
1

Métodos Formais em

Engenharia de Software

Ana Paiva

apaiva@fe.up.pt

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

Proof of theorems

A formal logical system consists of:

� Notation (syntax).

� A set of axioms.

� A set of inference rules.

� A formal proof is a sequence of statements. Each
statement is built from the application of one or
more rules of inference to the precedent
statement(s).

� A purely syntactic mechanism that does not worry
about the meaning of the claims but only to their
construction.

2

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

Proof of theorems

Prove that an implementation (I) satisfies the
specification (S) by mathematical reasoning.

I → S

I ≡ S

The implementation and specification are expressed
by logical formulas.

The (logical equivalence / logical implication)
required is described as a theorem that has to be
proven.

A proof system provides a set of axioms and inference
rules (simplification, rewriting, induction, etc.)

3
Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

Hoare logic

Simple logic to describe (and prove) programs. Set of axioms and
inference rules that define the semantics of programs.

What we want to prove is a Hoare triple:
{P} S {Q}

� P – pre-condition

� S – program

� Q – post-condition

It is a logical expression that says: If the program runs S from an initial
state satisfying the precondition P, then, on completion of the final
state satisfies the postcondition Q

Simply put: the program S establishes the postcondition Q from the pre-
condition P

Relates program with specification

The specifications of the types of data input and output should be
viewed also as pre-and post-conditions relevant to the test!

4

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11
5

Examples

{ true } x := 12 { x = 12 }

{x < 40} x := 12 {10 <= x}

{x < 40} x := x+1 {x <= 40}

True for integers but not for reals

{m <= n} j :=(m+n)/2 {m <= j <= n}

{0 <= m < n <= a.length /\ a[m] = x} r := Find(a, m, n, x) {m <= r}

{false} S {Q}

True, for any program S-and post-codition Q, since false implies anything but
useless

{P} S {false}

false if there is at least an initial state where P is true, but unrealizable

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

Triple accurate

There are many Hoare triple {P} S {Q} true for the same
program, normally interest us the most accurate that is, those
that use the weakest precondition or strongest postcondition

wp(S, Q) – Weakest precondition of S related with Q

� It is the more general condition such that {P} S {Q}

� {P} S {Q} iff P wp (S, Q)

� Suggested method of proof of {P} S {Q} in the opposite direction:

(1) calculate wp (S, Q) and (2) prove that P ⇒ wp (S, Q)

� Example: wp (x: = x +1, x> 10) = x> 9
{x=20} x := x = x +1 {x>10} is true for x = 20 ⇒ x>9

sp(P, S) – Strongest postcondition of S in relation to P

� {P} S {Q} sse sp(P, S) ⇒ Q

� Less used than the weakest precondition

6

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11
7

Total and partial correction

Partial correctness: if the program ends, the final
state satisfies the postcondition

The total correction: the program ends in a final
state satisfying the postcondition

What interests us is the total correction

Non-termination problem can arise with cycles

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

Rules of the Hoare logic

And now, how do we prove?

Using the axioms and inference rules of Hoare logic,
which describe the semantics of the instructions used
and other useful properties in proofs

Inference rules are presented as

Axioms are rules without premises (even if true)

8

premies

conclusions

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11
9

Regras de inferência básicas

Nº Instruction Rule Notes

R1 skip {P} skip {P}

R2 Assignment {P[x:=E]} x := E {P} (a)

R3 Sequence {P} S {Q} , {Q} T {R}

{P} S; T {R}

R4 If {P ∧∧∧∧ C} S {Q} , {P ∧∧∧∧ ¬¬¬¬C} T {Q}

{P} if C then S else T {Q}

R5 Cycle I ∧∧∧∧ C ⇒⇒⇒⇒ v∈∈∈∈N, {I ∧∧∧∧ C ∧∧∧∧ v=V} S {I ∧∧∧∧ v<V}

{I} while C do S {I ∧∧∧∧ ¬¬¬¬C}

(b)

(c)

(a) P[x:=E] - P with x replaced by E
(b) I - invariant of the cycle (actually before and after each iteration)
(c) v - function variant, non-negative integer strictly decreasing, to ensure termination

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11
10

Regras de inferência adicionais

Nº Description Rule Notes

R6 Strengthening
the
precondition

P’⇒⇒⇒⇒P, {P} S {Q}

{P’} S {Q}

Limit case:

P = wp(S,Q)

(weakest precondition)

R7 Weakening the
postcondition

{P} S {Q}, Q⇒⇒⇒⇒Q’

{P} S {Q’}

Limit case:

Q = sp(P,S)

(strongest postcondition)

R8 Intermediate
assertions

{P∧∧∧∧A} assert A {P} wp(assert A, P) = P∧∧∧∧A

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11
11

Calculate successively the

strongest post-conditions:

{P}

S1;

{Q1}

S2;

{Q2}

…

{Qn-1}

Sn;

{Qn}

Proof of precondition to the

postcondition

To prove:

{P}

S1;

S2;

…

Sn;

{Q}

And then we must
prove:

Qn ⇒ Q

1º

2º

…

nº

(correct by rules R3 and R7)

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11
12

Reasoning to discover the strongest

postcondition

{P} S {?}

If P is true before executing S, what can we say that is true after
executing S?

Example:
{x > y} x := x+1 {?} → {x > y} x := x+1 {x-1 > y}

(se x > y before executing x := x+1, then, after executing x := x+1,
we can state that x-1 > y)

Intuition can be confirmed with the rules of Hoare logic

Example:
{?} x := x+1 {x-1 > y}
⇒ {(x+1)-1>y} x := x+1 {x-1 > y} (by rule R2)

⇔ {x>y} x := x+1 {x-1 > y}

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11
13

Proof of postcondition to a precondition

To prove:

{P}

S1;

…

Sn-1;

Sn;

{Q}

Calculate successively the

weakest preconditions:

{P1}

S1;

{P2}

…

{Pn-1}

Sn-1;

{Pn}

Sn;

{Q}

And then we must prove:

P ⇒ P1

1º

nº

2º

It may be easier because some
rules of Hoare logic work in this
direction!

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11
14

Reasoning to find the weakest

precondition

{?} S {Q}

Q to be true after executing S (and to finish S) what must be true
before executing S?

Example:
{k >= 0 ∧ s = (Σi | 0<=i<min(k,N) · a[i])}
while k<N do s := s + a[k]; k := k+1 end
{s = (Σi | 0<=i<N · a[i])}

You can also use the Dijkstra rules in the following slides

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11
15

Rules for calculating the weakest

precondition (Dijkstra)

Nº Instrução Regra

R1’ skip wp(skip, P) = P

R2’ Assignment wp(x := E, Q) = Q[x:=E]

R3’ Sequence wp(S;T, Q) = wp(S, wp(T, Q))

R4’ If wp(if C then S else T, Q) = C ∧∧∧∧ wp(S,Q) ∨∨∨∨
¬¬¬¬C ∧∧∧∧ wp(T,Q)

R5’ Cycle wp(while C do S, Q) = P0 ∨∨∨∨ P1 ∨∨∨∨ …, com

P0= ¬¬¬¬C ∧∧∧∧ Q, Pk= C ∧∧∧∧ wp(S,Pk-1), k>0

R8’ Assertion wp(assert A, Q) = A ∧∧∧∧ Q

(Exercise: figure out the rules to calculate the strongest postcondition)

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11
16

Verification of intermediate assertions

To prove

{P} assert A {Q}
prove that

P ⇒ A
and

P ⇒ Q

(by rule 8)

Since wp(assert A; Q) = A ∧ Q

prove that P ⇒ A ∧ Q

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11
17

Verification of conditional statements

To prove

{P} if C then S else T {Q}
it is sufficient to prove that

{P ^ C} S {Q} (when C is true)
and

{P ^ ¬¬¬¬C} T {Q} (when C is false)
(by rule 4)

Schematically
if C then

{P ^ C} S {Q}
else

{P ^ ¬¬¬¬C} T {Q}

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11
18

Examples

Sequence: {??} x = z+1; y = x+y; {y > 5}

wp(y = x+y;, y > 5) = x+y > 5

wp(x = z+1;, x+y > 5) = z+1+y > 5

?? é

z+1+y > 5

If without else: {??} if(x > y) y = x; {y = max(x, y)}

[x>y /\ wp(y=x,y=max(x,y))] \/ [x<=y /\ y=max(x,y)]

x>y /\ x=max(x,x) \/ True

True

