

Métodos Formais em **Engenharia de Software**

1

3

Proof of theorems

- A formal logical system consists of:
 - Notation (syntax). •
 - A set of axioms.
 - A set of inference rules.
 - A formal proof is a sequence of statements. Each statement is built from the application of one or more rules of inference to the precedent statement(s).
 - A purely syntactic mechanism that does not worry • about the meaning of the claims but only to their construction.

FEUP Universidade do Porto

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

2

Proof of theorems

Prove that an implementation (I) satisfies the specification (S) by mathematical reasoning.

$I \rightarrow S$ $I \equiv S$

- The implementation and specification are expressed by logical formulas.
- The (logical equivalence / logical implication) required is described as a theorem that has to be proven.
- A proof system provides a set of axioms and inference rules (simplification, rewriting, induction, etc.)

Hoare logic

- Simple logic to describe (and prove) programs. Set of axioms and inference rules that define the semantics of programs.
- What we want to prove is a Hoare triple: ۲
 - {P} S {Q}
 - P pre-condition
 - S program
 - Q post-condition
- It is a logical expression that says: If the program runs S from an initial state satisfying the precondition P, then, on completion of the final state satisfies the postcondition Q
- Simply put: the program S establishes the postcondition Q from the precondition P
- Relates program with specification
- The specifications of the types of data input and output should be viewed also as pre-and post-conditions relevant to the test!

FFIID Universidade do Porto

Examples

- { true } x := 12 { x = 12 }
- {x < 40} x := 12 {10 <= x}
- ${x < 40} x := x+1 {x <= 40}$

True for integers but not for reals

 ${m \le n} j := (m+n)/2 {m \le j \le n}$

 $\{0 \le m \le n \le a.length / a[m] = x\} r := Find(a, m, n, x) \{m \le r\}$

{false} $S {Q}$

True, for any program S-and post-codition Q, since false implies anything but useless

{P} S {false}

false if there is at least an initial state where ${\sf P}$ is true, but unrealizable

Triple accurate

- There are many Hoare triple {P} S {Q} true for the same program, normally interest us the most accurate that is, those that use the weakest precondition or strongest postcondition
- wp(S, Q) Weakest precondition of S related with Q
 - It is the more general condition such that {P} S {Q}
 - {P} S {Q} iff P wp (S, Q)
 - Suggested method of proof of {P} S {Q} in the opposite direction:
 (1) calculate wp (S, Q) and (2) prove that P ⇒ wp (S, Q)
 - Example: wp (x: = x +1, x> 10) = x> 9 {x=20} x := x = x +1 {x>10} is true for x = 20 ⇒ x>9
- sp(P, S) Strongest postcondition of S in relation to P
 - $\bullet \quad \{P\} \; S \; \{Q\} \; \; sse \; sp(P, \; S) \Rightarrow Q$
 - Less used than the weakest precondition

FEUP Universidade do Porto Faculdade de Engenharia Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

5

7

FEUP Universidade do Porto

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

6

8

Total and partial correction

- Partial correctness: if the program ends, the final state satisfies the postcondition
- The total correction: the program ends in a final state satisfying the postcondition
- What interests us is the total correction
- Non-termination problem can arise with cycles

Rules of the Hoare logic

- And now, how do we prove?
- Using the axioms and inference rules of Hoare logic, which describe the semantics of the instructions used and other useful properties in proofs
- Inference rules are presented as

premies

conclusions

Axioms are rules without premises (even if true)

Regras de inferência básicas

N٥	Instruction	Rule	Notes	
R1	skip	{P} skip {P}		
R2	Assignment	{P[x:=E]} x := E {P}	(a)	
R3	Sequence	{P} S {Q} , {Q} T {R}		
		{P} S; T {R}		
R4	lf	{P ^ C} S {Q} , {P ^ ¬C} T {Q}		
		{P} if C then S else T {Q}		
R5	Cycle	$I \land C \Rightarrow v \in \mathbb{N}, \{I \land C \land v = V\} S \{I \land v < V\}$	(b)	
		{I} while C do S {I ∧ ¬C}	(c)	

(a) P[x:=E] - P with x replaced by E

(b) I - invariant of the cycle (actually before and after each iteration)

(c) v - function variant, non-negative integer strictly decreasing, to ensure termination

FEUP Universidade do Porto Faculdade de Engenharia

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

9

Regras de inferência adicionais

N°	Description	Rule	Notes
R6	Strengthening the precondition	P'⇒P, {P} S {Q} {P'} S {Q}	Limit case: P = wp(S,Q)
R7	Weakening the postcondition	{P} S {Q}, Q⇒Q' {P} S {Q'}	Q = sp(P,S) (strongest postcondition)
R8	Intermediate assertions	{P∧A} assert A {P}	wp(assert A, P) = P _A A

FEUP Universidade do Porto Faculdade de Engenharia

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

10

Proof of precondition to the postcondition

Reasoning to discover the strongest postcondition

{P} S {?}

If P is true before executing S, what can we say that is true after executing S?

Example:

 $\{x > y\} \ x := x+1 \ \{?\} \quad \rightarrow \quad \{x > y\} \ x := x+1 \ \{x-1 > y\}$

```
(se x > y before executing x := x+1, then, after executing x := x+1, we can state that x-1 > y)
```

Intuition can be confirmed with the rules of Hoare logic

```
Example:

\begin{cases} ? \\ x := x+1 \{x-1 > y\} \\ \Rightarrow \{(x+1)-1>y\} \ x := x+1 \{x-1 > y\} \\ \Leftrightarrow \{x>y\} \ x := x+1 \{x-1 > y\} \end{cases}  (by rule R2)
```

EUP Universidade do Porto Faculdade de Engenharia

Reasoning to find the weakest precondition

{?} S {Q}

Q to be true after executing S (and to finish S) what must be true before executing S?

• You can also use the Dijkstra rules in the following slides

FEUP Universidade do Porto Faculdade de Engenharia

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

14

Rules for calculating the weakest precondition (Dijkstra)

N°	Instrução	Regra
R1'	skip	wp(skip, P) = P
R2'	Assignment	wp(x := E, Q) = Q[x:=E]
R3'	Sequence	wp(S;T, Q) = wp(S, wp(T, Q))
R4'	lf	wp(if C then S else T, Q) = $C \land wp(S,Q) \lor \neg C \land wp(T,Q)$
R5'	Cycle	wp(while C do S, Q) = $P_0 \vee P_1 \vee$, com
		$P_0 = \neg C \land Q$, $P_k = C \land wp(S, P_{k-1})$, k>0
R8'	Assertion	wp(assert A, Q) = A \wedge Q

(Exercise: figure out the rules to calculate the strongest postcondition)

Verification of intermediate assertions

To prove

{P} assert A {Q}
prove that
$P \Rightarrow A$
and
$P \Rightarrow Q$
(by rule 8)

Since wp(assert A; Q) = A \wedge Q prove that P \Rightarrow A \wedge Q

Verification of conditional statements

To prove

Examples

Sequence: $\{??\} x = z+1; y = x+y; \{y > 5\}$ wp(y = x+y: y > 5) = x+y > 5

18