

Advanced Methodology for Estimation of Economic Seismic Losses in RC Buildings

Tuba Tatar

Mário António Lage Alves Marques Mário Jorge de Seixas Pimentel José Miguel de Freitas Castro

August, 2017

Outline

- Motivation
- Objective
- Numerical Modelling
- Calibration Process
- Results
- Conclutions

Motivation

Framework of Seismic Risk Assessment

Objectives

- Forming systematic calibration processes
- Defining a set of damage limit states
- Developing an analytical damage-to-loss methodology
- Providing objective seismic vulnerability assessment
- Establishing a database for building inventory

Numerical Modelling

1st Experimental Test

- Performed by Shima (2005)* (V1, V2, V3 &V4)
- Mesh Sensitivity
- Pushover Analysis
- Compression Fracture Energy
- Geometric Nonlinearity
- Bond-Slip Action

Denponpang, T. & Shima, H., 2005, "Effect of axial load on ductility of reinforced concrete columns", 30th conference on our world in concrete & structures, Singapore

Numerical Modelling

2nd Experimental Test

- Performed at FEUP,Rodrigues (2012)*
- Pushover Analysis
- Cyclic Analysis
- GeometricNonlinearity
- Bond-Slip Action

Constitutive Model for Concrete

- Brick elemets with 27 Gauss points are selected (a)
- Rotating smeared crack model is adopted
- Nonlinear material properties are used (b&c)

Constitutive Model for Steel

- Von Mises equivalent plastic strain parameters are used (d)
- Maekawa buckling model is adapted for the bars under compression

*Diana 9.6 User Manual

Calibration Process

Calibration steps	Investigated parameters and values		
	Fine mesh element size	$3x3x2.5 \text{ cm}^3$	
Mesh sensitivity	Coarse mesh element size	6x6x5 cm ³	
Compression fracture	$G_c = \frac{h \times f_c' \times \varepsilon_u}{2}$ 50,60,70,80 kN		
Compatrio marling a ritro	2		
Geometric nonlinearity	Including the P-∆ effect		
	Confined-good bonding	The parameters are obtained from CEB-FIB 1993 and clear rib	
Bon-slip action	Confined-others		
	Unconfined-good		
	bonding	spacing is assumed 20	
	Unconfined-others	mm	

Results

Mesh Sensitivity

Compression Fracture Energy

Geometric Nonlinearity

$$V = P + N \times \frac{x}{a}$$

$$x = (z + a) \times \sin \theta$$

$$\theta = \tan^{-1} \left(\frac{\Delta}{Z} \right)$$

Example of Rodrigues

Example of Shima, V4

^{*} Denponpang, T. & Shima, H., 2005, "Effect of axial load on ductility of reinforced concrete columns", 30th conference on our world in concrete & structures, Singapore

Bond-Slip Action

	Unconfined		Confined	
	good bond	others	good bond	Others
s1	0.6	0.6	1.0	1.0
s2	0.6	0.6	3.0	3.0
s3	1	2.5	clear rib spacing	
α	0.4	0.4	0.4	0.4
$ au_{ ext{max}}$	2.0√fck	1.0√fck	2.5√fck	1.25√fck
$ au_{\mathbf{f}}$	$0.15 \tau_{max}$	$0.15 \tau_{max}$	$0.40 \ \tau_{max}$	$0.40~\tau_{max}$

("CEB-FIB model code for concrete structures," Thomos Telford, Lausanne, 1993)

$$\tau = \tau_{max} \left(\frac{s}{s_1}\right)^a, for \qquad 0 \le s \le s_1$$

$$\tau = \tau_{max}, for \qquad s_1 < s \le s_2$$

$$\tau = \tau_{max} - \left(\tau_{max} - \tau_f\right) \times \left(\frac{s - s_2}{s_3 - s_2}\right), for \qquad s_2 < s \le s_3$$

$$\tau = \tau_f, for \qquad s_3 < s$$

("CEB, "RC elements under cyclic loading," Thomas Telford, London , 1996)

Effects of Bond-Slip on Crack Pattern

V1-no axial load

Effects of Bond-Slip on Crack Pattern

V4- 90% axial load level of Nb

Physical Damages

Damage States	Visible damage (for columns)		
		Hairline cracks w<0.1 mm	
Slight	(503)	Cracks 0.1 mm <w<0.8 mm<="" td=""></w<0.8>	
Moderate		Crushing of concrete in the joints + Light Spalling of concrete	
	The same	Spalling of concrete	
Severe	A LAMB	Buckling of bars	
	11 A	Fracture of bars	
Collapse		Element completely out of its original position	

Conclusions

- There is a good agreement between experimental and numerical analyses in terms of global and local demands,
- The FE models could be considered insensitive to mesh size. Fine meshing is however used due to stability considerations,
- Compression fracture energy affects the ductility along backbone curve,
- Geometric nonlinearity plays a role on strength capacity and its influence increases with the lateral displacement,
- Bond-slip effect greatly influences the crack pattern even though its influence cannot be observed in global sense significantly.