

Analysing the global response of RC buildings for earthquakes with arbitrary orientations

Despoina Skoulidou

Xavier Romão

2018

Structural analysis of 3D buildings: EC8 provisions

- Simultaneous application of two components of ground motion:
 - Along the structural axes, but...
 - ..underestimate structural demand.
 - Angle θ that leads to the highest demand, but...
 - ..how to calculate?
 - ..different for each element and changes with
 - Structure and number of storeys
 - Ground motion
 - Intensity
 - Behaviour factor..

Structural analysis of existing 3D buildings: proposal

Conceptually:

Assessment of the behaviour of existing buildings

Design of new buildings

- For the purpose of assessement and taking into account the angle of incidence of the seismic action:
 - Definition of one demand parameter able to describe average global response for all angles of incidence
 - Determine the critical angle for this parameter
 - Examine the demand at the element level for the critical angle

Structural analysis of existing 3D buildings: proposal

- Definition of one demand parameter able to describe average global response for all angles of incidence
 - Proposed parameter: displacement of the centre of mass, δ_{CM}
 - Global response: average displacement of all columns, δ_{ave}
 - Hypothesis: Both response quantities attain their maximum value for the same angle of seismic incidence, $\theta_{\delta_{CM}=\max}=\theta_{\delta_{ave}=\max}$

Analysed Structures

Parametric analysis

- Different positions of the Centre of Mass with respect to the elastic centre of the structure and
- Different angles of incidence 0° to 360° in steps of 5°
- Two pairs of ground motions

Results

- The pattern of displacements of the centre of mass and of the average displacements of all columns is similar.
- The hypothesis was verified for most of the cases studied for all structures.
- When the angles did not coincide, the **error** between the **maximum average displacement** and the **displacement when** $\theta_{\delta_{CM}=max}$ was analysed..

% Error in the max average displacement and the displacement when $\theta_{\delta_{CM}=max}$

% Error in the max average displacement and the displacement when $\theta_{\delta_{CM}=max}$

Conclusions

- The proposed global demand parameter represents adequately the average global response in single storey buildings
- Small errors in the relevant displacements when the angles do not coincide
- Further research required:
 - More structural configurations
 - Demand at the member level.
 - Preliminary results show that the demand at the member level presents higher discrepancies that cannot be neglected.
 - Definition of criteria/limits up to which this hypothesis is valid at the member level.