LICENCIATURA EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

Análise Numérica 1998/99

— Interpolação Linear —

Objectivos:

- Aplicação dos métodos de Newton, Lagrange e Aitken-Neville na obtenção do polinómio interpolador.
- Interpolação directa e inversa.

PROBLEMAS

1 — Considere a seguinte tabela de pontos de uma função y = f(x):

\boldsymbol{x}	-1	0	1	2
y	-6	-3	-2	3

- (a) Construa a tabela de diferenças finitas e obtenha o polinómio interpolador $P_3(x)$ pelo método de Newton.
- (b) Usando o polinómio anterior estime o valor de y para x=0.72 e x=1.2 (interpolação directa).
- (c) Prolongue a tabela de diferenças finitas para calcular o valor do polinómio da alínea a) quando x = 3, 4, ..., 9. Atenda ao facto de que, estando os pontos sobre um polinómio de grau 3, as diferenças finitas de ordem superior a 3 são nulas.
- (d) Obtenha o polinómio interpolador em y $(Q_3(y))$ na forma de Lagrange e estime o valor de x para y = 0 (interpolação inversa).
- 2 A tabela seguinte dá o rendimento de iluminação (η percentagem de luz produzida que de facto é aproveitada) de uma lâmpada de incandescência em função das dimensões da sala a iluminar e do coeficiente de reflexão das paredes (ρ), quando o factor de reflexão do tecto é de 70%.

			ρ	
$\eta(\kappa, ho)$		50	30	10
	1	27	22	18
κ	2	43	38	34
	4	57	53	50
	8	67	65	63

$$\kappa = \frac{\text{comprimento+largura}}{2 \times \text{altura}}$$

Calcule o rendimento de iluminação de uma sala quadrada de 12 metros de lado e 4 metros de altura com $\rho = 35\%$, usando o método de Aitken-Neville:

- (a) Por dupla interpolação linear:
 - i. Primeiro em ρ e depois em κ .
 - ii. Ao contrário.
- (b) Por dupla interpolação quadrática.

RESOLUÇÕES

1 — (a) Diferenças finitas (h = 1):

$$C_k = \frac{\Delta^k y_0}{k! h^k}, \quad k = 0, 1, 2, 3$$

$$\begin{cases}
C_0 = -6 \\
C_1 = \frac{3}{1!1^1} = 3 \\
C_2 = \frac{-2}{2!1^2} = -1 \\
C_3 = \frac{6}{3!1^3} = 1
\end{cases}$$

$$P_3(x) = C_0 + C_1(x - x_0) + C_2(x - x_0)(x - x_1) + C_3(x - x_0)(x - x_1)(x - x_2)$$

$$= -6 + 3(x + 1) - 1(x + 1)(x - 0) + 1(x + 1)(x - 0)(x - 1)$$

$$= x^3 - x^2 + x - 3$$

- **(b)** $P_3(0.72) \simeq -2.4$ $P_3(1.2) \simeq -1.5$
- (c) Quando os valores de $\,x\,$, para os quais queremos fazer uma extrapolação, estão igualmente espaçados dos valores já existentes na tabela e igualmente espaçados entre si, uma alternativa ao seu cálculo pela substituição em $\,P(x)\,$ é o cálculo das diferenças finitas. Usando a propriedade apresentada no enunciado, sabemos que as diferenças de quarta ordem têm que ser zero. Então, todas as diferenças de terceira ordem terão que ser iguais a 6, para assim, ao serem subtraídas, darem diferenças de quarta ordem iguais a zero. Aplicando o mesmo raciocínio, retroactivamente, conseguimos chegar aos próprios valores de $\,y\,$ para $\,x=3,4,5,6,7,8,9\,$, conforme pedido no enunciado.

2

x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$
-1	-6				
		3			
0	-3		-2		
		1		6	
1	-2		4		0
		5		6	
2	3		10		0
		15		6	
3	18		16		0
		31		6	
4	49		22		0
		53		6	
5	102		28		0
		81		6	
6	183		34		0
		115		6	
7	298		40		0
		155		6	
8	453		46		
		201			
9	654				

(d) A interpolação inversa numa tabela de pontos (x,y) faz-se gerando o polinómio interpolador pelos métodos habituais, mas trocando os papéis de x e y. Note-se que normalmente será impossível gerar o polinómio interpolador inverso pelo método de Newton uma vez que este exige igual espaçamento entre os pontos (os x_i ou o que esteja a fazer o seu papel) o que não será de esperar para os valores de y_i .

Seguindo o enunciado vamos pois usar a forma de Lagrange para o polinómio interpolador (inverso):

$$Q_3(y) = \sum_{k=0}^{3} x_k \frac{(y-y_0)\dots(y-y_k)(y-y_{k+1})\dots(y-y_n)}{(y_k-y_0)\dots(y_k-y_k)(y_k-y_{k+1})\dots(y_k-y_n)}$$

Então:

$$Q_3(y) = (-1)\frac{(y+3)(y+2)(y-3)}{(-6+3)(-6+2)(-6-3)} + 0 + 1\frac{(y+6)(y+3)(y-3)}{(-2+6)(-2+3)(-2-3)} + 2\frac{(y+6)(y+3)(y+2)}{(3+6)(3+3)(3+2)} = -\frac{1}{30}(y^3 + 6y^2 - 19y - 84)$$

Vamos finalmente estimar o valor de x quando y = 0: $Q_3(0) = 2.8$

2 — A partir dos dados sobre a sala conclui-se que $\kappa = \frac{12+12}{2\times 4} = 3$. Assim, pretende-se estimar, por interpolação polinomial, $\eta(3,35)$. Como nem o 3 corresponde a uma linha da tabela, nem o 35 corresponde a uma coluna da tabela, teremos que fazer uma dupla interpolação.

- (a) Nesta alínea os polinómios interpoladores serão todos de grau 1 (interpolação linear). Para obter o valor pretendido poderemos seguir uma estratégia de primeiro gerar $\eta(2,35)$ e $\eta(4,35)$ e só depois, e a partir destes, $\eta(3,35)$ (interpolação primeiro em ρ), ou então começar por $\eta(3,50)$ e $\eta(3,30)$ e finalmente $\eta(3,35)$ (interpolação primeiro em κ).
 - i. Dupla interpolação linear, primeiro em ρ .

			ŀ	0	
η ((κ, ho)	50	35	30	10
	1	27		22	18
	2	43		38	34
κ	3				
	4	57		53	50
	8	67		65	63

Para determinar $\eta(2,35)$, e porque a interpolação é linear, vamos usar 2 pontos. Os mais próximos são $\eta(2,50)=43$ (ponto 0) e $\eta(2,30)=38$ (ponto 1). Usando o método de Aitken-Neville:

$$\eta_{01}(2,35) = \frac{\begin{vmatrix} 43 & 35 - 50 \\ 38 & 35 - 30 \end{vmatrix}}{50 - 30} = 39.25$$

Do mesmo modo se calcula $\eta(4,35)$:

$$\eta_{01}(4,35) = \frac{\begin{vmatrix} 57 & 35 - 50 \\ 53 & 35 - 30 \end{vmatrix}}{50 - 30} = 54.00$$

Interpolando agora segundo κ , utilizando os dois pontos que acabamos de obter:

$$\eta_{01}(3,35) = \frac{\begin{vmatrix} 39.25 & 3-2 \\ 54.00 & 3-4 \end{vmatrix}}{2-4} = 46.625$$

ii. Vamos agora repetir a interpolação mas interpolando primeiro segundo κ :

		ho				
η ($\kappa, ho)$	50	35	30	10	
	1	27		22	18	
	2	43		38	34	
κ	3					
	4	57		53	50	
	8	67		65	63	

Continuando a usar o método de Aitken-Neville:

$$\eta_{01}(3,50) = \frac{ \begin{vmatrix} 43 & 3-2 \\ 57 & 3-4 \end{vmatrix}}{2-4} = 50.0$$

$$\eta_{01}(3,30) = \frac{\begin{vmatrix} 38 & 3-2 \\ 53 & 3-4 \end{vmatrix}}{2-4} = 45.5$$

Interpolando agora segundo ρ , utilizando os dois pontos que acabamos de obter:

$$\eta_{01}(3,35) = \frac{\begin{vmatrix} 50.0 & 35 - 30 \\ 45.5 & 35 - 50 \end{vmatrix}}{50 - 30} = 46.5625$$

Note que o valor obtido para $\eta(3,35)$ depende da ordem pela qual se faz a dupla interpolação.

(b) Para fazer uma interpolação quadrática (polinómio de grau 2) vamos agora precisar, para cada valor que se tenha que interpolar, de 3 pontos. A tabela seguinte representa o esquema de interpolação quando se começa por interpolar em ρ :

		ρ			
$\eta(\eta)$	(κ, ho)	50	35	30	10
	1	27		22	18
	2	43		38	34
κ	3				
	4	57		53	50
	8	67		65	63

A escolha do terceiro ponto deverá seguir critérios de proximidade. Por exemplo, para além do $\eta(2,35)$ e do $\eta(4,35)$ teríamos ainda de gerar o $\eta(1,35)$ ou o $\eta(8,35)$. Foi escolhido o $\eta(1,35)$ por 1 estar mais próximo de 3. Para aplicar o método de Aitken-Neville com polinómios do segundo grau teremos que interpolar linearmente entre os pontos 0 e 1 e os pontos 1 e 2, e depois voltar a interpolar "linearmente" sobre esses dois resultados (interpolação linear iterada).

Cálculo de $\eta(1,35)$:

$$\eta_{01}(1,35) = \frac{ \begin{vmatrix} 27 & 35 - 50 \\ 22 & 35 - 30 \end{vmatrix}}{50 - 30} = 23.25$$

$$\eta_{12}(1,35) = \frac{\begin{vmatrix} 22 & 35 - 30 \\ 18 & 35 - 10 \end{vmatrix}}{30 - 10} = 23.00$$

$$\eta_{012}(1,35) = \frac{\begin{vmatrix} 23.25 & 35 - 50 \\ 23.00 & 35 - 10 \end{vmatrix}}{50 - 10} = 23.156 \approx 23.2$$

Representando estes valores num esquema do tipo "diferenças finitas":

i	ρ	$\eta_i(1,\rho)$	$\eta_{i,i+1}(1,\rho)$	$\eta_{i,i+1,i+2}(1,\rho)$
0	50	27		
			23.25	
1	30	22		23.2
			23.00	
2	10	18		

Repetindo estes cálculos para $~\kappa=2~$ e $~\kappa=4~$, obter-se-iam os seguintes valores:

i	ρ	$\eta_i(2,\rho)$	$\eta_{i,i+1}(2,\rho)$	$\eta_{i,i+1,i+2}(2,\rho)$
0	50	43		
			39.25	
1	30	38		39.2
			39.00	
2	10	34		

i	ρ	$\eta_i(4,\rho)$	$\eta_{i,i+1}(4,\rho)$	$\eta_{i,i+1,i+2}(4,\rho)$
0	50	56		
			53.75	
1	30	53		53.8
			53.75	
2	10	50		

Interpolando agora segundo κ , obteríamos:

i	κ	$\eta_i(\kappa, 35)$	$\eta_{i,i+1}(\kappa,35)$	$\eta_{i,i+1,i+2}(\kappa,35)$
0	1	23.2		
			55.2	
1	2	39.2		49.4
			46.5	
2	4	53.8		

Ou seja, $\eta(3,35) = 49.4$.

LICENCIATURA EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

Análise Numérica 1998/99

— Interpolação Polinomial —

PROBLEMAS PROPOSTOS

- 1 Determine a dimensão (n) do polinómio, ou da tabela, que permita obter o valor de $\sin(x)$ no intervalo $[0, \frac{\pi}{2}]$ com 7 casa decimais correctas isto é, com um erro absoluto inferior a 5×10^{-8} :
 - (a) Por interpolação linear entre os dois pontos mais próximos de uma tabela de pontos igualmente espaçados $(x_0 = 0, x_1 = h, \dots, x_i = ih, \dots, x_n = \frac{\pi}{2})$.
 - (b) Pelo polinómio que interpola pontos igualmente espaçados (x_i como na alínea anterior).
- **2** Dada a seguinte tabela de pontos de uma função y = f(x):

x	-1	0	1	2	3
y	-6	-3	-1	1	4

- (a) Construa a tabela de diferenças finitas. Da observação dessa tabela que pode concluir acerca do grau do polinómio interpolador? Obtenha o polinómio interpolador na forma de Newton e use-o para estimar f(2.5).
- (b) Estime o valor de x tal que f(x) = 0, por interpolação cúbica inversa através do método de Aitken-Neville. Se tivesse utilizado todos os pontos da tabela resultava o mesmo valor. Que pode então concluir acerca do grau do polinómio interpolador (em y)?
- (c) Obtenha o polinómio interpolador em y pelo método de Lagrange.

SOLUÇÕES E TÓPICOS DE RESOLUÇÃO

Este problema representa, de alguma forma, o problema inverso da interpolação. Aqui conhecemos a função f(x) e pretendemos construir uma tabela de pontos com ela para "outros" posteriormente a usarem para calcular $f(x_k)$. Como x_k não irá forçosamente pertencer à tabela por nós gerada, esses "outros" terão que interpolar para obterem os valores de que necessitam. A questão que aqui se põe é a de como construir essa tabela (com quantos pontos) de modo a que depois possamos garantir um erro máximo de interpolação.

É possível demonstrar que o erro que cometemos ao considerar, para um ponto x, o polinómio de grau n que interpola x_0, x_1, \ldots, x_n pontos distintos contidos no intervalo [a, b], em vez da função f(x), é dado por:

$$e_n(x) = \frac{f^{n+1}(\xi)}{(n+1)!}(x-x_0)(x-x_1)\dots(x-x_n), \qquad \xi \in [a,b]$$

Mesmo neste caso em que conhecemos f(x), o que não é habitual nos problemas de interpolação, continuamos a não conhecer ξ . O melhor que podemos fazer é majorar a expressão do erro.

Vamos pois aplicar estes resultados ao caso em que se pretende um erro absoluto inferior a 5×10^{-8} numa interpolação linear e numa interpolação de grau n.

(a) Sejam x_i e x_{i+1} os valores tabelados mais próximos de x, isto é, $x_i \le x \le x_{i+1}$. Então o erro de interpolação linear será dado por :

$$e_1(x) = \frac{(\sin x)''(\xi)}{2!}(x - x_i)(x - x_{i+1}), \qquad x_i \le \xi \le x_{i+1}, \quad 0 \le x \le \frac{\pi}{2}$$

Majorando $|e_1(x)|$:

$$|e_1(x)| \le \frac{1}{2}(x - x_i)(x - (x_i + h))$$

= $\frac{1}{2}z(z - h), \quad z = x - x_i, \quad h = x_{i+1} - x_i$

Se atendermos ao facto de a função $z(z-h),\ 0\leq z\leq h$ ter o seu máximo (em módulo) quando $z=\frac{h}{2}$, obteremos o seguinte majorante:

$$|e_1(x)| \le \frac{1}{2} \times \frac{h^2}{4} = \frac{h^2}{8}$$

Para obter o número de pontos n basta-nos considerar que $h = \frac{\pi}{2}$, o que nos permite escrever:

$$\frac{\frac{\pi^2}{2n}}{8} \le 5 \times 10^{-8} \quad \Rightarrow \quad n = 2484$$

(b) Façamos agora o mesmo raciocínio para um polinómio interpolador de grau n:

$$e_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} (x - x_i), \quad x_i \le \xi \le x_{i+1}, \quad 0 \le x \le \frac{\pi}{2}$$

Atendendo a que:

$$\max_{0 \le x \le \frac{\pi}{2}} (\prod_{i=0}^{n} |x - x_i|)$$

$$= \max_{0 \le z \le h} (\prod_{i=0}^{n} |z - ih|)$$

$$\le \max_{0 \le z \le h} |z(z - h)| \times \max_{0 \le z \le h} (\prod_{i=2}^{n} |z - ih|)$$

$$= \frac{h^2}{4} \prod_{i=2}^{n} |0 - ih| = \frac{n!h^{n+1}}{4}$$

Tem-se que (resultado a reter!):

$$e_n(x) \le \frac{1}{4(n+1)} \max_{\xi} |f^{(n+1)}(\xi)| h^{n+1}$$

Aplicando este resultado a este exercício, em que $\max_{\xi} |f^{(n+1)}(\xi)| = 1$, vem:

$$e_n(x) \le \frac{h^{n+1}}{4(n+1)} = \frac{\frac{\pi}{2n}^{n+1}}{4(n+1)} \le 5 \times 10^{-8} \quad \Rightarrow \quad n = 8$$

$$\boxed{2} - (a) \ \frac{1}{6}x^3 - \frac{1}{2}x^2 + \frac{7}{3}x - 3$$

- **(b)** $x \simeq 1.5$
- (c) $\frac{1}{210}(y^3 + 3y^2 106y 318)$

AMG, IMF, JFO, JPF