
European Journal of Operational Research xxx (2008) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Innovative Applications of O.R.

Solution approaches for the soft drink integrated production lot sizing and
scheduling problem

Deisemara Ferreira a, Reinaldo Morabito a,*, Socorro Rangel b

a Federal University of São Carlos, Production Engineering Department, 13565-905 São Carlos, SP, Brazil
b UNESP, São Paulo State University, 15054-000 São José do Rio Preto, SP, Brazil
a r t i c l e i n f o

Article history:
Received 2 July 2007
Accepted 25 March 2008
Available online xxxx

Keywords:
Lot sizing
Scheduling
Soft drink industry
Mixed integer programming
Relax-and-fix heuristic
0377-2217/$ - see front matter � 2008 Elsevier B.V. A
doi:10.1016/j.ejor.2008.03.035

* Corresponding author. Fax: +55 16 33518240.
E-mail addresses: deise@dep.ufscar.br (D. Fe

(R. Morabito), socorro@ibilce.unesp.br (S. Rangel).

Please cite this article in press as: Ferreira
opean Journal of Operational Research (20
a b s t r a c t

In this paper we present a mixed integer programming model that integrates production lot sizing and
scheduling decisions of beverage plants with sequence-dependent setup costs and times. The model con-
siders that the industrial process produces soft drink bottles in different flavours and sizes, and it is car-
ried out in two production stages: liquid preparation (stage I) and bottling (stage II). The model also takes
into account that the production bottleneck may alternate between stages I and II, and a synchronisation
of the production between these stages is required. A relaxation approach and several strategies of the
relax-and-fix heuristic are proposed to solve the model. Computational tests with instances generated
based on real data from a Brazilian soft drink plant are also presented. The results show that the solution
approaches are capable of producing better solutions than those used by the company.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The soft beverage industry consists of companies which pro-
duce, market, package, sell and deliver non-alcoholic beverages,
including carbonated soft drinks, to customers (Montag, 2005).
While the sector has many small local companies, at least three
large producers maintain the highest degree of international brand
recognition. The credit quality of a global beverage company is
dependent on the relationships between the concentrate producer,
which owns the brand, and its bottlers. The concentrate producer
owns the trademark and promotes the brand advertising which
is aimed at the end-consumers. The bottlers maintain the physical
bottling and distribution infrastructure. They also retain and culti-
vate long-term relationships with the retailers that are not easily
replaced. The success of the concentrate producer is largely linked
to the presence of bottlers that understand the local market and
culture. Given an environment of intense competition, changing
consumer demands and rising costs, the soft drink sector is faced
with two major challenges: maintaining product relevance, brand
strength and market position, as well as balancing pricing strate-
gies with volume growth to achieve sustained growth and stable
or improving efficiency and profitability.

Soft beverages are widely popular in many markets and
demand is generally stable given that they are low cost, repeated
purchase items. They are consumed by a wide range of social
ll rights reserved.
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and economic groups, although per capita consumption is higher
in some markets. Brazil is one of the largest producers of carbon-
ated soft drinks with more than 800 plants, and a consumer market
of more than 13 billion l a year, which is the third in the world.
However, the national per capita consumption is around 65 l, a
modest number when compared to other markets. According to
the Brazilian association of soft drink beverages (ABIR, 2007), the
stabilization of the currency in the 1990s contributed to a signifi-
cant increase in the Brazilian production, rising from 5.9 billion l
in 1991, to 9.14 billion in 1995, and 11.05 billion in 1999. Over
the last years the rate has remained stable producing 13.01 billion
in 2006, which is 4.75% higher than in 2005.

The diversity of products offered to consumers, the scale of
plants and the complexity of modern filling lines require the adop-
tion of optimization-based programs to generate efficient produc-
tion plans. The production lot sizing and scheduling problem is
present in the Brazilian soft drink production, as well as in other
industrial processes such as, e.g., foundry (Araujo et al., 2007),
animal nutrition (Toso et al., submitted for publication) and electro
fused grains (Luche et al., submitted for publication). In general, in
the industry practice, the lot sizing and scheduling problem is
solved separately, that is, first the production lot sizes are defined
and afterwards the production schedules. However, it is often of
interest to integrate the two problems in the decision process.
These problems, either integrated or not, have been studied by sev-
eral authors (e.g., Fleischmann, 1990; Pinedo, 1995; Drexl and
Kimms, 1997; Meyr, 2000; Karimi et al., 2003; Toledo and Arment-
ano, 2006). Production lot sizing and scheduling problems can be
very difficult depending on the restrictions which have to be met
es for the soft drink integrated production lot sizing and ..., Eur-
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and the combinatorial structure (classified in general as NP-hard
optimization problems, e.g., Bitran and Yanasse, 1982; Meyr,
2002). The production manager needs to consider product de-
mands, machine capacities, raw material availabilities, setup times,
among other aspects.

A few mixed integer programming models for the production
planning of beverages have been proposed in the literature. For in-
stance, Clark (2003) studies the production lot sizing problem of a
canning line at a drinks manufacturer, considering sequence-inde-
pendent setup times of the canning line to changeover between
canned products if no change of liquid is involved, and extra fixed
setup times if a change of liquid is involved. Toledo et al. (submit-
ted for publication, in press) proposes a two-stage multi-machine
model that integrates the lot sizing and scheduling decisions, and
takes into account sequence-dependent setup times and the syn-
chronisation between the production stages. Solution methods
based on heuristics and metaheuristics are also proposed.

In this paper we propose a mixed integer programming model
that integrates the lot sizing and scheduling decisions which con-
siders the synchronisation between the stages of the liquid flavour
preparation and liquid bottling of a Brazilian soft drink plant. It is
simpler than the model presented in Toledo et al. (submitted for
publication), as it considers more simplifying assumptions. Both
models are based on the GLSP (general lot sizing and scheduling
problem) proposed in Fleischmann and Meyr (1997). In GLSP the
planning horizon is divided into T macro-periods. It is a big bucket
model and to obtain the sequence in which the items will be pro-
duced, each macro-period is divided into a number of micro-peri-
ods, and only one item can be produced in each micro-period.

The remaining part of this paper is organized as follows. In the
next section we briefly describe the soft drink production process.
The proposed optimization model is described in Section 3. In Sec-
tion 4 we present the solution approaches based on a relaxation
algorithm and different strategies of the relax-and-fix heuristic.
Results of the computational tests are given in Section 5 and final
remarks in Section 6.

2. The soft-drink production process

As mentioned, soft drinks of different flavours and bottles types
(disposable and recycled) are produced in two main stages: liquid
flavour preparation (stage I) and liquid bottling (stage II). In stage I,
the liquid flavour (concentrate or syrup plus water) is prepared in
tanks of different capacities. Two different liquid flavours cannot
be prepared in the same tank at the same time, and for technical
reasons the tank must be empty before a new lot of liquid flavour
Water

  Tank
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  Tank  
t

Tank
N

Liquid flavor preparation 

...

Wash bottles 

...

Fig. 1. Soft drink pro
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can be prepared in that tank. A minimum quantity of liquid flavour
must be prepared in order to assure liquid homogeneity. To prop-
erly mix the necessary ingredients, the tank propeller must be
completely covered.

In stage II, the liquid flavours are bottled in the filling lines. A
filling line is made up of a conveyor belt and machines that wash
the bottles, fill them with a combination of liquid flavour and
water (carbonated or noncarbonated) and then seal, label and pack
them. The production is carried out in the order described above. If
for any reason it is necessary to remove a bottle from the conveyor
belt, it will be done at the end of the production process, before
packaging. There is only one entry point for the bottles in the filling
line. For convenience sake, we treat each filling line as a single
machine.

Each filling line can receive liquid flavour from only one tank at
a time, no matter the number of available tanks. However, a tank
can supply a liquid flavour for several filling lines simultaneously
if they are bottling soft drinks of the same flavour. In the schematic
representation of the production process given in Fig. 1, all the M
filling lines receive water from the same source, and liquid flavour
from only one tank at a time. Note that, in this example, tank N is
assigned to supply liquid flavour for the filling lines k and M simul-
taneously, but these filling lines only receive liquid flavour from
this tank.

The filling lines are initially adjusted to produce soft drinks of a
given flavour in a given bottle size. At each changeover of liquid
flavour in the tanks and/or soft drink in the filling lines, a se-
quence-dependent setup time (cleaning and/or machine adjust-
ments) is necessary. For example, if a soft drink of a diet flavour
has been prepared and a normal one is to be prepared next, the
cleaning time is smaller than the other way round. In the tanks,
a changeover time is necessary even if the same liquid flavour is
to be prepared next. The production planning thus involves the
lot size and production sequence definition at each period of the
planning horizon. Although, in general, the production planning
is made to meet a pre-specified soft drink demand, it is common
for urgent product demands to arrive that should be met at once.

Besides the sequence-dependent changeover costs and times,
another important factor to be considered in the production plan-
ning of soft drink plants is the synchronisation between stages I
and II. If the synchronisation is not taken into account, a produc-
tion schedule may become infeasible in practice. The liquid flavour
in a given tank cannot be sent to the filling lines, unless they are
ready to initiate the bottling process. In the same way, if the nec-
essary liquid flavour is not ready, the filling line must wait for its
preparation. Figs. 2 and 3 show the production planning for three
Filling line 1 

Filling line k

Bottling

...      

...

Filling line M

Inventory

fill label packageseal Pallet 

duction process.

es for the soft drink integrated production lot sizing and ..., Eur-
.03.035



a b b

1

Tank

Line

b

2 2

Available capacity  Time 

3

Fig. 3. Synchronized schedule.

a b b

1 2 2

Tank

Line

b

Available capacity  Time 

3

Fig. 2. Non-synchronized schedule.

D. Ferreira et al. / European Journal of Operational Research xxx (2008) xxx–xxx 3

ARTICLE IN PRESS
types of soft drinks (represented by the numbers 1–3) produced
from two types of liquid flavours (represented by the letters a
and b). However, in Fig. 2 there is no synchronisation between
the two stages. The rectangles represent the lot size and the spaces
between them the changeover time from one soft drink to another
in the filling line, or the changeover time from one liquid flavour to
another in the tank. In Fig. 3, the black rectangles represent the
waiting time to synchronize the production of the stages.

Note in Fig. 2 that at the beginning of the planning horizon, the
tank needs some time in order to prepare for liquid flavour a. How-
ever, the filling line has already begun bottling soft drink 1, which
is infeasible. In the first changeover (from liquid flavour a to b and
soft drink 1–2), although the changeover time is the same in both
stages, the filling line is ahead of the tank since it did not wait for
the tank to be ready in the previous period. In the next changeover,
the bottling process is initiated before the second lot of liquid fla-
vour b is ready (this type of changeover occurs if more than one full
tank capacity of liquid flavour is necessary given the soft drink lot
size). The following soft drink produced needs the same liquid fla-
vour as the previous one, but is of a different bottle size. In this case
the changeover time in the tank is smaller than the changeover
time in the filling line. The tank should have waited for the filling
line setup before releasing the liquid flavour. If the waiting times
are considered in both stages, the production schedule should be
as shown in Fig. 3. Note that, after synchronizing the two stages,
the necessary production capacity is higher than the available
one and the proposed schedule is not viable. Therefore, the syn-
chronisation between the two stages must be taken into account
while the lot size and schedule are being planned.

The production process described above is common for the
three soft drink plants visited in this research. The plants differ
mainly by the number of final products, the production capacities
(tanks and filling lines numbers) and the degree of computer soft-
ware utilization during the production planning. Plant A (of large
scale) produces more than 100 products characterized by the bot-
tle type and flavours (for example, a soft drink of 600 ml and or-
ange flavour is one product, while a soft drink of 2 l and the
same flavour is another). It has nine tanks and seven filling lines
of different capacities. Plant B (of medium scale) produces 48 prod-
ucts and has seven tanks and three filling lines, all of different
capacities. The third one, Plant C (of small scale), has only two fill-
ing lines, one to produce soft drinks using glass bottles and the
other using plastic bottles. The latter can produce 27 products
Please cite this article in press as: Ferreira, D. et al., Solution approach
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and has several allocated tanks. The synchronisation between the
two stages does not need to be considered in the case of Plant C,
since the production bottleneck is always in the bottling stage.

Plant A has some computer software that integrates diverse
departments (e.g., sales, production planning and control, logis-
tics). The production planning is done with the help of three pieces
of different software. The first one is used to define an initial lot
size considering the filling line capacities, the second one is used
to adjust the lot sizes considering the tank capacities, and the third
one is used to define the production schedule. Various manual
adjustments are still necessary when considering other con-
straints, such as resource availabilities, machine maintenance
and urgent product demands. The production planning of Plants
B and C are manual and only spreadsheets and databases are used
to help the decision process.

The market growth potential together with the increasing num-
bers of new products and the competition for the market share has
posed several challenges to the soft drinks producers. There is a
great concern to improve the production and process managing.
The optimization model proposed in the next section is useful to
develop specific software that helps the decision process and the
analysis of different production situations.
3. Model development

The mixed integer optimization model presented in this section
considers the synchronisation between the production stages and
integrates the lot sizing and scheduling decisions as well as the
model in Toledo et al. (submitted for publication). As pointed out
in Section 1, the model can be seen as a simplification of Toledo
et al.’s model, where each filling line, thereafter called machine,
has a dedicated tank and each tank can be filled with all liquid fla-
vours needed by this machine. The model considers that the plan-
ning horizon is divided into T periods (macro-periods). It is a big
bucket model and to obtain the production sequence, each
macro-period is divided into a number of micro-periods, in which
only one liquid flavour (or product) can be produced. However, un-
like Toledo et al.’s model, the micro-period size is flexible and its
length depends on the lot sizes of the liquid flavour (or the
product).

The model considers that the production bottleneck may alter-
nate between stages I and II in each macro-period. Therefore, when
the bottleneck is in stage I, the size of each micro-period is limited
by the minimum and maximum tank capacity, and when it is in
stage II, the maximum micro-period size is the maximum machine
capacity. The total number of micro-periods in each macro-period
is the total number of possible tank setups, and it is the same in
both stages. The maximum (and minimum) lot size is related to
the tank capacity, as well as to the machine capacity. If, for exam-
ple, to produce a lot of a given drink it is necessary to produce one
and a half tank of liquid flavour (i.e. two tank setups), then this lot
will be divided in two micro-periods: the size of the first micro-
period will be the full tank capacity and the size of the second will
be a half tank. Only one liquid flavour (or product) is produced in
each micro-period. The synchronisation between the two stages
is taken into account by the model using continuous variables, in-
stead of binary ones as used in Toledo et al.’s model.

The model size is defined by (J,M,F,T,N) representing, respec-
tively, the number of soft-drink products (items), the number of
machines (both filling lines and tanks), the number of liquid fla-
vours, the number of periods or macro-periods and the total num-
ber of micro-periods (i.e. total number of setups). Let (i, j,m,k, l, t,s)
be the index set defined as: i, j 2 {1, . . . , J}, m 2 {1, . . . ,M}, k, l 2
{1, . . . ,F}, t 2 {1, . . . ,T} and s 2 {1, . . . ,N}. Consider also, that the
following sets and data are known:
es for the soft drink integrated production lot sizing and ..., Eur-
.03.035



4 D. Ferreira et al. / European Journal of Operational Research xxx (2008) xxx–xxx

ARTICLE IN PRESS
Sets
St set of micro-periods in period t;
Pt first micro-period of period t;
kj set of machines that can produce item j;
am set of items that can be produced on machine m;
bm set of liquid flavours that can be produced on tank m;
cml set of items that can be produced on machine m and need

liquid flavour l.

The data and variables described below with superscript I relate
to stage I (tank) and with superscript II relate to stage II (bottling):

Data
djt demand for item j in period t;
hj (non-negative) inventory cost for one unit of item j;
gj (non-negative) backorder cost for one unit of item j;

sI
kl changeover cost from liquid flavour k to l;

sIIk
ij changeover cost from item i to j;

bI
kl changeover time from liquid flavour k to l;

bII
ij changeover time from item i to j;

aII
mj production time for one unit of item j on machine m;

K I
m total capacity of tank m, in litres of liquid;

K II
mt total capacity time on machine m in period t;

rjl quantity of liquid flavour l necessary for the production of
one unit of item j;

qI
lm minimum production of liquid flavour l in tank m (neces-

sary for liquid homogeneity);
Iþj0 initial inventory for item j;

I�j0 initial backorder for item j;

yI
ml0 1 if tank m is initially setup for liquid flavour l; 0 other-

wise;
yII

mj0 1 if machine m is initially setup for item j; 0 otherwise.
Variables
Iþjt inventory for item j at the end of period t;

I�jt backorder for item j at the end of period t;

xII
mjs production quantity in machine m of item j in micro-peri-

od s;
vII

ms waiting time of machine m in micro-period s;
yI

mls 1 if there is production in tank m of the liquidf
flavour l in micro-period s; 0 otherwise;

yII
mjs 1 if the machine m is setup for item j in micro-f

period s; 0 otherwise;
zI

mkls 1 if there is changeover in tank m from liquid flavourf
k to l in micro-period s; 0 otherwise;

zII
mijs 1 if there is changeover in machine m from item if

to j in micro-period s; 0 otherwise:

The two-stage multi-machine lot-scheduling model (P2SMM) is
then

Min Z ¼
XJ

j¼1

XT

t¼1

ðhjI
þ
jt þ gjI

�
jt Þ þ

XN

s¼1

XM

m¼1

X

k2bm

X

l2bm

sI
klz

I
mkls

þ
XN

s¼1

XM

m¼1

X

i2am

X

j2am

sII
ijz

II
mijs ð1Þ

Subject to:
Stage I (Tank)

X

j2cml

rjlxII
mjs 6 K I

myI
mls;

m ¼ 1; . . . ;M; l 2 bm; s ¼ 1; . . . ;N; ð2Þ
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X

j2cml

rjlxII
mjs P qI

lmyI
mls;

m ¼ 1; . . . ;M; l 2 bm; s ¼ 1; . . . ;N; ð3Þ
X

l2bm

yI
mlðs�1Þ P

X

l2bm

yI
mls

m ¼ 1; . . . ;M; t ¼ 1; . . . ; T; s 2 St � fPtg; ð4Þ
zI

mkls P yI
mkðs�1Þ þ yI

mls � 1

m ¼ 1; . . . ;M; k; l 2 bm; s ¼ 1; . . . ;N; ð5Þ
zI

mkls P
X

j2cmk

yII
mjðs�1Þ þ yI

mls � 1

m ¼ 1; . . . ;M; k; l 2 bm; t ¼ 2; . . . ; T; s ¼ Pt ; ð6Þ
X

k2bm

X

l2bm

zI
mkls 6 1

m ¼ 1; . . . ;M; t ¼ 1; . . . ; T; s 2 St : ð7Þ

Stage II (Bottling)

Iþjðt�1Þ þ I�jt þ
X

m2kj

X

s2St

xII
mjs ¼ Iþjt þ I�jðt�1Þ þ djt;

j ¼ 1; . . . ; J; t ¼ 1; . . . ; T; ð8Þ
X

j2am

X

s2St

aII
mjx

II
mjs þ

X

i2am

X

j2am

X

s2St

bII
ijz

II
mijs

þ
X

s2St

vII
ms 6 K II

mt ;

m ¼ 1; . . . ;M; t ¼ 1; . . . ; T; ð9Þ
vII

ms P
X

k2bm

X

l2bm

bI
klz

I
mkls �

X

i2am

X

j2am

bII
ijz

II
mijs;

m ¼ 1; . . . ;M; s ¼ 1; . . . ;N; ð10Þ

xII
mjs 6

K II
mt

aII
j

yII
mjs;

m ¼ 1; . . . ;M; j 2 am; t ¼ 1; . . . ; T; s 2 St ; ð11Þ
X

j2am

yII
mjs ¼ 1;

m ¼ 1; . . . ;M; s ¼ 1; . . . ;N; ð12Þ
zII

mijs P yII
miðs�1Þ þ yII

mjs � 1;

m ¼ 1; . . . ;M; i; j 2 am; s ¼ 1; . . . ;N; ð13Þ
X

i2am

X

j2am

zII
mijs 6 1;

m ¼ 1; . . . ;M; s ¼ 1; . . . ;N; ð14Þ
Iþjt ; I

�
jt P 0; j ¼ 1; . . . ; J; t ¼ 1; . . . ; T;

zI
mkls; xII

mjs; vII
ms; zII

mijs P 0; yII
mjs; yI

mls ¼ 0=1;

m ¼ 1; . . . ;M; k; l 2 bm; i; j 2 am; t ¼ 1; . . . ; T; s 2 St : ð15Þ

The objective function (1) is to minimize the total sum of product
inventory, demand backorder, machine changeover and tank
changeover costs. In stage I, the demand for liquid flavour l is com-
puted in terms of the production variables of stage II. That is, the de-
mand for liquid flavour l in each tank m in each micro-period s is
given by

P
j2cml

rljxII
mjs. Therefore, the constraints (2) together with

constraints (3) guarantee that if there is production in tank m of li-
quid flavour l in micro-period sðyI

mls ¼ 1Þ, the amount produced will
be defined between the minimum quantity necessary for liquid
homogeneity and the tank maximum capacity (i.e. the minimum
and maximum sizes of micro-period s).

Constraints (4) refer to the idle micro-periods to happen at the
end of the associated macro-period (note that

P
l2bm

yI
mls can be

equal to 0, meaning that there is no production in tank m of any
liquid flavour in micro-period s). Constraints (5) control the liquid
flavours changeover. However, if variable yI

mkðs�1Þ is zero in the last
micro-period of a given macro-period t � 1, s = Pt, the changeover
between macro-periods is not taken into account by the associated
constraint (5). The setup variables in stage II indicate which liquid
es for the soft drink integrated production lot sizing and ..., Eur-
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flavour was prepared in the last non-idle micro-period of each
macro-period. Therefore, constraints (6) are needed to consider
the changeover between macro-periods. Constraints (7) ensure
that there is at most one changeover in each tank m in each mi-
cro-period s.

In stage II, constraints (8) represent the inventory balancing
constraints for each item in each macro-period. Since the produc-
tion variable is defined for each micro-period, to obtain the total
production of item j in a given macro-period t, it is necessary to cal-
culate the associated production variables over all machines where
it can be produced (m 2 kj) and micro-periods (s 2 St) of macro-per-
iod t. Constraints (9) represent the machine capacity in each
macro-period.

As discussed in Section 2, a machine must wait until the liquid
flavour is ready in the tank. The set of continuous variables,
vII

ms P 0, and the constraints (10) compute this waiting time for
each machine m from the beginning of each micro-period s. The
waiting time is equal to the difference between the tank change-
over time and the machine changeover time. If the machine
changeover time from item i to j is greater than the tank change-
over time from liquid flavour k to l, the waiting variable is zero
and only the machine changeover time is considered in the associ-
ated capacity constraint (9). Otherwise, the variables vII

ms are posi-
tive and the total waiting time of the macro-period is taken into
account in constraints (10), thus establishing the synchronisation
between the two production stages.

Constraints (11) ensure that there is a production of item j in
machine m at micro-period s only if the associated setup variable
is set to one. Constraints (12) refer to a single mode of production
in each micro-period s and they impose that each machine m is set-
up for one item at each micro-period s. Note that the production
may not occur although the machine is always ready to produce
an item. Constraints (13) count the changeover in each machine
m in each micro-period s. Constraints (14) ensure that there is at
most one changeover in each machine m in each micro-period s.

Finally, constraints (15) define the variables domain. Note that
the changeover variables zI

mkls and zII
mijs are continuous. Constraints

(5) and (13) together with the optimization sense (minimization)
ensure that these variables will take only 0 or 1 values in an opti-
mal solution.

The above model can be easily adapted to represent the partic-
ularities of the different soft drinks companies studied. In the com-
putational tests described in Section 5, the instances were
generated based on data collected from Plant A. When defining
the soft drinks lot size and schedule, this plant requires that the
product inventories in a given macro-period must be sufficient to
cover the product demands in the next period. To have a fair com-
parison between model P2SMM and the company solutions, a new
set of constraints should be included in the model

Iþjt P djðtþ1Þ; j ¼ 1; . . . ; J; t ¼ 1; . . . ; T; ð16Þ

where dj,T+1 is the forecasted demand for item j in period T + 1, i.e.
the first period of the next planning horizon.

Plant A has various tanks and filling lines (machines) with dif-
ferent capacities. Some tanks (and machines) are allocated to pro-
duce only a given subset of flavours (and items), whereas others
can produce any one. There is a single liquid flavour (l = p) whose
demand is by far superior to the others. While most of the liquid
flavours have demands around 20,000 units per period, flavour p
has a demand of around 150,000 units. It also has a high setup time
and cost. Therefore, in Plant A there is a tank which is completely
allocated to continuously produce flavour p. That is, whenever a
machine is ready to produce an item that uses this flavour, the tank
is also ready to release it. To represent this situation in model
P2SMM, the changeover time in stage I from any flavour k to fla-
Please cite this article in press as: Ferreira, D. et al., Solution approach
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vour p, and from flavour p to any flavour k, is set to zero
ðbI

kp ¼ bI
pk ¼ 0Þ. Although there is no need to setup the tanks for fla-

vour p, there is still a need to setup the machines when items that
need this flavour are produced. However, the tank setup variable,
yI

mps, cannot be set to zero, since when this is done, constraints
(2) together with (3) impose that the production of any item that
uses this flavour is zero (if yI

mps ¼ 0 then xII
mjs ¼ 0, for j 2 cmp). There-

fore, the tank capacity (constraints (2) and (3)) for l = p is dropped.

4. Approaches to solve the model P2SMM

The solution of practical instances of model P2SMM using the
exact methods included in standard software such as CPLEX (Ilog,
2006) was not satisfactory (see Section 5). This indicated the need
to develop specific solution strategies, which are described next.

4.1. The relaxation approach

In some soft drink plants the liquid preparation in stage I gen-
erally does not represent a bottleneck for the production process.
That is, the tank capacities are large enough to ensure that, when-
ever a machine needs a liquid of a given flavour, it will be ready to
be released. Therefore, there is no need to control either the
changeover in the tanks or the synchronisation between the two
production stages. Only the minimum tank capacity constraints
to ensure the liquid homogeny are necessary in stage I. This situa-
tion was explored as a solution approach to model P2SMM. The
relaxation approach (RA) is based on the idea that once the produc-
tion decision is taken in stage II, the decision for stage I is easily
taken.

In the first step, the lot size and schedule of the items in the ma-
chines are decided using a one stage model obtained from model
P2SMM by dropping the changeover variables of stage I, zI

mkls, and
the waiting variables of stage II, vII

ms. The constraints (9) are re-
placed by constraints
X

j2am

X

s2St

aII
mjx

II
mjs þ

X

i2am

X

j2am

X

s2St

bII
ijz

II
mijs 6 K II

mt ;

m ¼ 1; . . . ;M; t ¼ 1; . . . ; T; ð9aÞ

and the objective function is redefined as

Min Z ¼
XJ

j¼1

XT

t¼1

ðhjI
þ
jt þ gjI

�
jt Þ þ

XN

s¼1

XM

m¼1

X

i2am

X

j2am

sII
ij z

II
mijs: ð1aÞ

The sets of constraints ((2), (3), (8), (9a), (10)–(16)) and the
objective function (1a) define a one-stage multi-machine lot-
scheduling model (P1SMM). An adjustment of the solution of this
model might be necessary to take into account the synchronisation
between the two stages. This can be obtained by model P2SMM
with the setup variables of stages I and II fixed according to the
solution of model P1SMM. That is, if item j is produced, then the
tank and the machine must be setup. This procedure is outlined
in Fig. 4, where rj is the set of liquid flavours necessary to produce
item j. If the models in Algorithm RA are solved by a standard soft-
ware (e.g. the branch and cut method in CPLEX) and their optimal
solutions are not achieved in a pre-defined amount of time, the
branch and cut execution is stopped and the best solution is
considered.

4.2. Relax-and-fix strategies

In the relax-and-fix heuristic, the integer variable set is parti-
tioned into P disjunctive sub-sets, Qi, i = 1, . . . ,P. At each iteration,
the variables of only one of these sub-sets are defined as integers,
while the variables of the others are relaxed and defined as contin-
uous ones. The resulting sub-model is then solved. The integer
es for the soft drink integrated production lot sizing and ..., Eur-
.03.035



Algorithm RA 
Step1 – Solve the P1SMM model. 
Step 2 – If P1SMM is feasible then

for 1,...,m M= , mj α∈ , 1,...,s N=  do

    If 0>II
mjsx then

Fix the setup variables of model 
P2SMM according to: 

1and1 == I
mls

II
mjs yy , jl σ∀ ∈ .

endif
endfor 

endif
Step 3 – Solve the P2SMM model obtained in Step 2. 

Fig. 4. Algorithm RA.
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variables of the sub-model are fixed at their current values and the
process is repeated for all the sub-sets. Besides the variable set par-
tition, criteria to fix the variables must also be defined before
applying the procedure. The main feature of this heuristic is the
solution of sub-models that are smaller, and possibly easier to
solve, than the original one. The partition of the variable set and
the criteria used to fix the variables have a strong connection with
the degree of the sub-model difficulty (Wolsey, 1998). The relax-
and-fix heuristic can be described as the RF algorithm outlined in
Fig. 5.

The relax-and-fix heuristic has been largely used as a method to
obtain good primal bounds (feasible solutions) for hard mixed-
integer programs either on its own or in hybrid algorithms. In
the usual relax-and-fix strategy, the variables are grouped by peri-
ods (macro-periods) and only the integer variables are fixed at
each iteration – the heuristic iterations number is thus the number
Algorithm RF 
Initialization – Define a partition of the
 1,...,k P= and a criterion to fix variable
for 1,...,k P=  do

Step 1 – Relax the integer variables 
Solve the resulting sub-mod

Step 2 – If the sub-model given in S
integer variables that satis
their current values. 

Endfor

Fig. 5. Algor

Table 1
Relax-and-fix strategies

Strategy Partition

G1.1 Macro-period
G1.2 Macro-period
G1.3 Macro-period
G1.4 Macro-period
G1.5 Macro-period
G2.1 Machine/macro-period
G2.2 Stage I then Stage II
G2.3 Stage II then Stage I
G2.4 Macro-period/Stage I then Stage II
G2.5 Macro-period/Stage II then Stage I
G2.6 Machine/macro-period/Stage II and machine/mac
G2.7 Machine/macro-period/Stage II and machine/mac
G3.1 Micro-period
G3.2 One micro-period per macro-period
G3.3 First and last micro-period of each macro-period

* i.th.p.: if there is production.
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of periods (Dillenberger et al., 1994). Various strategies to partition
the set of binary variables are explored in Escudero and Salmeron
(2005). Toledo (2005) uses a relax-and-fix heuristic to solve the
soft drinks lot scheduling problem described in Toledo et al. (sub-
mitted for publication). The criterion used is to first fix the binary
variables in stage I, then the ones in stage II, in a backward fashion.
The relax-and-fix heuristic has also been used in combination with
metaheuristics. Pedroso and Kubo (2005) presents a hybrid tabu
search procedure in which the relax-and-fix heuristic is used either
to initialize a solution or to complete partial solutions. The hybrid
approach is applied to solve a big bucket lot sizing problem with
setup and backlog costs. At each iteration of the relax-and-fix heu-
ristic, only the variables of a given period that concern a single
product are fixed. The main advantage of this strategy is to solve
smaller sub-models since some mono-period, mono-machine mul-
ti-items lot sizing problems are hard to solve. Other relax-and-fix
strategies also fix continuous variables (Federgruen et al., 2007).

The P2SMM model proposed in Section 3 presents various pos-
sibilities to build sub-sets Qi, i = 1, . . . ,P. The setup and changeover
variables are indexed by stages, machines, items and periods.
These indices are explored when defining various strategies of var-
iable set partitions. Different criteria were proposed to fix vari-
ables. For example, after solving a sub-model in a given iteration,
it is possible to fix only the binary variables associated with non-
zero production variables. Table 1 shows 15 relax-and-fix strate-
gies, divided into three groups. Group 1 has five strategies (G1.1–
G1.5), Group 2 has seven (G2.1–G2.7), and Group 3 has three.
The first column shows the strategy name, the second and third
columns show the criteria used for the partition and fixing the
variables, respectively. The variables presented in Table 1 are the
same ones used to describe the model P2SMM, however, for sim-
plicity sake, some of their indexes were omitted.
 integer variable set into P sub-sets, ,kQ
s. 

in the sub-set ,jQ 1,...,j k P= + .
el. 
tep 1 is unfeasible, stop. Otherwise, fix the 
fy the criteria defined in initialization to 

ithm RF.

Fixing

yI, yII

yI, yII, zI, zII

yI, zI, yII, zII, xII

yI, zI, yII, zII i.th.p.*

yI, zI, yII, zII i.th.p. with re-evaluation
yI, yII

yI, yII

yII, yI

yI, yII

yII, yI

ro-period/Stage I yII, yI

ro-period/Stage I yII, zII, yI, zI i.th.p. with re-evaluation
yI, yII

yI, yII

yI, yII
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The first five strategies (G1.1–G1.5) use the usual criteria of par-
titioning the variable set according to macro-periods (using a for-
ward scheduling). They differ from each other by the criteria
used to fix the variables in a given iteration. These criteria are
based on the idea that the sub-models should have a dimension
that favours the decision process. The objective was to evaluate
the influence of the variables in the sub-model solution. Take for
example strategies G1.1 and G1.2. Note that when the variable yII

is fixed to one, it only assures that the machine is prepared, i.e. it
does not indicate if the item will be produced or not. Variable yI,
besides defining that the tank will be prepared, also states that
there will be production of an item between the tank capacities
(constraints (2) and (3) in the P2SMM model). Strategy G1.2 is as
flexible as G1.1, however, it also fixes the continuous changeover
variables (zI,zII). This reduces the sub-model size both in terms of
variables and constraint numbers. The latter might be reduced by
the pre-processing routines usually included in optimization
packages.

The lot size is only fixed when variable xII is fixed as in strategy
G1.3. Strategy G1.4 is more flexible than strategies G1.1–G1.3. In
an iteration k the variables of each micro-period of macro-period
k are evaluated and fixed only if there is production
ðxII

mjs > 0; 8s 2 SkÞ. Otherwise, the binary variables are not fixed
and remain binary in the iterations k + 1, . . . ,T. Besides allowing a
redefinition of the lot sizes, this strategy also allows any item to
be produced in idle periods at future iterations. An attempt to im-
prove this strategy is done by re-evaluating the idle micro-periods
in previous iterations which did not have any variables fixed. So, if
in a previously idle micro-period there is production, then the
associated variables are fixed. In this strategy, G1.5, at each itera-
tion, the sub-models become less flexible than the ones in strategy
G1.4, but might become smaller as more variables are fixed.

Group 2 strategies explore the multi-machine and the two-
stage structure of the model to partition the set of variables. The
objective was to evaluate the influence of each machine in the
solution of the sub-models. Strategy G2.1 is similar to strategy
G1.1, but considers both the machine and period index to partition
the variable set. In iteration 1, for example, only the variables of
machine 1 in macro-period 1 are binary, whereas in iteration 2
only the variables of machine 1 in macro-period 2 are binary,
and so on. The setup variables of both stages (yI and yII) are fixed
at each iteration. All the other strategies in this group consider
one stage at a time. In Strategies G2.2 and G2.3, the partition is
done according to the production stage, therefore the order to fix
the variables changes accordingly. First, the variables in stage I
(or stage II) are fixed and then the ones in stage II (or stage I). Note
that this criterion of fixing the variables is different from the strat-
egy used in the RA algorithm. In the RA algorithm all setup binary
variables, yI and yII, are kept binary in model P1SMM (Step 1) and
fixed in Step 2 only if there is production. In the G2.3 strategy, the
binary variables yIare relaxed and consequently constraints (2) and
(3) are relaxed too, also the variables are fixed despite the produc-
tion in the micro-period.

In strategies G2.4 and G2.5, a reduction in the sub-model size of
strategies G2.2 and G2.3 is obtained by including the variable
macro-period in the partition criteria. A further reduction in the
sub-model size is obtained in strategy G2.6 by, besides considering
the variable period and stage, also considering the machines in the
partition. The criterion used to fix the variables in strategies G2.1–
G2.6 is the same as the one used in strategy G1.1, i.e. only the bin-
ary variables (yI, yII) are fixed at each iteration. Strategy G2.7 com-
bines the sub-models’ size of strategy G2.6 with the flexibility to
fix the variables of strategy G1.5. Besides the binary variables,
the continuous variables (zI, zII) are also considered to be fixed
when there is production (xII > 0). In this strategy, the idle micro-
periods in previous iterations which did not have any fixed vari-
Please cite this article in press as: Ferreira, D. et al., Solution approach
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ables are also re-evaluated for further variable fixing. Note that
only strategies G2.1, G2.6 and G2.7 consider the machine index
in the partition criteria.

The criterion used to partition the variable set in the Group 3
strategies moves forward in micro-periods. This criterion implies
a higher number of iterations, but smaller sub-models. For exam-
ple, if strategy G1.1 is applied to model P2SMM, there are T itera-
tions and sub-models with j St j

P
mðj am j þ j bm jÞ binary variables

each, and if strategy G3.1 is applied, there are N iterations and sub-
models with

P
mðj am j þ j bm jÞ binary variables each. However,

fixing a variable of a given micro-period also reduces the heuristic
flexibility. The results obtained testing strategies G3.1–G3.3 were
not good compared to the ones in Groups 1 and 2. For some in-
stances, they even failed to produce feasible solutions. Therefore,
these results were not included in the computational tests de-
scribed in the next section.
5. Computational tests

In this section we present and analyze the computational re-
sults of the solution approaches presented in Section 4, applied
to solve real instances of the production planning problem of Plant
A. The P2SMM model (Section 3) and the RA and RF algorithms
(Section 4) were coded in the AMPL modelling language (Fourer
et al., 1993). The P2SMM model and the sub-models necessary in
the RA and RF algorithms were solved using the optimization sys-
tem CPLEX version 10.0 (Ilog, 2006). At each iteration of algorithms
RA and RF, a mixed integer optimization model needs to be solved.
Although generally simpler than model P2SMM, these models are
still difficult to solve. Therefore, if they were not solved to optimal-
ity in a pre-specified amount of time, their execution was stopped
and the best solution was analysed. The runs were executed using
an Intel Pentium 4, 1.0 GB de RAM, 3.2 GHz.
5.1. The test bed

Several visits to Plant A were made in order to understand its
production processes and to collect the necessary data to simulate
its lot sizing and scheduling problem. Data such as product de-
mands, changeover times in both stages, tank and machine capac-
ities, among others, were collected during the visits. Several
interviews with workers from different departments of the plant
were conducted in order to obtain the appropriate information.
For reasons of confidentiality, some values were modified to pro-
tect interests of the company. The data was used to generate 15 in-
stances. Each period of the planning horizon refers to one
production week.

The first instance (P1) was generated based on data related to
two machines that can produce items in common. The first one
(machine 1) can produce 23 items and the second one (machine
2) only 10 out of these. That is, there are 13 items that can only
be produced on machine 1. Eighteen different flavours are neces-
sary to produce this set of items. Machine 1 was available for four
working days per week (total of 5760 minutes per week) and ma-
chine 2 for six working days (total of 8640 minutes per week). It
was estimated that the tank could have up to five changeovers
per day. Taking the average working days (5 days) of the machine,
it is possible to have up to 25 changeovers per week. The product
demand data for instance P1 is associated with three weeks. There-
fore, this instance has three macro-periods (3 weeks) with a total
of 75 micro-periods (25 per macro-period). The production sched-
uling for this instance was provided by Plant A, making the com-
parison with the solution approaches tested possible.

Four other instances (P2–P5) were generated by modifying part
of the data used in instance P1. In instance P2 the inventory costs
es for the soft drink integrated production lot sizing and ..., Eur-
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Table 2
Instances dimensions P1–P15

Model Variables Binary variables Constrains

P2SMM 86,359 4,575 86,140
P1SMM 54,559 4,575 49,544

Table 3
Runs with different CPLEX parameters

Name Default Intensive use of
CPLEX heuristics – on

Cutting planes
generation – off

Pre-processing
– off

Run 1 �
Run 2 � �
Run 3 � �
Run 4 � �
Run 5 � � �
Run 6 � � �

Table 4
Results for different CPLEX strategies – instance P1

Strategy P2SMM (Z) GAP (%) RA (Z) GAP (%)

Run 1 631.507 98.4 524.784 98.0
Run 2 523.850 98.0 544.068 98.0
Run 3 652.568 98.5 429.542 97.6
Run 4 640.902 98.4 461.918 97.7
Run 5 724.378 98.6 473.698 97.8
Run 6 564.283 98.2 450.970 97.7

8 D. Ferreira et al. / European Journal of Operational Research xxx (2008) xxx–xxx

ARTICLE IN PRESS
of P1 were doubled, in instance P3 the backorder costs of P1 were
doubled, in instance P4 the total demand of each item in the plan-
ning horizon of P1 was randomly redistributed among the three
periods, and in instance P5 the machine capacities were reduced
by 25%.

The remaining ten instances (P6–P15) are based on product de-
mand data related to a period of 30 weeks. Each one of these in-
stances is associated with three consecutive weeks. Instances P6,
P7, P14 and P15 are associated with periods of higher demands
when compared to P8–P13. Except for the demands, all the other
parameters used in these instances are the same ones used to gen-
erate instance P1. More details on the test bed (e.g. AMPL codes,
data, etc.) are given in Ferreira (2006). All the 15 instances of mod-
els P2SMM and P1SMM (used in Step 1 of algorithm RA) have the
same dimensions, as shown in Table 2. Note that the number of
variables and constraints of the models are relatively large.

5.2. Results

The computational experiments were divided into three parts.
First, all the solution approaches were applied to solve instance
P1 and compared to the company solution. Instances P1–P5 were
used to evaluate the solution strategies (algorithms RA and RF).
The best solution strategies were then used to solve instances
P6–P15. To simulate Plant A practice, the maximal execution time
for solving each instance of the P2SMM model by CPLEX, algorithm
RA and algorithm RF, was set to 4 hours. In general, the soft drink
lot sizing and scheduling are prepared three to four days in ad-
vance and, according to the production manager it takes around
4 hours to be completed. Therefore, this time limit was used only
as a time reference and it is considered acceptable for the decisions
involved. In practice the algorithm could also run automatically
overnight for more than 4 hours.

All the relax-and-fix strategies presented in Table 1 were ap-
plied to solve the models P2SMM and P1SMM (Step 1 of algorithm
RA). To have a fair comparison, the execution time was divided as
follows. The maximum execution time for algorithm RF when ap-
plied to solve the P2SMM model was set to 3 hours. The relax-
and-fix solution was then used as a first integer solution in CPLEX,
which was executed for another hour. In the RA algorithm, algo-
rithm RF was executed for at most 3 hours and only to solve the
model in Step 1. The model in Step 3 was then solved by CPLEX
with a maximum of 1-hour execution time (maximum of 4 hours
to execute algorithm RA).

5.3. Results for instance P1

Six CPLEX strategies were used to solve the P1 instance of mod-
el P2SMM and the P1 instances of the sub-models in Steps 1 and 3
of algorithm RA. The CPLEX system allows for the adjustment of
various parameters of its branch and cut algorithm. In this test
we compared the performance of the subroutines to find primal
bounds (heuristics), the pre-processing subroutines, and the sub-
routines to obtain dual limits (cutting planes generation). The sys-
tem default parameters automatically decide when to apply these
subroutines to solve a problem. The symbol ‘‘�” in Table 3 indi-
cates which one of the above subroutines was activated or deacti-
vated. For example, the use of the CPLEX strategy run 5 means that
the instance was solved by the CPLEX default parameters, except
Please cite this article in press as: Ferreira, D. et al., Solution approach
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for the intensive use of the CPLEX heuristic and the deactivation
of the cutting plane generation subroutines.

The total cost values (in thousands of monetary units) and the
corresponding integer gap for each one of the six CPLEX strategies
applied to solve model P2SMM and the models associated with
algorithm RA are shown in Table 4. The gaps were computed by
formula: 100(Z � Zlb)/Z, where Z and Zlb are the values of the best
integer solution and the best lower bound obtained by CPLEX. As
discussed in Section 5.1, instance P1 is the only one of the problem
sets for which we are aware of the corresponding production sche-
dule used by Plant A. This company solution meets all product de-
mands with no delays, yielding a total cost of 422.7 in thousands of
monetary units. Comparing this solution with the ones given in Ta-
ble 4, we note that all the six CPLEX strategies supplied solution
values worse than the company one. The solution values given
by algorithm RA are better than model P2SMM for all but one
CPLEX strategy (run 2). However, the associated gap values are
too high (P98.0% for P2SMM and P97.6% for RA), which indicates
that the linear relaxations of the models are very weak and the to-
tal execution time was not enough for CPLEX to find good primal
bounds. The best three strategies for P2SMM were run 2, run 6
and run 1, and for RA they were run 3, run 4 and run 6. Among
the best strategies, only two of them (runs 4 and 6) make intensive
use of the CPLEX heuristics. Moreover, the variation of the gap va-
lue among the first three strategies (run 1–run 3) was between
97.6% and 98.5%, while among the last three the gap value was be-
tween 97.7% and 98.6% for both P2SMM and RA (60.9%). These re-
sults indicated the need to further explore the model structure to
develop specific solution strategies and justify the need for algo-
rithms RA and RF.

The solutions obtained with the intensive use of the CPLEX heu-
ristic (run 4–run 6) were not strongly better than the ones given by
the other three strategies. Therefore, in the remaining part of the
tests, CPLEX was used with the parameters defined in run 1–run
3. All the relax-and-fix strategies given in Table 1 were combined
with the CPLEX strategies and applied to solve the P1 instance of
model P2SMM and the P1 instance of the sub-model in Step 1 of
the RA algorithm. Due to space limitation, only the solution values
that are better than the company one are presented (all the other
results can be found in Ferreira (2006)). The P2SMM allows for
backorders and since the solution value given by Plant A does
not include backorder costs, a version of the problem without
backorders was also solved. Table 5 summarizes all the runs exe-
cuted presenting the best solution values (total cost in thousands
of monetary units) with and without backorders (Z and Znb, respec-
es for the soft drink integrated production lot sizing and ..., Eur-
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Table 5
Best solution values – instance P1

Approach Strategy Z Percentage (%) Znb Percentage

P2SMM Run 1_G2.7 384.081 9.1 529.866 �25.3
Run 3_G2.1 413.415 2.2 511.965 �21.1

RA Run 1_G1.1 339.793 19.6 453.901 �7.4
Run 1_G1.3 346.671 18.0 630.318 �49.1
Run 1_G1.5 380.754 9.9 483.760 �14.4
Run 1_G2.1 327.795 22.5 311.469 26.3
Run 1_G2.8 334.264 20.9 367.402 13.1
Run 2_G1.2 403.162 4.6 418.593 1.0
Run 2_G1.5 323.086 23.6 482.115 �14.1
Run 2_G2.1 306.834 27.4 342.556 19.0
Run 2_G2.8 311.553 26.3 344.949 18.4
Run 3_G2.1 379.642 10.2 363.221 14.1
Run 3_G2.8 324.859 23.1 346.717 18.0

Table 6
Best solutions values for instances P1–P5

Instances Run 1 Run 2 Run 3

P2SMM P1 384.081 467.257 413.415
G2.7 G2.7 G2.1

P2 490.303 472.918 556.104
G2.7 G2.1 G2.7

P3 445.063 467.173 415.605
G2.7 G2.1 G2.1

P4 402.984 470.560 496.267
G2.6 G2.1 G2.6

P5 603.706 738.698 762.777
G2.7 G2.7 G2.6

Average 465.227 523.321 528.834

RA P1 327.796 306.834 324.860
G2.1 G2.1 G2.8

P2 298.972 276.185 351.690
G2.1 G2.8 G2.1

P3 332.035 290.841 366.926
G2.8 G2.1 G2.1

P4 314.402 317.599 351.833
G2.1 G2.1 G2.1

P5 366.486 379.529 348.554
G2.1 G2.1 G2.1

Average 327.938 314.197 348.773

Table 7
Solution values for instances P6–P15 – Z (pw%)

Nome P2SMM run 1_G2.7 RA run 2_G2.1

P6 663.939 (20.7%) 526.473 (0.0%)
P7 591.466 (13.9%) 509.464 (0.0%)
P8 569.571 (10.5%) 509.668 (0.0%)
P9 685.703 (39.0%) 412.237 (0.0%)
P10 474.031 (9.3%) 429.868 (0.0%)
P11 579.246 (50.1%) 289.170 (0.0%)
P12 436.811 (0.0%) 491.725 (12.6%)
P13 621.971 (40.6%) 369.540 (0.0%)
P14 588.450 (23.6%) 449.511 (0.0%)
P15 671.317 (33.5%) 446.194 (0.0%)

Average 588.250 443.385
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tively). The first column in Table 5 indicates the solution approach,
the second one shows the CPLEX and the relax-and-fix combina-
tion (CPLEX_RF), the third column the Z value, the fourth and sixth
column the percentage by which the given solution is better (or
worse) than the company’s one. The fifth column presents the Znb

value. The best solution values are highlighted in bold.
Observe in Table 5 that the RA algorithm combined with run

2_G2.1 presented the best solution value when backorders are al-
lowed. When backorders are not allowed, the RA algorithm is still
better than the direct solution of P2SMM. However, it is 26.3% bet-
ter than the company’s one when combined with run 1_G2.1. It is
interesting to note that the inventory and changeover costs in this
solution are both smaller than the ones in the solution from the
company. In general, the RA algorithm provided more competitive
solutions, even when backorders are allowed. All together, there
were 20 solutions that were better than the company’s one, seven
without backorders. Therefore, the proposed model and solution
approaches are competitive with the industrial practice. Neverthe-
less, the associated gap is still high, above 96%.

5.4. Results for instances P1–P5

All the solution strategies used to solve instance P1 were also
applied to solve instances P2–P5. However, only the best results
are presented in Table 6. Below each solution value (Z, in thou-
sands of monetary units), the used relax-and-fix strategy is shown.
Note that since only the tank capacity constraints are included in
stage I of P1SMM model (used in Step 1 of the RA algorithm), the
relax-and-fix strategy G2.7 had to be adapted and renamed as
G2.8 in order to be used in RA. The best solution value for each in-
stance is highlighted in bold. Among the 15 relax-and-fix strategies
proposed in Section 4.2, four strategies provided the best solution
values. For P2SMM the best relax-and-fix strategies were G2.1,
G2.6 and G2.7, and for RA the best ones were G2.1 and G2.8. In gen-
eral, for P2SMM, the relax-and-fix strategies provided best results
when combined with run 1, while for RA the best relax-and-fix re-
sults were obtained with run 2 (three out of five instances for both
approaches). Although the results are non-uniform, it is possible to
point out the best combination CPLEX_RF for both P2SMM and RA,
which are, respectively, run 1_G2.7 and run 2_G2.1.

5.5. Results for instances P6–P15

Considering the results in Table 6, the P6–P15 instances were
solved using only the combination run 1_G2.7 for P2SMM and
run 2_G2.1 for RA. Table 7 presents, for each instance, the solution
value (Z, in thousands of monetary units) and the percentage (pw)
by which the solution is considered worse when compared to the
one given by the other approach. The best solution for each in-
stance is considered to be 0% worse.
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The RA algorithm gave the best solution value for nine out of the
ten instances solved, which are up to 50.1% better than the ones gi-
ven by P2SMM. The average solution values are also the smaller
ones. The results confirm the superiority of the RA algorithm when
compared to the direct solution of the P2SMM model instances.
However, it is worth mentioning that, for all instances P1–P15,
the gap between the best feasible solutions of model P2SMM
(found within the time limit) and its linear relaxation solution is
over 90%. This fact suggests that there is scope for further research
exploring specific solution approaches. Plant A did not provide the
corresponding production lot sizes and schedules to these in-
stances. Therefore, it was not possible to compare the solution val-
ues obtained by the proposed approaches used to solve instances
P6–P15 to the company’s ones.

5.6. Overall results

Forty five combinations of CPLEX and relax-and-fix strategies
were proposed and tested in two approaches (direct solution of
model P2SMM and the RA algorithm) to solve actual instances of
the lot scheduling problem of a soft drink plant. For the first five
instances tested (P1–P5), the RA algorithm provided the best re-
sults with different CPLEX and relax-and-fix strategies. The best
solution found for the practical instance, P1, was found by the RA
algorithm with the combination run 2_G2.1 and it is 27.4% better
than the solution used in the soft drink plant.
es for the soft drink integrated production lot sizing and ..., Eur-
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From the results for instances P1–P5 two strategies were se-
lected to solve the remaining 10 instances, direct solution of model
P2SMM with the combination run 1_G2.7 and the RA algorithm
with run 2_G2.1. The latter approach provided the best solutions
for 9 instances. These results showed that the RA algorithm is bet-
ter than the direct solution of model P2SMM. They also showed
that solution strategies that explore the problem structure can im-
prove the performance of general-purpose optimization software.

6. Final remarks

In this paper a two stage multi-machine lot-scheduling model
(P2SMM) is presented to solve the production-planning problem
of soft drink plants. The mixed integer programming model pro-
posed considers that the production bottleneck alternates between
two stages: liquid flavour preparation and bottling. Besides the
bottleneck variation, the model P2SMM also considers the syn-
chronisation between these two stages and integrates the lot sizing
and scheduling decisions. The proposed model is useful to repre-
sent the problem and showed the limitations of the available gen-
eral-purpose optimization software.

A relaxation algorithm (RA) and various relax-and-fix strategies
that explore the model structure were proposed and used to solve
real instances of the problem. The procedures were capable of pro-
viding solutions that are up to 27.4% better than the solution used
in the Brazilian soft drink plant studied. However, the integrality
gap of the solution values obtained by all the solution approaches
tested shows scope for further research.

The production schedule in the P2SMM model is obtained by
dividing a given period into micro-periods. Another interesting
strategy is to use the asymmetric travelling salesman problem to
obtain the items scheduling in each period of the lot sizing prob-
lem. Toso et al. (submitted for publication) explore this idea in
the solution of an integrated lot sizing and scheduling problem
in the animal nutrition industry with encouraging results. Pochet
and Wolsey (2006) present various solution methods for produc-
tion planning problems based on mixed integer models. A classifi-
cation of lot sizing problems and a subroutine library for problem
reformulations, LS-LIB, are also presented. An interesting topic for
future research is to use the LS-LIB to reformulate some of the
P2SMM substructures. Other heuristic methods based on local
branching and/or variable neighbourhood search can also contrib-
ute to improve the proposed solution approaches.
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