

Pedro Gil Marques de Queirós Ferreira

Elsa de Sá Caetano

2016

Motivation

- Growing use of tensile membranes in special structures has brought increased demand in the assessment of their structural behavior
- Membrane structures are characterized by: high flexibility, leading to strong geometric nonlinear behavior; complex shapes; slight prestress; orthotropic materials; and construction methods
- Recent damages due to aerodynamic and ponding effects of these lightweight structures and lack of standards motivated this work

- Objectives & Tasks
 - The work focused two main aspects
 - Form-finding
 - Characterization of the wind effects in membranes
 - Two types of examples
 - Roof of a multisport arena
 - Role of prestress & orthotropy on structural behavior
 - Wind effects considering generation of stochastic wind loads and numerical evaluation of membrane response through a simplified model, characterizing the aerodynamic mass, stiffness and damping
 - 470 Sailboat
 - Develop and validate a methodology of form-finding of a boat sail in real-time based on strain measurements

- Case studies
 - Roof

Sailboat

- Structural form-finding and optimization methods
 - Force Density Method (FDM): ¹IFDM and ²nIFDM
 - Independent of the material properties and linearize the Equilibrium equations using a force density coefficient q = t/l for the truss elements

$$[C_s X_f q F]^{1,2} + Q_z^2$$

XtI

- Surface Stress Density Method
 - Analogous to FDM setting a surface stress density coefficient q_s for the constant strain triangle elements

$$C_s X_f X_{ini} q_s F$$

$$C_s X_f X_{ini} q_s F$$
 $\longrightarrow X_{end} t I S \sigma = 4q_s S$

- Dynamic Relaxation Method: Viscous & Kinetic model
 - Explicit direct time-integration of the dynamic Equilibrium equations using central finite differences.

$$C_s X_f X_{ini} F (E A t_i)_{truss el.}$$
 \longrightarrow $X_{end} t I$

- Linear Force Density Method (IFDM)
 - Example of a cooling tower
 - Solution is obtained iteratively: $r_{inf} \approx 9$ m, $r_{sup} \approx 7$ m, $H_c \approx 21$ m e $H_m \approx 25$ m

Suspension cables

Upper compression ring

Lateral cable net (horizontal or circumferential and vertical cables)

Mast

Lower compression ring

Configuração	a)	b)	c)	
q _s (N/m)	400	400	400	
q _{comp} (N/m)	-2800	-3000	-3000	
q _{c,v} (N/m)	100	100	1000	
q _{c,h} (N/m)	100	100	100	

- Viscous Dynamic Relaxation Method
 - 1 Evaluation of the critical damping:

$$f = \frac{1}{N\Delta t}$$

$$f = \frac{1}{N\Delta t} \qquad c_{crit} = 4\pi m f$$

2 – Evaluation of the static equilibrium response

$$\xi = \frac{c}{c_c} \Rightarrow \xi \begin{cases} = 0 & \textit{undamped vibration} \\ < 1 & \textit{underdamped vibration} \\ = 1 & \textit{critically damped vibration} \\ > 1 & \textit{overdamped vibration} \end{cases}$$

Kinetic Dynamic Relaxation Method

$$U_k = \frac{1}{2} \left[\left(M \dot{U}_x \right)^T \dot{U}_x + \left(M \dot{U}_y \right)^T \dot{U}_y + \left(M \dot{U}_z \right)^T \dot{U}_z \right]$$

- Roof of a multisport arena
 - Tensile membrane roof structure located in Cartuja Island, Seville
 - Doubly symmetric tubular metallic structure in plan, nearly rectangular in plan 24 x 46 m², including suspended cables and calibrated rods
 - Tensile membrane made of PES/PVC, comprised by 4-top (hip. parab.) and 4-lateral modules (flat)

- Roof of a multisport arena
 - Form-finding of the membrane with prestress of 2 kN/m through all implemented methods and specialized software, and comparing the same premises of orthotropic orientations, showed slightly different results
 - Numerical simulation studies of the influence of the prestress, orientation of orthotropic directions, and Poisson coefficient evidenced significant differences on the static and dynamic responses of the membrane
 - Nonlinear dynamic analysis in time domain considering geometric nonlinearity and large displacements showed dynamic amplification coefficients R_{dyn} of about 0,8
 - Identification of wrinkles on the corners of the lateral modules due to non-economic shapes

- Form-finding of a boat sail in real-time
 - This work describes a monitoring system based on fiber optic strain gauge sensors used to reconstruct in real time the form of a sail
 - The installation of FBG sensors on a beam allows to obtain curvatures in specific cross-sections, and evaluate, by interpolation, the coordinates of the deformed beam and consequently the most significant parameters of the sail shape
 - Uncertainties related to optical technology, require the calibration and validation of the results through an alternative system.
 - Since large amplitudes of deformations are measured, the fiber optic monitoring system was validated based on a imaging based system

Conclusions

- Implementation of form-finding routines
- Application to a tensile membrane roof
- Identification of more relevant aspects of the behavior through parametric analysis
- Wind action and effects assessment
- Sail case: development, implementation and validation of an algorithm already patented for real-time assessment of sail shape. This methodology can be used for SHM of other engineering applications