MFES - Métodos Formais em Engenharia de Software

Alloy

Ana Paiva
apaiva@fe.up.pt www.fe.up.pt/~apaiva

Join

Book ={(B0)}
Book ={(B0)}
Name = {(N0), (N1), (N2)}
Name = {(N0), (N1), (N2)}
Addr = {(A0), (A1), (A2) }
Addr = {(A0), (A1), (A2) }
Host = {(H0), (H1)}
Host = {(H0), (H1)}
myName ={(N1)}
myName ={(N1)}
myAddr = {(A0) }
myAddr = {(A0) }
address = {(B0, N0, A0), (B0, N1, A0), (B0, N2, A2)}
address = {(B0, N0, A0), (B0, N1, A0), (B0, N2, A2)}
host = {(A0, H0), (A1, H1), (A2, H1)}
host = {(A0, H0), (A1, H1), (A2, H1)}
Book.address = {(N0, A0), (N1, A0), (N2, A2)}
Book.address = {(N0, A0), (N1, A0), (N2, A2)}
Book.address[myName] = {(A0)}
Book.address[myName] = {(A0)}
Book.address.myName = {}
Book.address.myName = {}
host[myAddr] = ((H0))
host[myAddr] = ((H0))
address.host = {(B0, N0, H0), (B0, N1, H0), (B0, N2, H1)}
address.host = {(B0, N0, H0), (B0, N1, H0), (B0, N2, H1)}
©FEUP Uriversidded do porit

Restriction and override

$\mathrm{m}^{\prime}=\mathrm{m}++(\mathrm{k}->\mathrm{v})$
update map m with key-value pair (k, v)

Unary operators

(2)FEUP Univerisidede do porion

Transpose (inversa)

Some useful facts about transpose:
$s . \sim$ is equal to $r . s$, and is the image of the set s navigating backward through the relation r;
$r . \sim r$ is the relation that associates two atoms in the domain of the relation r when they map to a common element; when r is a function, $r \sim r$ is the equivalence relation that equates atoms with the same image.
$r . \sim$ in iden therefore says that r is injective, and $\sim . r$ in iden says that r is functional.

Transpose (inversa)

A binary relation r is symmetric if, whenever it contains the tuple $a \rightarrow b$, it also contains the tuple $b->a$, or more succinctly as a relational constraint:
\sim in r

> | $\begin{array}{l}\text { A binary relation is transitive if, whenever it contains the tuples } \\ a->b \text { and } b \rightarrow c \text {, it also contains } a \rightarrow c, \text { or more succinctly as a relational } \\ \text { constraint: }\end{array}$ |
| :--- |
| \quad r.r in r |$| \begin{aligned} & \text { A binary relation } r \text { is reflexive if it contains the tuple } a->a \text { for every atom } \\ & a \text {, or as a relational constraint, } \\ & \quad \text { iden in } r\end{aligned}$

(3) FEUP Unineveriddode do portion

Transpose (inversa)

Example:

If mother is the relation that maps a child to its mother, the expression mother. \sim mother is the sibling ("irmãos") relation that maps a child to its siblings (and also to itself).

Closures

No recursion... but we have closures

$$
\begin{aligned}
& \wedge R=R+R \cdot R+R \cdot R \cdot R+\ldots \\
& * R={ }^{\wedge} R+\text { iden }
\end{aligned}
$$

(2)FEUP Universidede do portion

Transitive closure ^

The transitive closure $\wedge^{\mathbf{r}}$ of a binary relation \mathbf{r}, or just the closure for short, is the smallest relation that contains \mathbf{r} and is transitive. You can compute the closure by taking the relation, adding the join of the relation with itself, then adding the join of the relation with that, and so on

$$
{ }^{\wedge} r=r+r . r+r . r . r+\ldots
$$

Transitive-reflexive closure *

The reflexive-transitive closure * r is the smallest relation that contains r and is both transitive and reflexive, and is obtained by adding the identity relation to the transitive closure

$$
{ }^{*} r=\wedge^{\wedge}+\text { iden }
$$

Closures - example

$$
\begin{aligned}
R= & \{(G 0, A 0),(G 0, G 1),(A 0, D 0),(G 1, D 0),(G 1, A 1), \\
& (A 1, D 1),(A 2, D 2)\} \\
\wedge R= & \{(G 0, A 0),(G 0, G 1),(A 0, D 0),(G 1, D 0),(G 1, A 1), \\
& (A 1, D 1),(A 2, D 2), \\
& (G 0, D 0),(G 0, A 1),(G 0, D 1) \\
& (G 1, D 1)\}
\end{aligned}
$$

Closures - example

Example:
 $b=\{(B O)\}$
 $\operatorname{addr}=\{(B 0, N 0, N 1),(B 0, N 1, D 0),(B 1, N 1, D 1)\}$

The expression ^(b.addr), denoting the direct and indirect mapping of names in book b to the names and addresses reachable, will map names to names and addresses:
b.addr $=\{(\mathrm{N} 0, \mathrm{~N} 1),(\mathrm{N} 1, \mathrm{D} 0)\}$
${ }^{\wedge}(\mathrm{b} . \operatorname{addr})=\{(\mathrm{NO}, \mathrm{N} 1),(\mathrm{N} 1, \mathrm{D} 0),(\mathrm{NO}, \mathrm{DO})\}$
The expression *(b.addr) will include the tuples of both these relations. In addition to tuples such as ($\mathrm{N} 0, \mathrm{~N} 0$), which are expected, it will also includes tuples such as (BO, BO).

Operators - examples

```
File \(=\{(\mathrm{F} 1),(\mathrm{F} 2),(\mathrm{F} 3)\}\)
Dir \(=\{(\mathrm{D} 1),(\mathrm{D} 2)\}\)
root \(=\{(\mathrm{D} 1)\}\)
new \(=\{(\mathrm{F} 3, \mathrm{D} 2),(\mathrm{F} 1, \mathrm{D} 1),(\mathrm{F} 2, \mathrm{D} 1)\}\)
parent \(=\{(\) F1,D1),(D2,D1),(F2,D2) \(\}\)
File + Dir = \{(F1),(F2),(F3),(D1),(D2)\}
parent + new \(=\{(\mathrm{F} 1, \mathrm{D} 1),(\mathrm{D} 2, \mathrm{D} 1),(\mathrm{F} 2, \mathrm{D} 2),(\mathrm{F} 3, \mathrm{D} 2),(\mathrm{F} 2, \mathrm{D} 1)\}\)
parent ++ new = \{(F1,D1),(D2,D1),(F3,D2),(F2,D1)\}
parent - new \(=\{(D 2, D 1),(F 2, D 2)\}\)
parent \& new \(=\{(\) F1,D1 \()\}\)
parent :> root = \{(F1,D1),(D2,D1)\}
File \(->\) root \(=\{(\) F1,D1),(F2,D1),(F3,D1) \(\}\)
new -> Dir = \{(F3,D2,D1),(F3,D2,D2),(F1,D1,D1),...\}
\(\sim\) parent \(=\{(\mathrm{D} 1, \mathrm{~F} 1),(\mathrm{D} 1, \mathrm{D} 2),(\mathrm{D} 2, \mathrm{~F} 2)\}\)
```


