LICENCIATURA EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

Análise Numérica

 $1^{\underline{a}}$ chamada 2002-01-08

— Resolução da Parte Prática —

1 — **(a)** O valor aproximado de w é obtido a partir dos valores aproximados de x, y e z, por intermédio da expressão $w = \sin(xy) + \frac{e^{-y}}{z}$. Ou seja,

$$w = \sin(0.871 \times 2.5) + \frac{e^{-2.5}}{0.3} \simeq 1.0951$$

O número de algarismos a apresentar no valor aproximado de w dependerá do majorante do erro absoluto que se irá obter em seguida.

O majorante do erro absoluto ε_w determina-se pela expressão

$$\varepsilon_w \le \left| \frac{\partial w}{\partial x} \right|_{\max} \cdot \varepsilon_x + \left| \frac{\partial w}{\partial y} \right|_{\max} \cdot \varepsilon_y + \left| \frac{\partial w}{\partial z} \right|_{\max} \cdot \varepsilon_z$$

onde cada uma das maximizações é realizada no conjunto dos possíveis valores de x, y e z. O erro absoluto máximo em x é fornecido directamente do enunciado, tendo-se que

$$\varepsilon_x = 2 \times 10^{-3}$$
.

No caso de y, e uma vez que todos os algarismos representados são exactos, garante-se um erro absoluto máximo de

$$\varepsilon_y = 5 \times 10^{-2},$$

ou seja, meia unidade da última casa representada.

No caso da variável z, o majorante do erro absoluto máximo obtém-se pela expressão $\varepsilon_z=z\cdot\varepsilon_z'$, ou seja

$$\varepsilon_z = 0.3 \times 0.1 = 0.03$$
.

Pode já concluir-se que os valores possíveis de x, y e z são

$$x \in [0.869, 0.873],$$

 $y \in [2.45, 2.55],$
 $z \in [0.37, 0.33].$

Derivando w parcialmente em x tem-se que $\frac{\partial w}{\partial x} = y \cos(xy)$. Facilmente se conclui que o produto xy está no intervalo [2.12905, 2.22615], que é um intervalo contido no 2° quadrante, onde a função cos é negativa e decrescente. Assim verifica-se que

$$\left| \frac{\partial w}{\partial x} \right|_{\text{max}} = y_{\text{max}} \times \left[-\cos(x_{\text{max}} \cdot y_{\text{max}}) \right] = 1.55$$

Derivando agora em y obtém-se $\frac{\partial w}{\partial y} = x\cos(xy) - \frac{e^{-y}}{z}$. Para os valores possíveis de x, y e z verifica-se que $x\cos(xy)$ é negativo, $\frac{e^{-y}}{z}$ é positivo e também que em valor absoluto a primeira destas expressões é sempre superior à segunda. Então verifica-se que

$$\left| \frac{\partial w}{\partial y} \right|_{\max} = \left| x \cos(xy) - \frac{e^{-y}}{z} \right|_{\max} = \left(-x \cos(xy) + \frac{e^{-y}}{z} \right)_{\max}$$

$$\leq -x \cos(xy)_{\max} + \frac{e^{-y}}{z}_{\max}$$

$$= -x_{\max} \cos(x_{\max} \cdot y_{\max}) + \frac{e^{-y_{\min}}}{z_{\min}} = 0.852$$

Derivando em z, obtém-se $\frac{\partial w}{\partial z} = \frac{e^{-y}}{z^2}$. Assim,

$$\left| \frac{\partial w}{\partial z} \right|_{\text{max}} = \frac{e^{-y}}{z^2} \Big|_{\text{max}} = \frac{e^{-y_{\text{min}}}}{z_{\text{min}}^2} = 1.18$$

Finalmente, é possível determinar um majorante do erro absoluto em w:

$$\varepsilon_w \le 1.55 \times 2 \times 10^{-3} + 0.852 \times 5 \times 10^{-2} + 1.18 \times 3 \times 10^{-2} = 0.081 \le 9 \times 10^{-2}$$

Com base neste majorante, o valor aproximado de w representar-se-ia por $1.10 \pm 9 \times 10^{-2}$.

(b) Substituindo cada uma das variáveis pelo seu valor (exacto ou aproximado, conforme os casos) obtém-se o valor aproximado

$$w = 3.23$$

que se representa apenas com os algarismos significativos pretendidos. Para que todos estes algarismos sejam, de facto, significativos, o erro absoluto máximo em w deverá ser $\varepsilon_w \leq 5 \times 10^{-3}$.

Como agora x e z são exactos verifica-se que

$$\varepsilon_w \le \left| \frac{\partial w}{\partial y} \right|_{\max} \cdot \varepsilon_y$$

ou então, de uma forma aproximada

$$\varepsilon_w \le \left| \frac{\partial w}{\partial y} \right| \cdot \varepsilon_y$$

onde agora a derivada é calculada para os valores de x, y e z dados, ou seja,

$$\frac{\partial w}{\partial y} = x\cos(xy) - \frac{e^{-y}}{z} = \cos(1.5) - \frac{e^{-1.5}}{0.1} = -2.16.$$

Para garantir a precisão desejada em w é bastará impor que

$$\varepsilon_w \le \left| \frac{\partial w}{\partial y} \right| \varepsilon_y \le 5 \times 10^{-3}$$

obtendo-se então que

$$\varepsilon_y \le \frac{5 \times 10^{-3}}{2.16} = 2.3 \times 10^{-3},$$

o que resulta num erro máximo relativo em y de

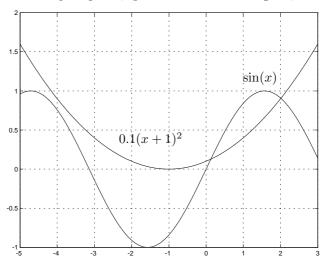
$$\varepsilon_y' = \frac{\varepsilon_y}{y} = \frac{2.3 \times 10^{-3}}{1.5} = 1.5 \times 10^{-3} = 0.15\%.$$

(a) Uma forma relativamente imediata de determinar a localização dos zeros de f é definir as funções $g(x) = \sin(x)$ e $h(x) = 0.1(x+1)^2$, pois os zeros de f são as soluções da equação g(x) = h(x), ou seja, as abcissas dos pontos de intersecção dos gráficos das funções g e h. Antes de esboçar o gráficos de g e h, uma análise simples permite concluir que os zeros de f estarão contidos no intervalo em que a função h toma valores não superiores a 1, pois a função $\sin(x)$ apenas toma valores entre -1 e 1 (notar também que h é não negativa). Ora este intervalo terá como limites

$$x = -1 \pm \sqrt{10},$$

ou seja, -4.16 e 2.16.

A partir dos gráficos das funções g e h, que se mostram na figura,



facilmente se conclui que a função f tem apenas 2 zeros, o primeiro, designado por s_1 , situa-se entre 0 e 1 e o segundo, designado por s_2 situa-se muito próximo de 2.

Os gráficos de f e g devem ser analisados com algum cuidado pois próximo de -4 as funções g e h tomam valores bastante próximos, sendo necessário verificar que não se cruzam.

A obtenção de intervalos de amplitude inferior a 0.3, cada um contendo um zero de f pode agora ser efectuada calculando valores de f próximo dos pontos onde se situam cada um dos zeros de forma a detectar trocas de sinal. Assim, tem-se que

$$f(0) = \sin(0) - 0.1 = -0.1$$

$$f(0.3) = \sin(0.3) - 0.1 \times 1.3^2 = 0.1265$$

concluindo-se então que $s_1 \in [0, 0.3]$ e, por outro lado,

$$f(1.9) = \sin(1.9) - 0.1 \times 2.9^2 = 0.1053$$

$$f(2.2) = \sin(2.2) - 0.1 \times 3.2^2 = -0.2155$$

e então $s_2 \in [1.9, 2.2]$.

(b) As condições estudadas que garantem a convergência do método de Newton exigem a consideração de um intervalo contendo o zero de f, no qual f' não se anule e f'' não troque de sinal, e ainda que o ponto inicial x_0 seja tal que $f(x_0) \cdot f''(x_0) > 0$.

O cálculo das derivadas de f resulta em

$$f'(x) = \cos(x) - 0.2(x+1)$$
$$f''(x) = -\sin(x) - 0.2$$

Em seguida é feita uma análise da convergência do método de Newton para o intervalo I = [1.9, 2.2], determinado na alínea anterior.

Uma vez que I está contido em $\left[\frac{\pi}{2}, \pi\right]$, conclui-se facilmente que f'' é negativa em I e que a função $\cos(x)$ também é negativa em I. Logo, a função f' será sempre negativa em I. Estas conclusões permitem desde já afirmar que o método de Newton converge, desde que o valor x_0 seja tal que $f(x_0) < 0$, de modo a que o produto $f(x_0) \cdot f''(x_0)$ seja positivo. Para que tal aconteça bastará considerar $x_0 = 2.2$ (como se viu na alínea anterior).

A expressão geral de recorrência do método de Newton, $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$, toma neste caso a forma

$$x_{k+1} = x_k - \frac{\sin(x_k) - 0.1(x_k + 1)^2}{\cos(x_k) - 0.2(x_k + 1)}.$$

Antes de iniciar a aplicação do método, é ainda necessário determinar as constantes m_1 e M_2 que permitem estimar majorantes para o erro de aproximação de acordo com a expressão

$$\varepsilon_{k+1} = \frac{M_2}{2 \, m_1} \varepsilon_k^2$$

onde ε_k é um majorante do erro em x_k e

$$m_1 = \min_{x \in I} |f'(x)|$$

$$M_2 = \max_{x \in I} |f''(x)|$$

Como já visto, f'' e f' são negativas em I logo |f'| é uma função crescente em I pelo que

$$m_1 = |f'(1.9)| = 0.90.$$

Da expressão de f'' facilmente se conclui tratar-se de uma função crescente em I, e que sendo negativa, como já visto, permite concluir que |f''| é decrescente em I. Então

$$M_2 = |f'(1.9)| = 1.15.$$

Uma que $s_2 \in I$, tem-se que $\varepsilon_0 = 0.3$ será um majorante do erro de x_0 .

Agora, falta apenas aplicar sucessivamente a expressão de recorrência para gerar a sucessão de aproximações x_k e em cada passo calcular também o majorante do erro ε_k , parando-se aplicação do método assim que se verificar que este majorante é não superior à precisão pretendida de 5×10^{-4} .

	k	x_k	$arepsilon_k$	$f(x_k)$	$f'(x_k)$	x_{k+1}	ε_{k+1}
	0	2.2	0.3	-0.21550	-1.22850	2.024580	0.08004
I	1	2.024580	0.08004	-0.01601	-1.04329	2.009231	0.00352
I	2	2.009231	0.00352	-0.00013	-1.02637	2.009105	6.8×10^{-6}

Conclui-se assim que $s_2 = 2.0091$ com todos os algarismos representados exactos.

Utilizando o método dos mínimos quadrados, os coeficientes c_1 e c_2 da recta $y = c_1 + c_2 x$ que melhor aproxima um conjunto de pontos, são dados pela resolução do seguinte sistema:

$$\begin{cases} c_1 \sum_{i=1}^{n} 1 + c_2 \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i \\ c_1 \sum_{i=1}^{n} x_i + c_2 \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i y_i \end{cases}$$

Considerando os 8 pontos dados, os somatórios tomam os seguintes valores:

x_i	y_i	x_i^2	x_iy_i
200	11	40000	2200
250	13	62500	3250
300	13	90000	3900
375	15	140625	5625
425	17	180625	7225
475	19	225625	9025
525	20	275625	10500
600	23	360000	13800
3150	131	1375000	55525

Pelo que se obtém o sistema:

$$\begin{cases} 8 c_1 + 3150 c_2 = 131 \\ 3150 c_1 + 1375000 c_2 = 55525 \end{cases}$$

Para resolver este sistema pelo método da eliminação gaussiana com estratégia de pivotação total é preciso que o maior elemento, em valor absoluto, seja o elemento pivot. Neste caso isso significa que 1375000 terá que passar para a primeira linha e primeira coluna do sistema:

$$\begin{cases} 1375000 c_2 +3150 c_1 = 55525 \\ 3150 c_2 +8 c_1 = 131 \end{cases}$$

Aplicando agora a eliminação gaussiana ($m_{12} = -\frac{3150}{1375000}$):

$$\begin{cases} 1375000 c_2 & +3150 c_1 & = 55525 \\ & 0.7386 c_1 & = 3.7973 \end{cases}$$

$$\begin{cases} 1375000 c_2 & +3150 \times 4.8457 & = 55525 \\ & c_1 & = 4.8457 \end{cases}$$

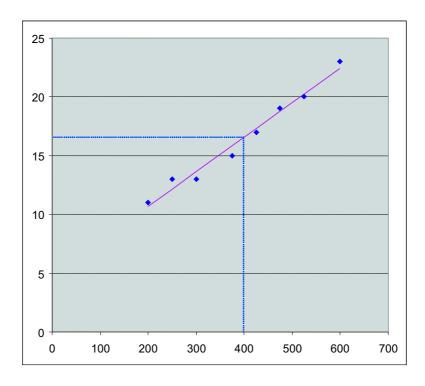
$$\begin{cases} c_2 & = 0.0293 \\ c_1 & = 4.8457 \end{cases}$$

A equação da recta será então:

$$y = 4.8457x + 0.0293$$

O que permite estimar para uma temperatura x=400 uma elongação $y=4.8457\times400+0.0293=16.558$.

Na figura seguinte podem-se observar os pontos dados, a recta aproximante e a estimativa feita:



4 — (a) Usando a regra dos trapézios um integral é calculado de forma aproximada pela fórmula:

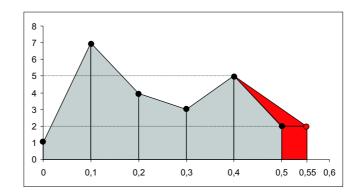
$$I = \frac{h}{2}(y_1 + 2 \times y_2 + 2 \times y_3 + 2 \times y_4 + 2 \times y_5 + y_6)$$

Note-se que esta aproximação só é válida para pontos igualmente espaçados de um distância h. Neste problema h é obviamente igual a 0.1.

O integral será então:

$$I = \frac{0.1}{2}(1 + 2 \times 7 + 2 \times 4 + 2 \times 3 + 2 \times 5 + 2) = 2.05$$

- (b) A expressão que permite estimar o erro de truncatura referente ao cálculo efectuado na alínea anterior depende de um majorante da segunda derivada da função a integrar. Ora isto só é possível quando existe uma expressão analítica da função a integrar. Neste problema a função é dada sob a forma de uma tabela (conjunto de pontos) pelo que não é possível fazer uma estimativa do erro de truncatura. A única possibilidade seria tentar encontrar uma função que passasse pelos pontos (interpolação) e usar essa função para estimativa do erro de truncatura. No entanto, como a própria construção da função interpoladora tem um erro não quantificável associado, somos conduzidos à mesma situação.
- (c) A regra dos trapézios calcula a área dos trapézios definidos pelos pontos dados e usa essa área como uma estimativa do integral. Qualquer cálculo com pontos não igualmente espaçados está fora de questão pelo que somos conduzidos a analisar a diferença entre o que calculamos na alínea a) e o que pretendemos nesta alínea. Do ponto de vista geométrico a diferença é a área representada a vermelho na figura seguinte:



Teremos então que acrescentar ao resultado da alínea a) a área do rectângulo de base 0.05 e altura 2 $(0.05 \times 2 = 0.1)$ e a área do triângulo: $\frac{(5-2)\times 0.15}{2} - \frac{(5-2)\times 0.1}{2} = 0.075$. O integral passará então a valer:

$$2.05 + 0.1 + 0.075 = 2.225$$

 \mathbf{FIM}