
97

Métodos Formais em

Engenharia de Software

Ana Paiva

apaiva@fe.up.pt

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC
98

Agenda

VDMTools

Características da linguagem VDM++
� Classes; Variáveis de instância; Operações; Funções

(polimórficas, de ordem superior, lambda, …); Tipos;
Operadores; Expressões

� Design-by-contact:

� Definição de invariantes; pré e pós-condições

� Ligação do VDM++ ao UML

Exemplo da Vending Machine

Consistência da especificação: obrigações de
prova e teste

Concorrência em VDM++

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC

Model validation

Validation is the process of increasing
confidence that the model is a faithful
representation of the system under
consideration. There are two aspects to
consider:

1. Checking the internal consistency of the model.

2. Verify that the model describes the expected
behavior of the system under consideration.

99
Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC

Properties of formal integrity

Satisfiability (existence of solution)

� ∃ combination of final values of instance variables and return value
satisfying the postcondition, ∀ combinations of initial values of instance
variables and arguments obeying the invariant and the precondition

Determinism (uniqueness of solution)

� If there is a requirement saying so, write a deterministic postcondition
(which admits a unique solution)

� But, for example, in a optimization problem, the postcondition can restrict
admissible solutions without coming to impose a single solution

Preservation of invariants

� If initial values of instance variables and arguments obey to invariant and
precondition, the postcondition ensures invariant at the end

� After ensuring that all operations comply with the invariant, you can
deactivate your check (heavier than incremental verification of pre / post
conditions)

Protection of partial operators

� Inclusion of pre-conditions that define the value domain in which the
operators can be called.

100

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC

Internal consistency: proof obligations

The collection of all verifications on a model are
called VDM Proof Obligations. A proof obligation is a
logical expression that should be true before
considering the built VDM model formally consistent.

We must consider three obligations of proof in VDM
models:

� Verification of domains (use of partial operators)

� Satisfiability of explicit definitions

� Satisfiability of implicit definitions

101

Related to the

use of invariants

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC

Domain verification

The use of a partial operator outside its domain is
considered an error performed by the modeler. There
are two types of buildings that can not be
automatically checked:

� apply a function that has a pre-condition, and

� apply a partial operator

Some definitions:
f:T1 * T2 * … * Tn -> R

f(a1,…,an) == ...

pre ...

May refer the precondition of f as a Boolean function
with the following signature:

� pre_f:T1 * T2 * … * Tn -> bool
102

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC

Domain verification

if a function g uses an operator f: T1 * ... * Tn -> R in its body,
occurring as an expression f(a1, ..., n), then it is necessary to show that
the precondition of f

pre-f(a1,…,an)

is satisfied for all a1,…,an occurring in that position.

Example:
AnalyseInput: Gateway -> Gateway

AnalyseInput(g) ==

if Classify(hd g.input) = <High>

then mk_Gateway(tl g.input,

g.outHi ^ [hd g.input],

g.outLo)

else mk_Gateway(tl g.input,

g.outHi,

g.outLo ^ [hd g.input])

Proof obligation for domain verification:

� forall g:Gateway & pre_AnalyseInput(g) => g.input <> []

103
Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC

104

Domain verification

The operators may be protected by partial pre-conditions :

AnalyseInput: Gateway -> Gateway
AnalyseInput(g) ==

if Classify(hd g.input) = <High>
then mk_Gateway(tl g.input,

g.outHi ^ [hd g.input],
g.outLo)

else mk_ Gateway(tl g.input,
g.outHi,
g.outLo ^ [hd g.input])

pre g.input <> []

Now, the prove obligation

forall g:Gateway & pre_AnalyseInput(g) => g.input <> []

is verified

pre_AnalyseInput(g) == g.input <> []

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC
105

Domain verification

Alternatively, an operator can be partially protected including
an explicit check in the function body, e.g.,:

AnalyseInput: Gateway -> [Gateway]
AnalyseInput(g) ==

if g.input <> []
then if Classify(hd g.input) = <High>

then mk_Gateway(tl g.input,
g.outHi ^ [hd g.input],
g.outLo)

else mk_ Gateway(tl g.input,
g.outHi,
g.outLo ^ [hd g.input])

else nil

If one includes this check, it must return a special value to
indicate error and ensure that the return type of function is
optional (to deal with return nil).

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC
106

Domain verification

It can be difficult to decide what to include in a pre-
condition.

� Some conditions are determined by requirements.

� Many conditions are conditions to ensure the proper
functioning of operators and partial functions.

When defining a function, you should read it
systematically, highlighting the use of partial
operators, and ensuring that there is no misuse of
these operators by adding the appropriate set of
preconditions

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC
107

Invariant preservation

All functions must ensure that the result is not only
structurally of the correct type, but also that it is
consistent with the invariant associated with its type.

All operations must ensure that the invariants in the
instance variables and in the result types are verified

Formally, the preservation of invariant should be checked
on all inputs that satisfy the preconditions of functions
and operations

Example
AddFlight: Flight ==> ()
AddFlight (f) ==

journey := journey ^ f
pre journey(len journey).destination = f.departure

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC
108

Satisfiability of explicit functions

Explicit function without pre-condition set

f:T1*...*Tn -> R
f(a1,...,an) == ...

said to be satisfiable if for all inputs, the result defined by the
function body is of the correct type. Formally,

forall p1:T1,…,pn:Tn & f(p1,…,pn) : R

An explicit function with precondition :

f:T1*...*Tn -> R
f(a1,...,an) == ...

said to be satisfiable if for all inputs that satisfy the
precondition, the result defined by the function body is of the
correct type. Formally,

forall p1:T1,…,pn:Tn &
pre_f(p1,…,pn) => f(p1,…,pn) : R

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC
109

Satisfiability of implicit functions

A function f defined implicitly as

f(a1:T1,…,an:Tn) r:R

pre ...

post ...

said to be satisfiable if for all inputs that satisfy the
precondition, there is a result of the correct type that satisfies
the postcondition. Formally,

forall p1:T1,…,pn:Tn &

pre_f(p1,…,pn) =>

exists x:R & post_f(p1,…,pn,x)

E.g.,

f(x: nat) r:nat
pre x > 3
post r > 10 and r < 10

If it is not possible to find a result
of type nat which satisfies

post_f

then f is not satisfiable

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC

Behavior

Another aspect of model validation is to ensure that
it actually describes the expected behavior of the
system under consideration.

There are three possible approaches:
� Model animation - works well with customers who are not

familiar with modeling notations but requires a good user
interface.

� Testing the model - one can measure the coverage of the
model but the results are limited to the quality of tests and
the model has to be executable.

� Prove properties about the model - ensures excellent
coverage, does not require an executable model, but the tool
support is limited.

110

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC
111

Animation

The model is animated via a user interface. The interface can be built
in a programming language of choice considering it has the possibility of
dynamic linking (Dynamic Link facility) for interconnection of the
interface code to the model.

Modelo
formal

Interpretador

Interface

Cliente

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC

Testing

The level of trust earned with the animation of the model
depends on the particular set of scenarios that he decided to run
on the interface.

However, it is possible a more systematic test :
� Define the collection of test cases

� Perform these tests in a formal model

� Compare the result with the expected

Test cases can be generated manually or automatically.
Automatic generation can produce a wide range of test cases.

Techniques for generating test cases on functional programs can
also be applied to formal models.

112

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC

Proof

Systematic testing and animation are only as good as the tests
and scenarios used. Proof allows the modeller to assess the
behaviour of a model for whole classes of inputs in one analysis.

In order to prove a property of a model, the property has to be
formulated as a logical expression (like a proof obligation). A
logical expression describing a property which is expected to
hold in a model is called a validation conjecture.

Proofs can be time-consuming. Machine support is much more
limited: it is not possible to build a machine that can
automatically construct proofs of conjectures in general, but it
is possible to build a tool that can check a proof once the proof
itself is constructed. Considerable skill is required to construct a
proof - but a successful proof gives high assurance of the truth
of the conjecture about the model.

113
Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC

Proof levels

“Textbook”: argument in natural language supported by
formulae. Justifications in the steps of the reasoning appeal to
human insight (“Clearly …”, “By the properties of prime
numbers …” etc.). Easiest style to read, but can only be checked
by humans.

Formal: at the other extreme. Highly structured sequences of
formulae. Each step in the reasoning is justified by appealing to
a formally stated rule of inference (each rule can be axiomatic
or itself a proved result). Can be checked by a machine.
Construction very laborious, but yields high assurance (used in
critical applications)

Rigorous: highly structured sequence of formulae, but relaxes
restrictions on justifications so that they may appeal to general
theories rather than specific inference rules.

114

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC
115

Summary

Validation: the process of increasing confidence that a
model accurately reflects the client requirements.

Internal consistency:
� domain checking: partial operations or functions with

precondition
Protect with preconditions or if-then-else

� satisfiability of explicit and implicit functions/operations
Ensure invariants are respected

Checking accuracy:
� animation
� testing
� proof

increase cost

increase confidence

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC

Pre/Post-conditions and inheritance

When you reset an operation inherited from the superclass, you
should not violate the contract (pre-and post-condition)
established in the super-class

The precondition can be weakened (relaxed) in the subclass, but
not strengthened (can not be more restrictive)

� any call that is promised to be valid on the precondition of the
superclass, must continue to be accepted as a precondition of the
subclass

� pre_op_superclass => pre_op_subclass

The postcondition can be strengthened in the subclass but not
weaker

� operation in the subclass must still ensure the effects promised in
the superclass and may add other effects

� post_op_subclass => post_op_superclass

Behavioral subtyping

116

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC
117

Pre/Post-conditions and inheritance

class Figura
types
public Ponto :: x : real

y : real;

instance variables
protected centro : Ponto;

operations

public Resize(factor: real) ==
is subclass responsibility
pre factor > 0.0
post centro = centro~;

end Figura

class Circulo is subclass of Figura
instance variables
private raio : real;
inv raio > 0;

operations
public Circulo(c: Ponto, r: real) res: Circulo
== (raio := r; centro := c; return self)
pre r > 0;

public Resize(factor: real) ==
raio := raio * abs(factor)
pre factor <> 0.0
post centro = centro~ and

raio = raio~ * abs(factor);
end Circulo

pre Circulo`Resize(…)

post Circulo`Resize(…)

pre Figura`Resize(…)

post Figura`Resize(…)

⇒⇒⇒⇒

⇐⇐⇐⇐

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC
118

Specification testing
A well-built specification already has built-in checks

� Invariants, pre / post-conditions, other assertions (invariants of cycles,
etc.).

But it must be exercised in a repeatable manner with automated
testing

� The aim is to discover errors and gain confidence in the correctness of the
specification

� Later, the same tests can be applied to the implementation

Testing with valid entries
� Exercise all parts of the specification (measured coverage with VDMTools)

� Use assertions to check return values and final states

� (Op) Derive tests from state machines (test based on states)

� (Op) Derive tests from usage scenarios (scenario-based test)

� (Op) Derive tests axiomatic specifications (test based on axioms)

Test with invalid entries
� Break all invariants and pre-conditions to verify that work

� …

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC
119

Support for testing in VDM Tools

Specification can be tested interactively with VDM++
interpreter, or based on test cases predefined

You can enable automatic checking of invariants, preconditions
and postconditions

For information on test coverage, you must define at least one
test script

� Each test script tsk is specified by two files:

� tsk.arg file - the command to be executed by interpreter

� tsk.arg.exp file - with the expected result of command execution

VDMTools give information of the tests that have succeeded and
failed

Pretty printer "paints" the parts of the specification that were in
fact executed and generates tables with % of coverage and
number of calls

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC
120

Simulation of assertions

class TestPessoa is subclass of Test

operations

public TestNome() == (

dcl j : Pessoa := new Pessoa("João", …);

Assert(j.GetNome() = "João")

)

end TestPessoa

Use

class Test

operations

protected Assert : bool ==> ()

Assert(a) == return

pre a

end Test

Assertion violation is
reduced to violation of
pre-condition (enable
verification of pre-
conditions in VDMTools)

Definition

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC

Test-Driven Development com VDM++

Principles :
� Write tests before the implementation of the functionality

(in each iteration)

� Develop small iterations

� Automate testing

� Refactor to remove code duplication

Advantages of TDD:
� Ensuring quality of tests

� Thinking in particular cases before considering the general
case

� test cases are partial specifications

� Complex systems that work result from the evolution of
simpler systems that work

121

