
Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva

MFES – Métodos Formais em Engenharia
de Software

Model Checking

Ana Paiva

apaiva@fe.up.pt www.fe.up.pt/~apaiva

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 2

Model Checking

Specification:

� The reality is described as a finite system of transitions

� The desired properties in temporal logic.

The aim is to assess whether the system is a model for the
formula / requirement

System ⊨ requirement

by searching in all states.

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 3

Model Checking

Model
Checker

Property: G(x -> F y)

yesno

x = T,T,F,F,...
y = F,F,F,T,...

Specification

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 4

Syntax of temporal logic

� Grammar of CTL*

φ, ψ :: = P1 | P2 | … (Atomic propositions)

| ¬ φ | φ /\ ψ | φ ⇒ ψ | … (Boolean operators)

| X φ | F φ | G φ | φ U ψ | … (Temporal operators)

| E φ | A φ (Quantifiers)

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 5

Semantics of temporal logic (CTL*)

� Whereas an automaton

• A = <Q, T, q0, l>
T⊆ Q × Q
l(q) = set of atomic propositions found in the state q

• Satisfaction vs. unsuccessful
A,σ,i ⊨ φ, at the moment i of the execution σ in A, φ is true

(the context, A, is usually omitted)
σ,i ⊭ φ, at the moment i if σ, φ is false

• σ(i) is the ith state of the execution σ

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 6

Semantics of temporal logic(CTL*)

σ,i ⊨ P iff P∈ l(σ(i))

σ,i ⊨ ¬ φ iff it is not true σ,i ⊨ φ

σ,i ⊨ φ ∧ ψ iff σ,i ⊨ φ and σ,i ⊨ ψ

σ,i ⊨ Xφ iff i < |σ| and σ,i+1 ⊨ φ

σ,i ⊨ Fφ iff there is j such as i ≤ j ≤ |σ| and σ,j ⊨ φ

σ,i ⊨ Gφ iff for all j’s such that i ≤ j ≤ |σ|, and σ,j ⊨ φ

σ,i ⊨ φUψ iff exists j, i ≤ j ≤ |σ|, such that σ,j ⊨ ψ and for all

k’s such that i ≤ k < j, and σ,k ⊨ φ

σ,i ⊨ Eφ iff exists σ’ such that σ(0)… σ(i) = σ’(0)… σ’(i) and σ’,i ⊨ φ

σ,i ⊨ Aφ iff for all σ’ such that σ(0)… σ(i) = σ’(0)… σ’(i) and σ’,i ⊨ φ

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 7

Example

Possible plays of the automaton:

σ1: (q0: warm, ok) →(q1: ok) →(q0: warm,ok)→(q1:ok) →(q0: warm,ok)…

σ2: (q0: warm, ok) →(q1: ok) →(q2: error)→(q0: warm,ok)→(q1:ok)…

σ3: (q0:warm,ok)→(q1:ok)→(q2:error)→(q2: error)→(q2:error)→(q2:error)…

σ4: …
.

Proposition: mixture of atomic propositions and Boolean operators,
ex.: error ⇒ ¬ warm

Temporal operators: they allow to describe properties about
sequences of states,

ex.: executions σ1, σ2 and σ3 satisfy the property

XXerror V XXXok ????

q0

warm
ok

q1

ok

q2

error

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 8

Languages for specifying properties
Linear Temporal Logic (LTL) – fragment of CTL* without the paths A

and E

Model of linear time.

Temporal operators.

Computation Tree Logic (CTL) – fragment of CTL* in which the
temporal operators (X, F, U, etc.) have to be directly
related/connected (be under the immediate scope) with
quantifiers A and/or E

Branching time model.

Operators more time quantifiers path.

Timed CTL (TCTL)

For real-time systems

S0 S1 S2 S3 S4

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 9

9

LTL: temporal operators (future)

Fp or ◊p – finally p

Gp or □p – globally p

Xp or ○p – next p

pUq – p until q

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 10

10

Formulas abbreviated
� GFp (allways there will be a state such that p)

infinitely often

� FGp (all the time for a certain time onwards)

pF
∞

pG
∞

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 11

LTL: temporal operators (past)

♦p – Sometime in the past (F-1φ)

■p – Always in the past (G-1φ)

●p – In the previous state (X-1φ)

pSq – p since q

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 12

Properties

� Reachability property
• states that some particular situation can be reached

� Safety property
• expresses that, under certain conditions, something never occurs

� Liveness property
• expresses that, under certain conditions, something will

ultimately occur

� Fairness property
• expresses that, under certain conditions, something will (or will

not) occur infinitely often.

� Deadlock-freeness property
• whatever the state reached may be, there will exist an

immediate successor state.

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 13

Properties

� Safety property

• Example: A and B will never have simultaneous access to the critical region.

A finite sequence can be used to prove its falsity

� Liveness property

• Example: A and B will never have simultaneous access to the critical region.

A finite sequence can be used to prove its falsity

Example: If A wants to enter the critical region then it will happen.
One can only prove the falsity by infinite sequences (since any finite sequence
can be increased to satisfy the condition)

� Other examples:

• The program ends?; The condition C1 is true until the condition C2 is
established?;The conditions C1 and C2 are mutually exclusive?;The program P has
no deadlocks?

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 14

LTL formulas

� G¬p

� Fp

� G(p->Fq)

� FGp

� GFp

Guarantee

Recurrent

Persistence

Safety (ensuring that
something bad does not

happen)

Response

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 15

Until vs weak until

� x U y – Until: y holds at the current or a future position, and x
has to hold until that position. At that position x does not
have to hold any more.

� x W y - Weak until: x has to hold until y holds. The difference
with U is that there is no guarantee that y will ever be
verified. The W operator is sometimes called "unless".

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 16

Computation Tree Logic (CTL)
Temporal operators preceded by quantifiers.

AG p – Universal;

AF p – Inevitable;

EF p – Is possible;

AX p – the next
state;

A[pUq) – p until q;

E – There is an
execution;

A – for all
executions

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 17

Expressiveness of CTL

� EX; AX; E_U_; A_U_; EF; EG; AF; AG; …

� Which of the CTL formulas are valid ?

• Ep U A(P2UP3) valid

• Ep U E(P2UP3) valid

• Ep U (P2UP3) invalid

• Ep U E(P2UP3) valid

Note:

is not a formula in CTL because

is an abreviation of GF.

pFE
∞ ∞

F

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 18

De Morgan CTL Laws

� De Morgan’s law

• ¬ AFφ ≡ EG ¬ φ
• ¬ EFφ ≡ AG ¬ φ
• ¬ AXφ ≡ EX ¬ φ

� Quantifiers F and G can be written by use of the operator until
(U)

• AFg A(true U g)

• EFg E(true U g)

• AGg ¬ E(true U ¬ g)

• EGg ¬ A(true U ¬ g)

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 19

Formulas

� AG ¬p

� EFp

� AG(p->AFq)

� EFAGp

� AGAFp

� AGEXtrue

Reachability

Persistence

Liveness

Safety

Fairness

Deadlock-freeness

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 20

Properties

� Examples:

� Safety condition (something bad does not happen)

• There may be two green lights lit in two different streets at the same
time

• AG~(G1 /\ G2)

� Fairness Condition (something good does happen)

• In the future, one of the streets will be lit green

• EF (G1 \/ G2)

� "Weak until" whatever the behavior (A), the car never start
walking (starts) as (W) the key is not placed in the ignition
(key)

• A¬starts W key = (¬starts U key) \/ G¬starts

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 21

Quantifiers

A: Throughout all executions

E: During an execution

What is the difference between AGFp and AGEFp?

� AGFp = : over all executions (A), in every moment of
time (G), we will find later (F) a state satisfying p. Thus, p
must be met repeatedly (infinitely often).

� AGEFp: In any moment of any execution should be possible to
come to satisfy p, i.e., p is always potentially achievable,
even if an execution in which p is ever made. Throughout all
the runs, the second quantifier, E, to express the fact that
there are alternatives that allow plays to get different
behaviors of the system (e.g., where there is p)

pFA
∞

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 22

Quantifiers AGFp vs AGEFp

~p p

This CTL state machine satisfies AGEFp but not AGFp

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 23

23

Properties – summary
� Reachability (“atingível”) EFφ

• A given state / situation is attainable

� Safety (“segurança”) AG¬φ
• Under certain circumstances, a situation never occurs

� Liveness (“certeza, resposta”) AG(req => AFsat), AGEFinit

• Under certain circumstances, a given situation will occur

� Fairness (“justiça, recorrência”) AGAFφ
• Under certain circumstances, a given situation will (or not) occur

repeatedly (infinitely often)

� Deadlock-freeness AGEXtrue

• For any state, there is always a successor state

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 24

Timed Temporal Logic (TCTL)
� Formal grammar of TCTL

φ, ψ :: = P1 | P2 | … (atomic propositions)

| ¬φ | φ /\ ψ | φ ⇒ψ | … (Boolean operators)

| EF(~k)φ | EG(~k)φ | Eφ U(~k)ψ (time operators)

| AF(~k)φ | AG(~k)φ | AφU(~k)ψ

~ a symbol of comparison {<,≤,=,>,≥} and k any rational number ℚ

PU(<2)Q means that P is true until Q and that Q is true in
two units of time from the present moment

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 25

Model Checker

� To implement a Model Checker:

• Build an atomaton S: AS

• Build the automaton of the negation of property ~P: A~P

• Calculate AS ∩ A~P
- If Ø then P is true.
- If ≠ Ø then the obtained sequence of transitions is a counter-example of P.

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 26

Example (model checker)

For a given formula φ the model checker builds an automaton
B¬φ that recognizes executions that does not satisfy φ.

A⊗B¬φ is the automaton with executions of A that does not
satisfy φ.

Example:

φ = G(P⇒XFQ) : Any occurrence of P must be followed (later) by an
occurrence of Q

¬φ means that there is an occurrence of P after which no more is Q.

q0 q1

P, Q

P, ¬Q

u0: ¬P, Q

¬P, ¬Q

u2: P, ¬Q

¬P, ¬Q

u1: P, Q

P, ¬Q

B¬φφφφ

Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 27

Example (model checker)

¬P
¬Q

¬P
¬Q

¬P
¬Q

P
Q

t1

t2 t3

t4

t5

B¬φφφφ

¬P
¬Q

¬P
¬Q

¬P
¬Q

P
Q

t1⊗⊗⊗⊗u0

¬P
¬Q

¬P
¬Q

¬P
¬Q

P
Q

t2⊗⊗⊗⊗u0

t4⊗⊗⊗⊗u0

t 5
⊗⊗ ⊗⊗

u
0

t3⊗⊗⊗⊗u0

t4⊗⊗⊗⊗u1

t1⊗⊗⊗⊗u2

t2⊗⊗⊗⊗u2

t 5
⊗⊗ ⊗⊗

u
2

t3⊗⊗⊗⊗u2

q0 q1

P, Q

P, ¬Q

u0: ¬P, Q

¬P, ¬Q

u2: P, ¬Q

¬P, ¬Q

u1: P, Q

P, ¬Q

A⊗⊗⊗⊗B¬φφφφ

A

Conclusion: A ⊭⊭⊭⊭ φφφφ
Métodos Formais em Engenharia de Software, MIEIC, Ana Paiva 28

Tools

SPIN

http://netlib.bell-labs.com/netlib/spin/whatisspin.html

SMV (Symbolic Model Verifier)

http://www.cs.cmu.edu/~modelcheck/smv.html

HYTECH (Linear Hybrid Systems)

http://www.eecs.berkeley.edu/~tah/HyTech

UPAAL (Real-Time Systems)

http://www.upaal.com)

Kronos (Real-Time Systems)

http://www-verimag.imag.fr/TEMPORISE/kronos

