

Assessment of seismic design methodologies for steel moment frames

Luís Rodrigues de Macedo

Supervisor: Prof. José Miguel Castro

PhD 2016

Earthquakes and Steel Structures

 Earthquakes can induce significant levels of damage in steel structures, eventually leading to local/global collapse.

- Damage should not be a concern on itself! It is actually implicit in seismic design when one adopts a behaviour factor (q).
- Critical is to control the level of damage for a pre-defined seismic intensity level (e.g., return period).

Performance-Based EQ Engineering

- This concept was introduced during the 1990s after the occurrence of the 1994 Northridge and 1995 Kobe earthquakes.
- Main idea is to define performance objectives which basically consist of specifying performance level for a given level of seismic hazard.

Assessment of seismic design methodologies

- Eurocode 8
 - Performance requirements (No-collapse & Damage Limitation)
 - Compliance criteria (ULS & SLS)
- However some problems have been identified:
 - Same structure in different seismic zones (eg. Porto and Lagos)
 - Contrary to expected, higher behaviour factor results in heavier structures

Assessment of seismic design methodologies

- Available assessment methodologies
 - FEMA P695 Quantification of building seismic performance factors
 - FEMA P58 Loss assessment methodology
- Key Elements

Archetypes

Six different layouts (2, 3, 4, 5 and 8 storeys)

- Three different locations: Porto, Lisbon and Lagos
- Designed according to EC8 using three different behaviour factors: 4, 6.5 and IFBD

A TOTAL OF 270 STRUCTURES

Modelling Strategies

Distributed Plasticity vs Concentrated Plasticity

Framework

Reliable Models

Modelling Strategies

- Distributed Plasticity vs Concentrated Plasticity
- Calibration procedure for european shape profiles

Ground Motion Selection

SelEQ: An advanced ground motion selection and scaling tool

Ground Motion Selection

Seismological Module (Conditional Spectrum generation)

Seismic Performance Assessment

System overstrength

Seismic Performance Assessment

- System overstrength
- Rotation ductility

Seismic Performance Assessment

- System overstrength
- Rotation ductility
- Collapse assessment

5 Storeys

8 Storeys

Conclusions

- New deterioration parameters of steel members with European profiles have been defined.
- An advanced ground motion selection and scaling tool have been developed
- Application of FEMA P695 validates and demonstrates the advantages of using IFBD procedure
- The developments are fully compliant and could be integrated in EC8.