
JavaML 2.0: Enriching the Markup Language for
Java Source Code

Ademar Aguiar1, Gabriel David1, and Greg Badros2

1 Faculdade de Engenharia da Universidade do Porto and INESC Porto
{aaguiar,gtd}@fe.up.pt

2 Google Inc., 2400 Bayshore Parkway, Mountain View, CA 94043
badros@cs.washington.edu

Abstract. Although the representation of source code in plain text format
is convenient for manipulation by programmers, it is not an effective format
for processing by software engineering tools at an abstraction level suitable for
source code analysis, reverse-engineering, or refactoring. Textual source code
files require language-specific parsing to uncover program structure, a task un-
dertaken by all compilers but by only a few software engineering tools. JavaML
is an alternative and complementary XML representation of Java source code
that adds structural and semantic information into source code, and is easy to
manipulate, query, and transform using general purpose XML tools and tech-
niques. This paper presents an evolved version of JavaML, dubbed JavaML 2.0,
and the enhancements made to the schema and respective converters: DTD and
XML Schema support, cross-linking of all program symbols, and full preser-
vation of original formatting and comments. The application of JavaML 2.0
is illustrated with concrete examples taken from the software documentation
tool that motivated the enhancements.

1 Introduction

Since the first computer programming languages, programmers have used a plain-
text format for encoding software structure and computation. The immediate users of
this format include the compiler, which converts sequences of characters into a data
structure that closely reflects the program structure — an abstract syntax tree (AST).

Despite the advances in compilers and document management tools, software en-
gineers regularly manipulate source code using the plain text format, often employing
superficial tools based on regular expressions.

Although the plain-text representation of source code is convenient for program-
mers and has nice properties, pure text is not the most effective format for manip-
ulating source code at an abstraction level suitable for software engineering tools.
Plain-text files are good for lexical analysis, but they are not suitable for structural
and semantic analysis before being parsed and translated to higher level formats.
There is thus a need for a standard format capable of directly representing program
structure and semantics, a readable and widely supported format that tools can easily
analyze and manipulate.

JavaML is a markup language for Java source code proposed by Greg Badros [1,2]
that provides an alternative representation for Java source code. JavaML enriches
source code text files with structural and semantic information typically present in a
compiler annotated ASTs. Because the representation is XML-based, JavaML is easy

2 Ademar Aguiar, Gabriel David, and Greg Badros

to manipulate, query, and transform using general purpose and widely available tools
and techniques.

This paper presents an evolved version of JavaML, dubbed 2.0, that incorporates
enhancements and new features beyond the original JavaML [1], including: XML
Schema support, updated converters, cross-referencing of all program symbols, and
full preservation of original lexical information (formatting and comments). These
enhancements were motivated by the implementation of XSDoc, an extensible infras-
tructure for documenting object-oriented frameworks [3].

The next section briefly discusses the benefits of using an XML format for repre-
senting source code. The sections that follow describe JavaML 2.0 and present concrete
examples of application taken from the XSDoc infrastructure. The paper then reviews
related work and concludes by suggesting ideas for future work.

2 Why represent source code in XML?

The plain-text representation of source code is convenient to express programmers
ideas. It is concise, easy to read by programmers, and very simple to exchange and
manipulate using a wide variety of tools, such as text editors, version control systems,
and file system utilities. But the plain-text representation of source code also has
many limitations. Perhaps the most significant is that the program structure is not
directly represented in the format and thus requires language-specific processing to
uncover it.

2.1 XML

XML is a universal format widely used to represent structured information in text-
based files that was designed to be lightweight and simple. An XML document consists
of text marked up with tags enclosed in angle braces.

XML documents have an inherent hierarchical structure and are therefore conve-
nient for representing source code constructs. XML-based representations are easy to
understand, easy to manipulate by tools, very flexible, extensible, and widely sup-
ported. Although XML documents are primarily intended for automatic processing
by tools, the format is human readable.

XML documents are therefore an empowering complementary representation for
source code, enabling the usage of tools at a higher level of abstraction.

2.2 Limitations of plain text for representing source code

Despite its nice properties, plain text source code files require parsing to uncover
the most important information they contain about a program: the structural and
semantic information. This severe limitation forces the inclusion of language-specific
parsers in each tool that needs to manipulate programs at an abstraction level higher
than the lexical. While heavyweight software engineering tools can afford to embed
such parsers, simple utility tools do not and are thus limited to lexical tasks.

Common manipulations of source code, such as generation, refactoring, reformat-
ting, or reverse-engineering, usually require the manipulation of more abstract source
code representations equivalent to ASTs.

Although modern integrated development environments (IDE) provide applica-
tion programming interfaces (API) to manipulate in-memory AST representations

JavaML 2.0 — XATA’2004 3

of source code, these APIs are still not appropriate for simple tools, since they re-
quire integration in a complex environment — the IDE — that creates a strong and
undesirable dependency.

2.3 Benefits of representing source code in XML

The representation of source code in XML has several benefits [1,4,5] and enables the
use of more powerful software engineering and document management methods and
tools.

Explicit code structure. XML documents are structured by nature, and can be
used to build tree-like code representations and sophisticated manipulation of source
code using general purpose XML tools. Some good examples are automatic synchro-
nization of generated code and documentation, or quick code generation and trans-
formation using predefined templates. With source code in XML it is possible to
annotate generated code with its template definition so that the constructed code can
be regenerated every time its template is updated. Complex templates for custom
instantiation of design patterns would benefit from such mechanisms.

Powerful querying capabilities. In addition to textual searches using regular
expressions, modern IDEs usually include tools specific for source code that allow
searching for common programming language constructs, such as classes, methods,
and fields. These features are useful but are only a small subset of what is possible to
query with XML standards and tools, such as XPath [6] and XQuery [7].

Extensible representation. Plain-text source code is not easy to extend with new
code constructs or annotations because they would disrupt the code structure and
require parser modifications. Because of this, such extensions are often embedded as
comments. In an XML document, the addition of new elements is much easier, because
the structure is explicitly marked up, and we can separate different kinds of elements
(e.g. language specific elements and user-defined elements) using XML namespaces.
Distinct tools can define and insert their own elements in the code structure and then
process only those that are relevant for them. Examples of common extensions are
code annotations, comments, meta-information, authoring and version information,
revisions, documentation and conditional code.

Flexible formatting. Most programming languages, including Java, ignore the se-
mantic value of whitespace and enable programmers to adopt diversified formatting
conventions, which, despite its usefulness, are not easy to enforce and maintain in
consistency. Mistakes in following formatting conventions sometimes result in an in-
creased difficulty to locate structural or semantic errors, due to the suggestive nature
of formatting. In an XML representation of code, the structure can be abstracted
from the coding style. XML standards and tools, such as XSLT [8] facilitate the
(re)formatting of source code using different styles which can enrich its readability
through an appropriate usage of layouts, colors, fonts, and links.

4 Ademar Aguiar, Gabriel David, and Greg Badros

Cross-referencing. Source code fragments in plain text are usually referenced by
their file position, i.e. line and column numbers. In an XML-based structure of a
program, it is possible to associate code fragments directly with code constructs, thus
enabling the relocation of code fragments without disrupting references.

Wide support. A program representation must be widely supported in a wide
variety of platforms, otherwise it can’t succeed. XML tools are available on all major
platforms and thus satisfy this requirement.

3 JavaML 2.0

The original JavaML markup language provides a complete self-describing represen-
tation in XML for Java source code. Unlike the classical plain-text representation of
programs, JavaML reflects the structure of Java programs directly in the hierarchical
structure of XML documents.

Because JavaML uses the XML format, a text-based representation, many of the
advantages of the classical source representation remain. In addition, the JavaML
representation is easy to parse and manipulate with general purpose XML tools,
not requiring language-specific tools that are difficult to implement and maintain.
Therefore, JavaML leverages the development of XML tools for the manipulation of
Java source code in JavaML.

The immediate users of JavaML format are tools, and not is intended to be writ-
ten directly by hand. Nevertheless the format is easily readable and understandable,
enabling its direct inspection by developers.

JavaML 2.0 enriches the original JavaML [1] with more information at several lev-
els of abstraction ranging from the lexical level to the semantic level. The enhanced
representation of JavaML 2.0 now includes full lexical information about tokens, com-
ments and formatting, only small enhancements in terms of structural information,
and much richer semantic information related with symbol definitions, references and
type information.

3.1 Background on JavaML

In order to represent Java source code in XML there are many possible approaches
[1]. Consider the following source file for the class FirstTest.

FirstTest.java

1 package junit.samples;
2 import junit.framework. ∗;
3

4 / ∗∗
5 ∗ My first unit test.
6 ∗/
7 public class FirstTest extends TestCase {
8 double value = 2.0;
9

10 public void testAdd() {
11 double result = value + 3;
12 // forced failure result == 5
13 assertTrue(result == 6);
14 }

15 }

JavaML 2.0 — XATA’2004 5

The most obvious approach is to dump the derived AST to a XML format, but
this would result very verbose and uninteresting due to the irrelevant grammar details
it would reveal.

Another possibility is to markup the Java source program without changing the
original text. The result would be a richer representation, easier to convert back to the
original source file, but the retrieval of specific information from the representation
would require undesired lexical analysis of element contents.

The representation chosen for JavaML aimed to model Java programming language
constructs without binding to the specificities of the language syntax [1]. As a result
of this design principle, JavaML can be used as a base for the design of a generalized
markup language supporting other object-oriented programming languages, such as
C#, C++ or Smalltalk.

To illustrate the approach followed by JavaML, consider the source code file pre-
sented above (FirstTest.java) and its corresponding basic JavaML representation
(FirstTest.java.xml). The major design decisions are enumerated below.

FirstTest.java.xml

1 <?xml version ="1.0" encoding="UTF −8"?> <!−− FirstTest.java. xml −−>
2 <java −source −program xmlns:xsi="http://www.w3.org/2001/XMLSchema −instance" ... >
3 <java −class −file name="f:/junit3.8.1/src/junit/samples/FirstTest.java" >
4 <package −decl name="junit.samples"/ >
5 <import module="junit.framework. ∗"/ >
6 <class name="FirstTest" id="Ljunit/samples/FirstTest;" >
7 <doc−comment>/ ∗∗
 ∗ My first unit test.
 ∗/</doc −comment>
8 <modifiers >
9 <modifier name="public"/ >

10 </modifiers >
11 <superclass name="TestCase" idref="Ljunit/framework/TestCase;"/ >
12 <field name="value" id="Ljunit/samples/FirstTest;value" >
13 <type name="double" primitive="true"/ >
14 <var −initializer >
15 <literal −number kind="double" value="2.0"/ >
16 </var −initializer >
17 </field >
18 <method name="testAdd" id="Ljunit/samples/FirstTest;testAdd()V" >
19 <modifiers >
20 <modifier name="public"/ >
21 </modifiers >
22 <type name="void" primitive="true"/ >
23 <formal −arguments/ >
24 <block >
25 <local −variable −decl >
26 <type name="double" primitive="true"/ >
27 <local −variable name="result" id="Ljunit/samples/FirstTest;var1946" >
28 <var −initializer >
29 <binary −expr op="+" >
30 <field −ref name="value" idref="Ljunit/samples/FirstTest;value"/ >
31 <literal −number kind="integer" value="3"/ >
32 </binary −expr >
33 </var −initializer >
34 </local −variable >
35 </local −variable −decl >
36 <send message="assertTrue" idref="Ljunit/framework/Assert;assertTrue(Z)V" >
37 <arguments >
38 <binary −expr op="==" >
39 <var −ref name="result" idref="Ljunit/samples/FirstTest;var1946"/ >
40 <literal −number kind="integer" value="6"/ >
41 </binary −expr >
42 </arguments >
43 </send >
44 </block >
45 </method >
46 </class >

47 </java −class −file >

6 Ademar Aguiar, Gabriel David, and Greg Badros

Fig. 1. Tree view of the JavaML representation[9].

Representation of code constructs. JavaML represents the important concepts
of the Java language, namely classes, superclasses, fields, methods, variables, message
sends, and literals, directly in document elements and attributes.

Code structure is reflected in the nesting of elements. Program structure is
reflected in the nesting of elements. Figure 1 presents a visual presentation of the
document tree, which shows the nesting of the literal number 3 in the initializer part
of the variable declaration it appears.

Generic elements. In order to reduce the size and complexity of the schema,
JavaML generalizes related concepts and represents them using generic elements with
different attribute values. Loops and literal numbers are just two examples of such
generalizations. In FirstTest.java.xml, the lines 15 and 31 contain literal-number
elements with different kind attribute values to disambiguate the representation of a
double and an integer. In addition, unstructured information is stored in attribute
elements as illustrated in the modifier element, in line 20.

3.2 The new JavaML 2.0 schema

The major enhancements of JavaML 2.0 consisted on improving the schema to ac-
commodate richer lexical and semantic information. Our primary goal is to enable full
preservation of original source files and complete cross-linking of program symbols.
The corresponding converters were re-implemented to cope with these new schema
requirements.

These enhancements were mainly motivated by the implementation of XSDoc,
an infrastructure for framework documentation that uses JavaML to dynamically
integrate source code in the documentation.

All JavaML and JavaML 2.0 artifacts referred in this paper are available online
[2,10].

DTD and XML Schema support. Both XML Schema and DTD provide a basic
grammar for defining XML documents in terms of the metadata that comprise the

JavaML 2.0 — XATA’2004 7

shape of the document. XML Schemas are themselves XML documents. XML Schemas
provide a more powerful means to define a XML document structure and validations
than DTDs, because provide an object-oriented approach, with all the benefits this
entails, namely the ability to reuse and extend type definitions. Because both DTD
and XML Schema have their own advantages, JavaML 2.0 is primarily designed for
XML Schema but still supports DTDs. The JavaML 2.0 XML Schema has around 90
elements. The original DTD was four times shorter in terms of number of lines.

Cross-referencing of program symbols. JavaML representation includes infor-
mation to link symbol references to their definitions. This linking is achieved through
the standard XML mechanism using id attributes in definitions and idref attributes
in references. Although not strictly necessary, JavaML considers variables, fields, and
arguments as distinct kinds of symbols. In line 39, we can see a reference to the local
variable named result that points back to its definition in line 27.

FirstTest.java.xml

27 <local −variable name="result" id="Ljunit/samples/FirstTest;var1946" >

39 <var −ref name="result" idref="Ljunit/samples/FirstTest;var1946"/ >

Because these references are defined in the XML Schema, they are automatically
checked when the document is validated. The listing below shows the lines that define
the keys and references for local-variable elements in the JavaML 2.0 schema
(javaml.xsd). The key is defined as a value appearing in the id attribute (line 213) of
local-variable elements or formal-argument elements that are immediate children
of catch elements (line 212). This key is referenced by values of the idref attribute
(line 217) of var-ref elements (line 216). The values used in these keys and references
are typical to symbol tables and are automatically generated by the Java compiler.

javaml.xsd

211 <xs:key name="KeyLocalVariable" >
212 <xs:selector xpath=".//local −variable |.//catch/formal −argument"/ >
213 <xs:field xpath="@id"/ >
214 </xs:key >
215 <xs:keyref name="RefLocalVariable" refer="KeyLocalVariable" >
216 <xs:selector xpath=".//var −ref"/ >
217 <xs:field xpath="@idref"/ >

218 </xs:keyref >

Type dependencies. Source code files usually have dependencies to other source
files and libraries. During type checking and name resolution, all these files must be
analyzed and a type dependency graph can be built. JavaML 2.0 representation in-
cludes these dependencies to complement the structural information presented before.

FirstTest.java.xml

48 <type −dependences >
49 <type −dependence filename="f:/junit3.8.1/src/junit/samples/FirstTest.java"
50 signature="Ljunit/samples/FirstTest;" >

51 <type −ref signature="Ljunit/framework/TestCase;"/ >

This information enables following references to the source code and documenta-
tion of external types. In line 6 of FirstTest.java.xml, we can see the value used
to uniquely identify the class FirstTest and in line 11 there is a reference to the
external type TestCase.

8 Ademar Aguiar, Gabriel David, and Greg Badros

FirstTest.java.xml

6 <class name="FirstTest" id="Ljunit/samples/FirstTest;" >

11 <superclass name="TestCase" idref="Ljunit/framework/TestCase;"/ >

Preservation of formatting and comments. The preservation of comments and
whitespace were two issues not completely addressed in the original JavaML imple-
mentation [1].

Although the comments are easy to store, they are challenging to attach to the
correct elements. JavaML 2.0 preserves all comments present in source files and at-
taches the formal ones, i.e. Javadoc comments [11], to their respective code elements
(class, method, field, etc.) using the rules defined by Javadoc. Informal comments
(non-Javadoc) are deliberately not attached to code elements because the semantic
inference of the respective code element based on their relative locations is not precise,
as it is not possible to ensure that a specific comment near a code element contains
information about that element.

To enable the exact regeneration of original source files, the JavaML 2.0 has new
codeline, token, and comment elements to store all the lexical information of a
source code file. In addition, each major programming element has three optional
attributes to store the identifiers of the starting token (startToken), the ending
token (endToken), and the respective comment (endToken). Below, we present the
JavaML 2.0 lexical representation of line 1 of FirstTest.java.

FirstTest.java.xml

54 <java −source −code>
55 <codeline no="1" >
56 <token idx="1" line="1" column="1" type="preprocessor" lexeme="package"
57 afterEol="true"/ >
58 <sp/ >
59 <token idx="2" line="1" column="9" type="normal" lexeme="junit"/ >
60 <token idx="3" line="1" column="14" type="normal" lexeme="."/ >
61 <token idx="4" line="1" column="15" type="normal" lexeme="samples"/ >
62 <token idx="5" line="1" column="22" type="normal" lexeme=";"/ >

63 </codeline >

Due to the verbosity of this information, it is optionally generated. In the following
listing, we show how Javadoc comments are represented.

FirstTest.java.xml

75 <codeline no="4" >
76 <comment idx="1" line="4" column="1" type="formal" >/ ∗∗</comment >
77 </codeline >
78 <codeline no="5" >
79 <comment idx="1" continued="true" > ∗ My first unit test. </comment >
80 </codeline >
81 <codeline no="6" >
82 <comment idx="1" continued="true" > ∗/</comment >

83 </codeline >

3.3 Java to JavaML converter

Because JavaML was designed to be primarily manipulated by tools, it is mandatory
to have a converter from Java source files to JavaML. The original approach consisted
of adding one XMLUnparse method for each AST node of the IBM Jikes Java compiler
framework (version 1.12)[12], resulting in a fast and robust JavaML converter [1].

JavaML 2.0 — XATA’2004 9

To implement the schema enhancements of JavaML 2.0, the converter was ini-
tially migrated to Jikes 1.18 and then evolved to support the new requirements. The
generation of lexical information is implemented by embedding Jikes scanner results
in JavaML elements. JavaML elements are generated by visiting the AST and its
associated symbol and type annotations. The generation of semantic information to
assign to the id and idref attributes of each program symbol is the most challenging
feature to implement because it requires navigation in the AST and lookups in the
symbol table and type definitions. The overall code that adds JavaML support to
Jikes is about 2000 lines of C++.

3.4 JavaML converters

Once generated, the JavaML representation can be easily processed using general
purpose XML tools. Using an XSLT stylesheet it is possible to convert the JavaML
representation to several other formats. Below we describe two converters: one for
producing an HTML view of the source code and another for regenerating the original
Java source file.

JavaML to HTML. The JavaML tools include an XSLT stylesheet that converts
JavaML to HTML, named (javaml-to-html.xsl). Because JavaML 2.0 contains
more lexical information than the original JavaML, the new stylesheet is simpler
than the original [1]. It produces HTML that cross-links all symbol references (types,
methods, variables, etc.) to their definitions in source code or documentation, depend-
ing on what is available. When compared to the original source code, the generated
HTML view is more convenient for program understanding, because it enables good
navigation from references both to internal and external definitions.

The conversion consists basically on two tasks: first, we apply a predefined style
to each token, based on the kind it was assigned during scanning (literal, keyword,
etc.); and, second, we define anchor elements () and reference elements
(() for each symbol definition and symbol referenced, respectively. The
most important part of the linking is the conversion of id and idref values to an-
chor names and references. The conversion is done with the help of the Java func-
tion getLinkFromId(), which receives symbol information (containing file and type,
identifier, kind of symbol) and path information, and computes a unique link for that
symbol. The new stylesheet (javaml-to-html.xsl) has 21 template rules and around
300 lines. Below is listed the line of the template rule create-link that creates and
formats the anchor name element.

javaml-to-html.xsl

217 <xsl:value −of select="linker:getLinkFromId($javadoc −url,$filename,

218 $type −signature,$kind,key(’KeyTypeSignature’,$signature)/@filename,$id)"/ >

JavaML to Java. The regeneration of Java source code is straightforward to imple-
ment because the JavaML representation contains low-level lexical information about
the tokens, comments and spaces of the original source file. The corresponding XSLT
stylesheet has only 30 lines and only 6 simple template rules. The most complex
template rule is for processing token elements.

10 Ademar Aguiar, Gabriel David, and Greg Badros

javaml-to-java.xsl

14 <xsl:template match="token" >
15 <xsl:if test="not(@type=’TK EOF’)" >
16 <xsl:value −of select="@lexeme" disable −output −escaping="yes"/ >
17 </xsl:if >

18 </xsl:template >

4 Applying JavaML

JavaML 2.0 is the result of evolving original JavaML [1] to fit the requirements of
XSDoc [3], an extensible infrastructure based on a WikiWikiWeb engine that supports
the creation, integration, publishing and presentation of documentation for object-
oriented frameworks. XSDoc helps to create and annotate framework documents and
to integrate different kinds of contents (text, models and source code). It provides a
simple and economic cooperative web-based documentation environment that can be
used standalone in a web-browser, or inside an integrated development environment.

To illustrate the application of JavaML 2.0, we present a concrete example taken
from a simple usage of XSDoc for integrating a web document source code from the
file FirstTest.java and some text. XSDoc provides two dynamic mechanisms for the
integration and synchronization of the possible kinds of document contents (source
code, UML diagrams and XML files): inlining of contents and automatic linking.

The inlining of Java source code is defined with a reference to the specific contents,
annotated with the <javaSource> tags.

extract of a XSDoc wiki topic

See below the method for testing the addition:
[<javaSource >]junit.samples.FirstTest#testAdd(); comments=no;

lines=first, last; [</javaSource >]

For example, the text above extracts the code fragment corresponding to the
method testAdd() of class junit.samples.FirstTest, then removes all its com-
ments, and returns its first and last line. This produces the web page in Figure 2.

Fig. 2. Example of a XSDoc page inlining code from FirstTest.java.

4.1 Generating JavaML

After parsing the Java source code reference (in Javadoc format) contained in the
javaSource tag, XSDoc finds that the code to inline must be in the source code file

JavaML 2.0 — XATA’2004 11

named FirstTest.java. If the JavaML representation is outdated, it is updated by
invoking the Jikes compiler with the appropriate arguments.

jikes +B +L +c +T=3 +ulx FirstTest.java

4.2 Filtering JavaML

The JavaML document is then filtered to get the requested method. Based on the
source code reference, XSDoc builds a XPath query and applies it using Saxon [13].

extract of a query dynamically created by XSDoc

∗[(name()=’class’ or name()=’interface’)
and @name=’FirstTest’]/method[@name=’testAdd’

and ./formal −arguments/descendant −or−self:: ∗[last()=1]]

After this structural filtering, the document is lexically filtered to remove the
comments. Next, the first and last line are extracted.

4.3 Converting to HTML

Finally, the resulting document is converted to HTML using the XSLT stylesheet
described before in section 3.4.

5 Related Work

There are various research activities involving XML grammars for modelling source
code and describing analytical aspects of code. These activities would benefit from
having source code already in XML. The work most closely related with JavaML are
srcML [14] and cppML [4]. Other similar work abounds [1,5,14,15] .

Source Markup Language, srcML, is an XML format for source code markup that
adds a layer on top of the original source code, leaving the source code untouched. The
disadvantage of srcML compared to JavaML 2.0 is that in srcML the code is only semi-
parsed because it doesn’t include type specifications, for example, and in JavaML 2.0
the code is completely parsed and annotated with symbol and type information.

cppML is an XML grammar for C++ code that takes a similar approach to
JavaML, but it doesn’t provide a standalone cppML generator, requiring the usage
of a compiler integrated in the VisualAge for C++ from IBM.

6 Conclusions and Future Work

XML-based representations for source code have several benefits over classical plain-
text files that facilitate their manipulation by software engineering tools. They have
an explicit structure, they contain information equivalent to an annotated abstract
syntax tree, and they don’t require language-specific parsing, but only general purpose
processing using widely available XML tools. JavaML 2.0 is a rich alternate XML
representation for Java source code evolved from the original JavaML that adds more
source code information to the representation.

The JavaML 2.0 representation includes source code information at various lev-
els of abstraction, starting from the lexical (tokens, comments, and formatting) and

12 Ademar Aguiar, Gabriel David, and Greg Badros

structural levels (abstract-syntax tree) to the semantic level (symbols, types and ref-
erences). As a result, with JavaML 2.0 it is possible to convert from Java source code
to XML files and convert back the representation to the original format without loos-
ing information. Software engineering tools that intend to manipulate Java source
code at above the lexical abstraction can now do it directly in JavaML representation
without the effort of embedding Java language-specific parsers. JavaML 2.0 is thus
an empowering representation that supports the development of more sophisticated
software engineering tools for manipulating Java source code.

Future work should continue to refine the schema in order to make it more concise
and even easier to produce and manipulate. Although the Jikes compiler proved to be
a fast and robust JavaML converter, it would be valuable to augment open IDEs, such
as Eclipse [16], with JavaML parsing and generation capability. This would promote
the usage of JavaML in a wider range of tools and will enable new applications of
JavaML.

References

1. Greg J. Badros. JavaML: a markup language for Java source code. Computer Networks
(Amsterdam, Netherlands: 1999), 33(1–6):159–177, 2000.

2. Greg J. Badros. JavaML Home Page. http://javaml.sourceforge.net/.
3. Ademar Aguiar, Gabriel David, and Manuel Padilha. XSDoc: an Extensible Wiki-based

Infrastructure for Framework Documentation. In Ernesto Pimentel, Nieves R. Brisaboa,
and Jaime Gómez, editors, JISBD, pages 11–24, 2003.

4. Evan Mamas and Kostas Kontogiannis. Towards Portable Source Code Representations
Using XML. In Proceedings of WCRE’00, Brisbane Australia, pages 172–182, November
2000.

5. Hrvoje Simic and Marko Topolnik. Prospects of encoding Java source code in XML. In
Proceedings of the ConTel 2003: 7th International Conference on Telecommunications,
Zagreb, Croatia, June 2003.

6. World Wide Web Consortium. XML Path Language (XPath) Version 1.0, November
1999. Available from http://www.w3.org/TR/1999/REC-xpath-19991116.

7. World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Data Model, November 2002.
Available from http://www.w3.org/TR/2002/WD-query-datamodel-20021115.

8. World Wide Web Consortium. XSL Transformations (XSLT) Version 1.0, November
1999. Available from http://www.w3.org/TR/xslt.

9. Altova. XMLSPY integrated development environment. http://www.altova.com/.
10. Ademar Aguiar. JavaML 2.0 Home Page. http://www.fe.up.pt/~aaguiar/javaml/.
11. Sun Microsystems. Javadoc Tool Home Page. http://java.sun.com/j2se/javadoc/.
12. IBM. Jikes java compiler. http://www.ibm.com/developerWorks/oss/jikes/.
13. Michael H. Kay. SAXON Home Page. http://users.iclway.co.uk/mhkay/saxon/.
14. Michael L. Collard, Jonathan I. Maletic, and Andrian Marcus. Supporting Document

and Data Views of Source Code. In Proceedings of DocEng’02, McLean, Virginia USA,
November 2002.

15. Rudolf Ferenc, Susan Elliott Sim, Richard C. Holt, Rainer Koschke, and Tibor Gyimothy.
Towards a standard schema for c/c++. In Working Conference on Reverse Engineering,
pages 49–58, 2001.

16. Eclipse. Eclipse, an open and extensible integrated development environment, 2003.
Available from http://www.eclipse.org.

