedules. The task scheduling problem is broadly classified
in two major categories, namely Static Scheduling and Dynamic Scheduling. In
Static category, all information about tasks such as execution and communi-
cation time for each task and its relation with other tasks are known before
hand; in Dynamic category, such information is not available and decisions are
made in runtime. In another way, Static scheduling is compile-time scheduling
and Dynamic scheduling is run-time scheduling. Static scheduling algorithms are
universally classified into two major groups, namely, Heuristic-based and Guided
Random Search-based algorithms. Heuristic-based algorithms give near-optimal
solutions but with polynomial time complexity and acceptable performance in



comparison with Guided Random Search-based algorithms which give optimal
solutions with exponential time complexity. The Heuristic-based group is com-
posed by three subcategories that are: list, clustering and duplication scheduling.
Clustering heuristics were mainly proposed for homogeneous systems and the aim
is to form clusters of tasks that are then assigned to processors. The duplication
heuristics produce the shortest makespans but they have two disadvantages: one
is the higher time complexity, such as cubic in relation to the number of tasks;
and second, they have lower efficiency because the main strategy is to duplicate
the execution of tasks, resulting in more processor power used. Efficiency is an
important characteristic, not only due to the energetic cost but also, in a shared
resource, less efficiency means less processors available to run other concurrent
applications. List scheduling heuristics, on the other hand, produce the most
efficient schedules, without compromising the makespan and with a complexity
that is, in general, quadratic in relation to the number of tasks. In this paper,
I present an overview on list based scheduling algorithm for a bounded number
of fully connected heterogeneous processors.

This paper is organized as follows: in Section 2, I introduce the DAG schedul-
ing ; in Section 3, I present an overview on list based scheduling algorithms on
heterogeneous systems; in Section 4, I present results of comparison for these al-
gorithms based on several measure parameter and, finally, conclusions in Section
5.

2 DAG Scheduling

The problem addressed in this paper is the static scheduling of a single applica-
tion on a heterogeneous system. An application can be represented by a Directed
Acyclic Graph (DAG), G = (V,E, P,W ), as shown in Figure 1.
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Task P1 P2 P3

T1 23 32 28

T2 36 36 16
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T4 16 17 13

T5 25 17 28

T6 25 38 37

T7 30 21 29

T8 17 26 36

T9 16 10 21

T10 26 16 26

Fig. 1: Application model and computation time matrix of the tasks in each processor

Where V is the set of v nodes, and each node vi ∈ V represents an application
task, which includes its instruction that must be executed on the same machine.
E is the set of e communication edges between tasks, each e(i, j) ∈ E represents



the task-dependency constraint such that task ni should complete its execution
before task nj can be started. P is the set of p heterogeneous processors available
in the system. W is a v × p computation cost matrix, where v is the number of
tasks and p is the number of processors in the system. wi,j gives the estimate
time to execute task vi on machine pj . The mean execution time of task ni
can be calculated by wi = (

∑
j∈P wi,j)/p. Each edge e(i, j) ∈ E is associated

with a non-negative weight ci,j representing the communication cost between
the tasks ni and nj . Note that, when task i and j are assigned to the same
processor, the real communication cost is considered to be zero because it is
negligible compared to interprocessor communication costs. Additionally, in our
model, I consider that processors are connected in a fully connected topology.
The execution of tasks and communications with other processors can be done
for each processor simultaneously and without contention. Also, the execution of
any task is considered nonpreemptive. These model simplifications are common
in list scheduling problem [4, 8], and I consider them in order to have a fair
comparison to the state of the art algorithms.
Next, I present some of the common attributes used in task scheduling, that I
will refer in the following sections.

– pred(ni) : denotes the set of immediate predecessors of task ni in a given
DAG. A task with no predecessors is called an entry task, nentry. If a DAG
has multiple entry tasks, a dummy entry task with zero weight and zero
communication edges is added to the graph.

– succ(ni) : denotes the set of immediate successors of task ni. A task with
no successors is called an exit task, nexit. Like the entry task, if a DAG
has multiple exit tasks, a dummy exit task with zero weight and zero com-
munication edges from current multiple exit tasks to this dummy node is
added.

– makespan : it is the finish time of the exit task in the scheduled DAG,
and is defined by makespan = AFT (nexit) where AFT (nexit) denotes the
Actual Finish Time of the exit task.

– Critical Path(CP) : the CP of a DAG is the longest path from nentry to
nexit in the graph. The length of this path |CP | is the sum of the computation
costs of the tasks and intertask communication costs along the path. The
|CP | value of a DAG is the lower bound of the makespan.

– EST(ni,pj) : denotes the Earliest Start Time of a node ni on a processor
pj

– EFT(ni,pj) : denotes the Earliest Finish Time of a node ni on a processor
pj

The objective function of the scheduling problem is to determine an assignment
of tasks of a given DAG to processors such that the Schedule Length is minimized.
After all nodes in the DAG are scheduled, the schedule length will be the Actual
Finish Time of the exit task.



3 List-Based Scheduling Algorithms

In this section, I present a brief survey of task scheduling algorithms, specifically
list based heuristics. In the past years, the research on static DAG scheduling
has focused on finding suboptimal solutions to obtain a good solution in an
acceptably short time. List scheduling heuristics usually generate good quality
schedules at a reasonable cost. In comparison with clustering algorithms, they
have lower time complexity and in comparison to task duplication strategies,
their solutions use less processors, generating more efficient schedules.
A large number of list scheduling algorithms have been developed by researchers
in the past. This type of scheduling algorithms has three phases: the prioritizing
phase for giving a priority to each task; the selection phase for select the task
based on its priority from the ready tasks in current time; and a processor se-
lection phase for selecting a suitable processor that minimizes the heuristic cost
function. If two or more tasks have equal priority, then the tie is resolved by
selecting a task randomly. The two last phases are repeated until all tasks are
scheduled to suitable processors.

Here, I describe the list-based scheduling heuristic algorithms, for scheduling
tasks on a bounded number of heterogeneous processors, selected to be com-
pared, namely, CPOP, HEFT, HCPT , HPS, PETS and lookahead.

3.1 CPOP Algorithm

The CPOP (Critical Path On a Processor) algorithm proposed in [8], like other
list-based scheduling algorithm, has three phases, namely, task prioritizing, task
selection and processor selection phase. In first phase, task prioritizing, the
CPOP algorithm used the upward rank (ranku) and downward rank (rankd)
to give a priority to each task in DAG. The upward rank (ranku) represents the
length of the longest path from the task to exit task, including the computational
cost of the task and is given by ranku(ni) = wi+maxnj∈succ(ni){ci,j+ranku(nj)}
for exit task ranku(nexit) = wexit, and the downward rank (rankd) rep-
resents the length of the longest path from a start task to the task and is
given by rankd(ni) = maxnj∈pred(ni){rankd(nj) + wj + cj,i} for entry task
rankd(nentry) = 0

The CPOP algorithm, after calculating the upward and downward rank value
for all tasks in the DAG, the priority of each task is equal to rankd + ranku. In
CPOP algorithm, tasks are categorized into critical path tasks and non-critical
path tasks. The CPOP algorithm defined a CPprocessor as the processor that
minimizes the overall execution time of the critical path assuming all the critical
path nodes are mapped onto it. In task selection phase, the CPOP algorithm
select the task with highest priority from ready task. In the next phase, processor
selection phase, if the selected task is a CP task, it is mapped to CPprocessor,
otherwise it should be mapped to the processor that minimize its earliest finish
time.



3.2 HEFT Algorithm

The HEFT (Heterogeneous Earliest Finish Time) algorithm [8] is highly com-
petitive in that it generates a comparable schedule length to other scheduling
algorithms, with a low time complexity. Like most of list-based scheduling algo-
rithm it hast three phases. In task prioritizing phase, it used ranku (described
before in CPOP algorithm) to assign priority to the task. In task selection phase,
the HEFT algorithm select the task with highest priority from the ready list as
the selected task. And in the processor selection phase, the HEFT select the pro-
cessor that allows the EFT (Earliest Finish Time) of the selected task. However,
the HEFT algorithm uses an insertion policy that tries to insert a task in an
earliest idle time between two already scheduled tasks on a processor, if the slot
is large enough to accommodate the task.

3.3 HCPT Algorithm

The HCPT (Heterogeneous Critical Parent Trees) algorithm [4] uses a new mech-
anism to construct the scheduling list L, instead of assigning priorities to the
application tasks. HCPT divides the task graph into a set of unlisted-parent
trees. The root of each unlisted-parent tree is a critical path node (CN). A CN
is defined as the node that has zero difference between its AEST and ALST.
The AEST is the Average Earliest Start Time of the task and it is equivalent to
rankd as shown by AEST (ni) = maxnj∈pred(ni){AEST (nj) +wj + cj,i} and for
entry task AEST (nentry) = 0. The Average Latest Start Time (ALST ) of the
task can be computed recursively by traversing the DAG upward, starting from
the exit task and given by ALST (ni) = minnj∈succ(ni)

{
ALST (nj)− ci,j

}
− wi

and for exit task ALST (nexit) =.
The algorithm has also two phases, namely listing tasks and processor assign-
ment. In the first phase, the algorithm starts with an empty queue L and an
auxiliary stack S that contains the CNs pushed in decreasing order of their AL-
STs, i.e. the entry node is on top of S. Consequently, top(S) is examined. If
top(S) has an unlisted parent (i.e. has a parent not in L), then this parent is
pushed on the stack S. Otherwise, top(S) is popped and enqueued into L. In the
processor assignment phase, the algorithm tries to assign each task ni ∈ L to a
processor pj that allows the task to finish its execution as earlier as possible.

3.4 HPS Algorithm

The HPS (High Performance task Scheduling) [6] algorithm has three phases,
namely, level sorting, task prioritization and processor selection phase. In the
level sorting phase, the given DAG is traversed in a top-down fashion to sort
tasks at each level in order to group the tasks that are independent of each
other. As a result, tasks in the same level can be executed in parallel. In the task
prioritization phase, priority is computed and assigned to each task using the
attributes Down Link Cost (DLC), Up Link Cost (ULC) and Link Cost (LC) of
the task. The DLC of a task is the maximum communication cost among all the



immediate predecessors of the task. The DLC for all tasks at level 0 is 0. The
ULC of a task is the maximum communication cost among all the immediate
successors of the task. The ULC for an exit task is 0. The LC of a task is the
sum of DLC, ULC and maximum LC of all its immediate predecessor tasks.

At each level, based on LC values, the task with highest LC value receives
the highest priority followed by the task with next highest LC value and so on
in the same level. In the processor selection phase, the processor that gives the
minimum EFT for a task is selected for executing that task. It has an insertion-
based policy, which considers the insertion of a task in an earliest idle time slot
between two already scheduled tasks on a processor.

3.5 PETS Algorithm

The PETS (Performance Effective Task Scheduling) algorithm [5] has the same
three phases as HPS. In the level sorting phase, like HPS, tasks are categorized
in levels so that in each level the tasks are independent. In the task prioritiza-
tion phase, priority is computed and assigned to each task using the attributes
Average Computation Cost (ACC), Data Transfer Cost (DTC) and the Rank of
Predecessor Task (RPT). The ACC of a task is the average computation cost
on all the p processors. The DTC of a task ni is the amount of communication
costs incurred to transfer the data from task ni to all its immediate successor
tasks; for an exit node DTC(nexit) = 0. The RPT of a task ni is the highest
rank of all its immediate predecessor tasks; for an entry node RPT (nentry) = 0.
The rank is computed for each task ni based on its ACC, DTC and RPT values
and is given by rank(ni) = round{ACC(ni) +DTC(ni) +RPT (ni)}.

At each level, the task with highest rank value receives the highest priority
followed by the task with next highest rank value and so on. A tie is broken by
selecting the task with a lower ACC value. As some of the other task scheduling
algorithms, in the processor selection phase, it selects the processor that gives
the minimum EFT value for executing the task. It also uses a insertion-based
policy for scheduling a task in an idle slot between two previously scheduled
tasks on a given processor.

3.6 Lookahead Algorithm

The Lookahead scheduling Algorithm [1] uses a new methodology to select the
suitable processor for selected task in each step of scheduling. In Lookahead al-
gorithm, first, calculate the upward rank for all tasks in a given DAG as same
as HEFT. But in Processor selection phase, unlike the HEFT algorithm that
select the processor based on earliest finish time for current task, the Lookahead
algorithm for test each processor, first assign the selected task to the processor
and then schedule the selected task children and save the maximum EFT of chil-
dren as EFT selected task on the processor. After test all processor for assigning
selected task to them, the lookahead select the processor with minimum EFT
based on its children.



4 Experimental Result and Discussion

This section presents performance comparison of the DMCP algorithm with the
algorithms presents above. For this purpose, I consider randomly generated ap-
plication graphs. I first present the comparison metrics used for the performance
evaluation.

4.1 Comparison Metrics

The comparison metrics are Scheduling Length Ratio, Speedup, Efficiency.

SLR =
makespane(solution)∑
ni∈CPMIN

minpj∈P (w(i,j))
Speedup =

min
pj∈P

[ ∑
ni∈V

w(i,j)

]
makespane(solution)

The denominator in SLR is the minimum computation of tasks on critical path.
With any algorithm, there is no makespane less than the denominator of SLR
equation. Therefore, the algorithm with lower SLR is the best algorithm. Aver-
age SLR values over several task graphs are used in our results. In Speedup, the
sequential time is obtained by the sum of the processing time on the processor
that minimizes the total computation cost [8].
For the general case, Efficiency is defined as the Speedup divided by the number
of processors used Efficiency = Speedup/{Number of processors used}.
The DAGs used in this simulation setup were randomly generated using the
program in [7] which consider the following parameters: width as the number of
tasks on the largest level; regularity is the uniformity of the number of tasks in
each level; density is the number of edges between two levels of the DAG. These
parameters may vary between 0 and 1. An additional parameter, jump, indicates
that an edge can go from level l to level l+ jump. In this paper, I used this syn-
thetic DAG generator for making the DAG structure which includes the specific
number of nodes and their dependencies. To obtain computation and communi-
cation costs, two extra parameters are used: CCR and beta. The first parameter,
CCR(Communication to Computation Ratio) is ratio of the sum of the edge
weights to the sum of the node weights in a DAG; and beta(Range percentage
of computation costs on processors) is the heterogeneity factor for processors
speed. A higher value for β implies higher heterogeneity and very different com-
putation costs among processors and a low value implies that the computation
costs for a given task is almost equal among processors [8]. The average compu-
tation cost of a task ni in a given graph wi is selected randomly from a uniform
distribution with range

[
0, 2×wDAG

]
, where wDAG is the average computation

cost of the given graph. The computation cost of each task ni on each processor

pj is randomly set from the range of wi ×
(

1− β
2

)
≤ wi,j ≤ wi ×

(
1 + β

2

)
.

In this paper, I consider DAGs with 10, 20, 30, 40, 50 and 60 tasks; the number
of processors equal to 4, 8, 16 and 32; CCR of 0.1, 0.5, 0.8, 1, 2, 5 and 10; width
equal to 0.1, 0.4, 0.8; regularity equal to 0.2,0.8 ; density equal to 0.2, 0.8; Beta
equal to 0.1, 0.2, 0.5, 1 and 2 ; and jumps of 1, 2, and 4. These combinations



give 30,240 different DAG types. Since 10 random DAGs were generate for each
combination, the total number of DAGs used in our experiment was 302,400.

Figure 2 shows the results of SLR, Speedup and Efficiency produced by the
Lookahead, HEFT, HCPT and CPOP algorithm. We can see that Lookahead
has the lower SLR for all DAG sizes. Consequently, Lookahead achieved better
Speedups. The second best algorithm in terms of SLR is HEFT, as was referred
before to be the state of art algorithm so far. Attending to Efficiency, Lookahead
is also the best one. CPOP that follows very closely Lookahead in terms of
Efficiency, has the poor SLR.
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Fig. 2: (a) Average SLR; (b) average SpeedUP and (c) Efficiency comparison for Random Graphs

If I want to discuss about the result with respect to hardware feature, I should
compare results for different values for CCR and beta (heterogeneity factor).

Figure 3 shows the SLR values for each algorithm with respect to different
values of CCR. As shown, in lower CCR values, the improvement is not signifi-
cant and HCPT, HEFT and Lookahead algorithm have close SLR values but in
higher CCR, Lookahead algorithm shows better SLR than the other algorithms.

Also, Figure 4 show the same condition in improvement like as CCR for beta
(heterogeneity factor); In lower beta, all algorithms have very closely same SLR
values ; But with increasing beta parameter, as shown, Lookahead shows better
improvement in terms of SLR and then HEFT and HCPT.

5 Conclusion

In this paper, we had an overview on the most well-know list-based scheduling
algorithms on heterogeneous systems. My result shows, among of all these al-
gorithms, Lookahead shows better performance in terms of SLR, SpeedUp and
efficiency in overall But if we want review them based on hardware feature, as
shown in Figure 3 for lower CCR all algorithms have same performance in term
of SLR and also in Figure 4, as like CCR factor, shown for lower heterogeneity
factor, all algorithms have same SLR values.
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Fig. 3: Average SLR with respect to different CCR values
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Fig. 4: Average SLR with respect to different beta (heterogeneity factor values
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