Arsenic Removal Using Synthetic Adsorbents: Kinetics, Equilibrium and Column Study

Aurora Silva¹, Olga Freitas¹, Sónia Figueiredo¹, Bie Vandervliet², Adelaide Ferreira³, and António Fiúza⁴

¹REQUIMTE, Instituto Superior de Eng. Porto, Rua Dr. Bernardino de Almeida, 431, 4200-072 Porto, Portugal,

² Karel de Grote-Hogeschool, Katholieke Hogeschool Antwerpen, Van Schoonbekestraat 143, B-2018 Antwerpen, Belgic

³INETI, Lab. S. Mamede de Infesta, 4466-956 S. Mamede de Infesta, Portugal.

⁴CIGAR, Faculdade de Eng. da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

INTRODUCTION

Arsenic contaminations are seldom of anthropogenic origin (mining, wood preservatives,...) being generally caused by the natural dissolution of minerals in surface or underground waters. In natural waters, arsenic is present either as As(III) or As(V). Both ions are toxic and carcinogenic. High concentrations of arsenic in the groundwater (>1000 mg/L) of natural origin have been found in some areas in countries like Bangladesh, West Bengala, India, Mexico and some areas in Argentina, Chile and U.S.A.

The main objective of this research is to establish a comparison between the performance of different sorbents for the removal of As(V): (i) a reference sorbent commercially known as ARM-300 (BASF Corporation) and two synthetic sorbents prepared at the laboratory, (ii) the hydrous ferric oxide (HFO) in suspension and (iii) loaded onto granular activated carbon (GAC). The research focused in the kinetics and chemical equilibrium using batch scale testing for the three systems.

EXPERIMENTAL

Materials

- The suspension of hydrous ferric oxide (HFO) was prepared immediately prior to each adsorption experiment. A solution of 0.5M NaOH was added drop wise with stirring to 150ml of 0.05 M Fe(NO₃)₃. The total volume of 0.5 M NaOH added was 45 ml; the final pH was approximately 8 (Wilke and Hering, 1996).
- Hydrous ferric oxide loaded onto GAC (HFO/GAC) was prepared using Fe(NO₃)₃. 9H₂O as a precursor for iron oxide incorporation into the pores of granular-size porous GAC. The GAC used was Riedel-de-Haën (reference 18002). The procedure adopted to achieve homogeneous impregnation was proposed by Mondal et al. (2008): 1.5 mL of ferric nitrate solution at concentrations of 1 g/mL was dispersed over 1 g of dried GAC and mixed thoroughly; GAC was then dried at room temperature for 24 h before placement in a rotary evaporator for curing (Fe oxide/hydroxide precipitation) at 80 °C for 12 h. After Fe oxide/hydroxide precipitation, the GAC was cooled to room temperature and then washed thoroughly with deionised water. The washed GAC was dried at room temperature for 24 h. Following this procedure, the Fe oxide/hydroxide precipitation occurred inside the pore structure of the GAC at elevated temperature in the acidic condition, without adding NaOH (Mondal et al., 2008).
- As a **reference material**, a specific adsorbent, **ARM 300**, was used whit no further preparation. ARM300 was purchase to BASF cooperation.

Methods

Arsenic determinations were carried by inductively coupled plasma optical emission spectroscopy with coupled hydride generation. Samples not analyzed on the same day as the adsorption experiment were acidified to about pH 1 with concentrated HCl and stored in acid washed high density polyethylene containers. All samples were analyzed within 7 days of collection.

Experiment	Adorbent	Т	$\mathbf{m}_{adsorbent}$	V	$pH_{initial}$	C _{initial}	Q
		(ºC)	(g)	(mL)		(ppb)	(mL/min)
	HFO	20	2.409	651	3.6	5000	
Kinetic	HFO/GAC	20	5.005	1000	3.0	500	
	ARM 300	20	5.000	1000	4.3	1000	
	HFO	20	0.010-0.185	100		5000	
Equilibrium	HFO/GAC	20	0.010-0.175	100		1000	
	ARM 300	20	0.010-0.175	100		5178	
Column	HFO/GAC	20	5.681		3.8	4674	8.00

A summary of the experimental conditions are presented in table 1.

RESULTS and DISCUSSION

Figure 1- Pseudo - first and pseudo-second order kinetics models of arsenic adsorption into (A) HFO, (B) HFO/GAC and (C) ARM 300

	Pseudo-first order model				Pseudo-second order model			
Adsorbent	k ₁	q _e	s ²	r ²	k ₂	q _e	s ²	r ²
	(min⁻¹)	(µg/g)			(g/(µg. min))	(µg/g)		
HFO	0.6 ± 0.2	1115 ± 48	4101	0.969	8×10 ⁻⁴ ± 3×10 ⁻⁴	1151 ± 33	1429	0.989
HFO/GAC	0.07 ± 0.02	94 ± 4	26.5	0.964	4×10 ⁻² ± 3×10 ⁻¹	97 ± 7	214	0.798
ARM 300	0.05 ± 0.03	1288 ± 171	37396	0.846	7×10 ⁻⁵ ± 6×10 ⁻⁵	1403 ± 183	21079	0.900

Figure 2- Langmuir and Feundlich equilibrium models of arsenic adsorption into (A) HFO, (B) HFO/GAC and (C) ARM 300

Table 3 –	Parameters	obtained for	I anomuir and	Freundlich	models
		A REPORT OF A REPORT OF			

	Langmuir isotherm Fre			aundlich isotherm				
Adsorbent	q∟ (mg/g)	b (L/µg)	s ²	r ²	K _F ((mg/g)(L/μg) ^{1/n})	n	s ²	r ²
HFO	38 ± 2	0.3 ± 0.1	4.120	0.979	13 ± 6	6±3	17.56	0.913
HFO/GAC	5.5 ± 0.5	0.06 ± 0.02	0.047	0.989	1.8 ± 0.9	5 ± 3	0.197	0.956
ARM 300	49 ± 20	0.06 ± 0.06	47.39	0.907	6 ± 6	3 ± 2	52.22	0.804

Model	Parameters	HFO/GAC
Yoon-Nelson	k _{YN} (min⁻¹)	$4.5 \times 10^{-3} \pm 6 \times 10^{-4}$
(YN)	T _{YN} (min)	513± 33
	s ²	14×10 ⁻⁴
	r ²	0.952
Thomas	k _{TH} (mL(μg min)⁻¹)	10×10 ⁻⁴ ± 2×10 ⁻⁴
(T)	q _{TH} (μg g⁻¹)	$\textbf{3376} \pm \textbf{219}$
	S ²	14×10 ⁻⁴
	r ²	0.952
Yan	a _v	1.2 ± 0.1
(Y)	q _Y (µg g⁻¹)	$\textbf{3598} \pm \textbf{268}$
	s ²	50×10 ⁻⁵
	r ²	0.985
Fisher' test	F _{cal} (YN / Y; T / Y)	28
	Fe	2.27

Figure 7 - Column models for HFO/ GAC

AKNOWLEDGMENTS

The authors would like to thank to FCT for the financial support of the project -PTDC/ECM/70216/2008

REFERENCES

[1] Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes, Jennifer A. Wilkie, Janet G. Hering Colloids and Surfaces A: Physicochemical and Engineering Aspects 107(1998) 97-110

[2] Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, Iron and manganese from simulated ground water by Fe³⁺ impregnated activated carbon, P. Mondai, C.B. Majumder, B. Mohanty, Journal of Hazardous Materials 150 (2006) 695–702