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2016 CONSTRUCT PhD Workshop 

Wind Effects in Tensile Membrane Structures 

• Motivation 

– Growing use of tensile membranes in special 

structures has brought increased demand in the 

assessment of  their structural behavior 

– Membrane structures are characterized by: high 

flexibility, leading to strong geometric nonlinear 

behavior; complex shapes; slight prestress; 

orthotropic materials;  and construction methods 

– Recent damages due to aerodynamic and 

ponding effects of these lightweight structures 

and lack of standards motivated this work 
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• Objectives & Tasks 

– The work focused two main aspects 

• Form-finding 

• Characterization of the wind effects in membranes 

– Two types of examples 

• Roof of a multisport arena 

– Role of prestress & orthotropy on structural behavior 

– Wind effects considering generation of stochastic wind 

loads and numerical evaluation of membrane response 

through a simplified model, characterizing the 

aerodynamic mass, stiffness and damping 

• 470 Sailboat 

– Develop and validate a methodology of form-finding of 

a boat sail in real-time based on strain measurements 

• Case studies 

– Roof 

 

 

 

 

– Sailboat 
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2016 CONSTRUCT PhD Workshop 

Wind Effects in Tensile Membrane Structures 

– Structural form-finding and optimization methods 

• Force Density Method (FDM): 1lFDM and 2nlFDM  

– Independent of the material properties and linearize the 

Equilibrium equations using a force density coefficient q 

= t/l for the truss elements 

 

• Surface Stress Density Method 

– Analogous to FDM setting a surface stress density 

coefficient qs for the constant strain triangle elements 

 

• Dynamic Relaxation Method: Viscous & Kinetic model 

– Explicit direct time-integration of the dynamic 

Equilibrium equations using central finite differences. 

[Cs Xf  q F]1,2 + Qz
2 X t l 

Cs Xf Xini qs F 
Xend t l S σ = 4qsS 

Cs Xf Xini F (E A ti )truss el. Xend t l 
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2016 CONSTRUCT PhD Workshop 

Wind Effects in Tensile Membrane Structures 
• Linear Force Density Method (lFDM)  

– Example of a cooling tower 

 Solution is obtained iteratively: rinf  ≈ 9 

m, rsup ≈ 7 m, Hc ≈ 21 m e Hm ≈ 25 m 

Configuração a) b) c) 

qs (N/m) 400 400 400 

qcomp (N/m) -2800 -3000 -3000 

qc,v (N/m) 100 100 1000 

qc,h (N/m) 100 100 100 

 

Configuração a) b) c) 

qs (N/m) 400 400 400 

qcomp (N/m) -2800 -3000 -3000 

qc,v (N/m) 100 100 1000 

qc,h (N/m) 100 100 100 

 

Suspension cables 

Upper compression ring 

Lateral cable net (horizontal 

or circumferential and vertical 

cables) 

Mast 

Lower compression ring 
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Wind Effects in Tensile Membrane Structures 
• Viscous Dynamic Relaxation Method 

– 1 – Evaluation of the critical damping: 

 

– 2 – Evaluation of the static equilibrium response 

 

 

 

 

• Kinetic Dynamic Relaxation Method 
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– Roof of a multisport arena 

• Tensile membrane roof structure located in Cartuja Island, Seville 

• Doubly symmetric tubular metallic structure in plan, nearly rectangular in 

plan 24 x 46 m2, including suspended cables and calibrated rods 

• Tensile membrane made of PES/PVC, comprised by 4-top (hip. parab.) 

and 4-lateral modules (flat) 

 

 

Tubular section F 323x8 (mmxmm)

Tubular section F 200x6 (mmxmm)

Tubular section F 150x5 (mmxmm)

Cable F 36 mm

Calibrated rod F 25 mm

U – warp

T – fill
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– Roof of a multisport arena 

• Form-finding of the membrane with prestress of 2 kN/m 

through all implemented methods and specialized 

software, and  comparing the same premises of 

orthotropic orientations, showed slightly different results 

• Numerical simulation studies of the influence of the 

prestress, orientation of orthotropic directions, and 

Poisson coefficient evidenced significant differences on 

the static and dynamic responses of the membrane 

• Nonlinear dynamic analysis in time domain considering 

geometric nonlinearity and large displacements showed 

dynamic amplification coefficients Rdyn of about 0,8 

• Identification of wrinkles on the corners of the lateral 

modules due to non-economic shapes 
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– Form-finding of a boat sail in real-time 

• This work describes a monitoring system based 

on fiber optic strain gauge sensors used to 

reconstruct in real time the form of a sail 

• The installation of FBG sensors on a beam allows 

to obtain curvatures in specific cross-sections, 

and evaluate, by interpolation, the coordinates of 

the deformed beam and consequently the most 

significant parameters of the sail shape 

• Uncertainties related to optical technology, 

require the calibration and validation of the results 

through an alternative system. 

• Since large amplitudes of deformations are 

measured, the fiber optic monitoring system was 

validated based on a imaging based system 
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Conclusions 

• Implementation of form-finding routines 

• Application to a tensile membrane roof 

• Identification of more relevant aspects of 

the behavior through parametric analysis 

• Wind action and effects assessment 

• Sail case: development, implementation 

and validation of an algorithm already 

patented for real-time assessment of sail 

shape. This methodology can be used for 

SHM of other engineering applications 


