FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO
 Mestrado Integrado em Engenharia Informática e Computação

 Métodos Formais em Eng. ${ }^{\text {a }}$ de Software

 Métodos Formais em Eng. ${ }^{\text {a }}$ de Software}

Exercícios

1) Which of the specifications in plain English below convey the mathematical meaning of the CTL formula $\mathrm{AG}(\mathrm{p} \rightarrow \mathrm{A}[\mathrm{q} \mathrm{Ur}])$?
a. Any reachable state in which p is true has a path from it on which r is eventually true, and until then q is true.
b. If p is true in every reachable state, then there is a path along which q is continuously true, until r becomes true.
c. If p is true in every reachable state, then for any path along which q is continuously true, r becomes true.
d. For any reachable state in which p is true, then, on any path from that state, q is continuously true until r becomes true, and r is guaranteed to become true.
e. If p is true in every reachable state, then on every path there is a state at which r is true, and q is true continuously until then.
2) Consider the transition system $(\mathrm{S}, \rightarrow, \mathrm{L})$ where,
the set of states S equals $\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\}$;
the state transitions are $\left(\mathrm{s}_{0}, \mathrm{~s}_{0}\right),\left(\mathrm{s}_{0}, \mathrm{~s}_{1}\right),\left(\mathrm{s}_{0}, \mathrm{~s}_{3}\right),\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right),\left(\mathrm{s}_{2}, \mathrm{~s}_{1}\right)$ and $\left(\mathrm{s}_{3}, \mathrm{~s}_{2}\right)$; and the labeling function is given by $L\left(s_{0}\right)=\{r\}, L\left(s_{1}\right)=\{p, r\}, L\left(s_{2}\right)=\{q, r\}$, and $L\left(s_{3}\right)=\{p, q\}$.

This model may be pictured as follows:

Which of the CTL formulas below are satisfied in state s_{0} ?
a. $A F(q \wedge r)$
b. $A G(p \rightarrow A F(p \wedge r))$
c. $A[r \mathrm{Uq}]$
d. $A G(p \rightarrow A G(p \vee q))$
e. $A G E F \neg r$
3) Which of the following pairs of CTL formulas are equivalent?
a. EF p and EG p
b. $E F p \vee E F q$ and $E F(p \vee q)$
c. $A F p \vee A F q$ and $A F(p \vee q)$
d. $A F p$ and $A[p U T]$
e. $\mathrm{EF} \neg \mathrm{p}$ and $\neg \mathrm{AF} p$
4) Consider the SMV program fragment:

```
MODULE main()
VAR
    a : boolean;
    b : boolean;
ASSIGN
```

```
init(a) := 0;
```

init(a) := 0;
init(b) := 0;
init(b) := 0;
next(a) :=
next(a) :=
case
case
~a : 1;
~a : 1;
1 : {0,1};
1 : {0,1};
esac;
esac;
next(b) :=
next(b) :=
case
case
~a : 0;
~a : 0;
b : 1;
b : 1;
1 : {0,1};
1 : {0,1};
esac;

```
            esac;
```

Which of the following CTL models is adequately modeled by this SMV program fragment?

