
26

Métodos Formais em 

Engenharia de Software

Ana Paiva

apaiva@fe.up.pt

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

Verification of cycles (inference - rule R5)

Before cycle: 
� The invariant should be checked before the 1st test to the condition of the while loop.

� Before the loop, i = 0. There is a j (index of A []) such as 0 <= j & & j <0, so the invariant is true.

During the cycle: 
� Variant:

� The variant function starts: v = V = a.length.

� After each iteration v = v-1 <V

� Invariant: (must be checked in the final state of the sequence of expressions of the loop 

body)

� To run the loop body,

A [j]! = R forall j: 0 <= j <= i, before increasing i.

� What is equivalent to

A [j]! = R forall j: 0 <= j <i after incrementing i.

� So the invariant is true.

End of the cycle: 
� The invariant should be checked at the end of the loop body execution

� When the cycle ends, A [i] == r.

� The array A has the value r at index i.

27

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11
28

Exercise:

Find the postcondition and the loop invariant:

class Add {

// pre A != null && B != null && A.length == B.length;

// post (∀∀∀∀ int i; 0 <= i && i < A.length; result[i] == A[i]+B[i]);

int[] add(int A[], int B[]) {

int C[]=new int[A.length];

int i=0; 

// loop_invariant (∀∀∀∀ int j; 0<=j && j < i; C[j] == A[j]+B[j]);
for(i=0; i<A.length; i++)

C[i] = A[i]+B[i];

return C;

}

}

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11
29

Tools

PVS (Specification and Verification Systems)

http://www-step.stanford.edu/

STeP

http://pvs.csl.sri.com/

HOL (Higher order logic)

http://www.cl.cam.ac.uk/Research/HVG/HOL/

The Logics Workbench

http://www.lwb.unibe.ch

Coq

http://pauillac.inria.fr/coq/



Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11
30

Example in PVS

|-------
f1g FORALL (n: nat): sum(n) = n * (n + 1) / 2 
Rule? (induct "n") 
Inducting on n on formula 1, 
this yields 2 subgoals: 
closed_form.1 : 
|-------
f1g sum(0) = 0 * (0 + 1) / 2 
Rule? (postpone) 
Postponing closed_form.1. 
closed_form.2 : 
|-------
f1g FORALL (j: nat): 
sum(j) = j * (j + 1) / 2 IMPLIES sum(j + 1) = (j + 1) * (j + 1 + 1) / 2 
Rule? (postpone) 
Postponing closed_form.2. 
closed_form.1 : 
|-------
f1g sum(0) = 0 * (0 + 1) / 2 
Rule? (expand "sum") 
Expanding the definition of sum, 
this simplifies to: 
closed_form.1 : 
|-------
f1g 0 = 0 / 2 
Rule? (assert) 
Simplifying, rewriting, and recording with decision procedures, 
This completes the proof of closed_form.1. 

closed_form.2 : 
14 2.3 Proving 
|-------
f1g FORALL (j: nat): 
sum(j) = j * (j + 1) / 2 IMPLIES sum(j + 1) = (j + 1) * (j + 1 + 1) / 2 
Rule? (skolem!) 
Skolemizing, 
this simplifies to: 
closed_form.2 : 
|-------
f1g sum(j!1) = j!1 * (j!1 + 1) / 2 IMPLIES 
sum(j!1 + 1) = (j!1 + 1) * (j!1 + 1 + 1) / 2 
Rule? (flatten) 
Applying disjunctive simplification to flatten sequent, 
this simplifies to: 
closed_form.2 : 
f-1g sum(j!1) = j!1 * (j!1 + 1) / 2 
|-------
f1g sum(j!1 + 1) = (j!1 + 1) * (j!1 + 1 + 1) / 2 
Rule? (expand "sum" +) 
Expanding the definition of sum, 
this simplifies to: 
closed_form.2 : 
[-1] sum(j!1) = j!1 * (j!1 + 1) / 2 
|-------
f1g 1 + sum(j!1) + j!1 = (2 + j!1 + (j!1 * j!1 + 2 * j!1)) / 2 
Rule? (assert) 
Simplifying, rewriting, and recording with decision procedures, 
This completes the proof of closed_form.2. 
Q.E.D. 
Run time = 0.81 secs. 
Real time = 223.01 secs. 

Prova por indução

Mostra a subprova 
seguinte ainda não 
provada

Faz alguns cálculos

Aplica procedimentos de 
decisão para transformar o 
consequente em verdade

Passa para a 
subprova seguinte

Eliminar o quantificador 
universal

Transforma o consequente 
num antecedente com 
consequente

Faz alguns cálculos

Aplica procedimentos de 
decisão para transformar o 
consequente em verdade

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11
31

Model-Checking versus theorem proving

Model Checking Theorem proving

Good for control Good for state

Do not deal with infinite state 

spaces

Use of induction techniques to 

deal with infinite spaces

Automated analysis Semi-automated analysis

Good for checking temporal 

properties

Not really

Easier to use Less easy to use but more generic

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

Loops

{P} while B do S {Q}

Partial correctness

� P => I, the invariant is initially true

� {Inv /\ B} S {Inv}, each execution of the loop preserves the 

invariant

� (Inv /\ ~B)=>Q, the invariant and the loop exit condition 

imply the postcondition

Total correctness 

� (Inv /\ B)=> v>0, if we are entering the loop body (i.e., the 

loop condition B evaluates to true) and the invariant holds, 

then v must be strictly positive

� {Inv /\ B /\ v=V} S {v<V}, the value of the variant function 

decreases each time the loop executes (here V is a constant)

32
Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

Loop example (1)

r:=1;

i:=0;

While i<m do

r:= r*n;

i:=i+1;

Prove that this function computes the nth power of m and leaves the

result in r. 

Postcondition: r = nm

Precondition: m>=0 /\ n>0

Loop invariant: 
(1)a good heuristic for choosing a loop invariant is often to 

modify the postcondition of the loop to make it depend on the

loop index instead of some other variable, such as r=ni, but (2) 

this invariant is not strong enough…

33



Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

Loop example (2)

… loop invariant conjoined with the loop exit 

condition should imply the postcondition. The 

loop exit condition is i>=m, but we know that 

i=m. We can get this if we add i<=m to the 

loop invariant. In addition, for proving the 

loop body correct, it is convenient to add 

0<=i and n>0 to the loop invariant as well. 

Thus our complete loop invariant will be 

� r=ni /\ 0<=i<=m /\ n>0

34
Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

Loop example (3)

In order to prove total correctness, we need 

to state a variant function for the loop that 

can be used to show that the loop will 

terminate. In this case m-i is a natural choice, 

because it is positive at each entry to the 

loop and decreases with each loop iteration.

35

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

Loop example (4)

Now, we use the weakest precondition to generate 

proof obligations that will verify the correctness of 

the specification. First, we will ensure that the 

invariant is initially true when the loop is reached, by 

propagating that invariant past the first two 

statements in the program:
{m>=0 /\ n>0}

r:=1;

i:=0;

{r=ni /\ 0<=i<=m /\ n>0}

We propagate the loop invariant past i:=0 to get    

r=n0 /\ 0<=0<=m /\ n>0. Thus our proof obligation is 

to show that:

m>=0 /\ n>0 => 1=n0 /\ 0<=0<=m /\ n>0 

36
Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

Loop example (5)

We prove this with the following logic:

� m>=0 /\ n>0, by assumption

� 1=n0, because n0=1 for all n>0 and we know n>0

� 0<=0, by definition of <=

� 0<=m, because m>=0 by assumption

� n>0, by assumption above

� 1=n0 /\ 0<=0<=m /\ n>0, by conjunction of the 

above

37



Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

Loop example (6)

We now apply weakest precondition to the body of the loop. We 

will first prove the invariant is maintained, then prove the 

variant function decreases. To show the invariant is preserved, 

we have:
{r=ni /\ 0<=i<=m /\ n>0 /\ i<m}

r:= r*n

i:=i+1

{r=ni /\ 0<=i<=m /\ n>0}

We propagate the invariant past i:=i+1 to get                    

� r=ni+1 /\ 0<=i+1<=m /\n>0. 

We propagate this past r:=r*n to get: 

� r*n=ni+1 /\0<=i+1<=m/\n>0. 

Our proof obligation is therefore:

� r=ni /\0<=i<=m /\n>0/\i<m => r*n=ni+1 /\0<=i+1<=m/\n>0

38

It comes from the loop 
condition

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

Loop example (7)

We can prove this as follows:

r=ni /\0<=i<=m /\n>0/\i<m => r*n=ni+1 /\0<=i+1<=m/\n>0

r = ni /\ 0<=i<=m /\ n > 0 /\ i < m, by assumption

r*n = ni *n, multiplying by n

r*n = ni+1 , definition of exponentiation

0 <= i+1, because 0<=i

i+1 < m+1,  by adding 1 to inequality

i+1 <= m,  by definition of <=

n>0,  by assumption

r*n = ni+1 /\ 0<=i+1<=m /\ n>0, by conjunction of the above

39

Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

Loop example (8)

We have a prove obligation to show that the

variant function is positive when we enter the

loop. The obligation is to show that the loop

invariant and the entry condition imply this:

r=ni /\ 0<=i<=m /\ n>0 /\ i<m => m-i > 0

The proof is trivial

r = ni /\ 0 <= i <= m /\ n > 0 /\ i < m, by assumption

i < m, by assumption

m − i > 0, subtracting i from both sides

40
Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

Loop example (9)

We also need to show that the variant function

decreases. We generate the proof obligation using

weakest preconditions:

{r = ni /\ 0<=i<=m /\ n > 0 /\ i < m /\ m − i = V }

r := r*n;

i := i + 1;

{m − i < V }

We propagate the condition past i := i + 1 to get       

m − (i + 1) < V. Propagating past the next statement 

has no effect. Our proof obligation is therefore:

r = ni /\ 0<=i<=m /\ n>0 /\ i<m /\ m − i = V => m − (i + 1) < V

41



Métodos Formais em Engenharia de Software, Ana Paiva, MIEIC - 10/11

Loop example (10)

Again the proof is easy:

r=ni /\ 0<=i<=m /\ n>0 /\ i<m /\ m−i=V, by assumption

m − i = V, by assumption

m − i − 1 < V, by definition of <

m − (i + 1) < V, by arithmetic rules

Last we need to prove that the postcondition holds

when we exit the loop.

r=ni /\ 0<=i<=m /\ n>0 /\ i>=m => r = nm

We can prove it as follows:

r = ni /\ 0<=i<=m /\ n>0 /\ i>=m, by assumption

i = m, because i<=m and i>=m

r = nm, substituting m for i in assumption

42


