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Abstract—In this article, we focus on the motion control
of an AUV formation in order to track a given path along
which data will be gathered via a computationally efficient
architecture designed based on a special MPC control scheme.
This control scheme enables the conciliation of onboard resources
optimization with state feedback control - to deal with the typical
a priori high uncertainty - while managing the formation with a
low computational budget which otherwise might have a very
significant impact in power consumption. The key idea is to
pre-compute data which is known to be time invariant for a
number of likely scenarios and store it on-board in a number of
look-up tables. Then, as the mission proceeds, sampled sensory
and communicated data is gathered and the proposed MPC
scheme allows to determine the best control to be recruited with
inexpensive computational operations which include extraction
of data from pertinent on-board look-up tables.

Index Terms—Model predictive control, Attainable set, AUV
formation control, Obstacle collision avoidance

I. INTRODUCTION

This article concerns the design of a general control scheme
for systems in which optimization, and robustness are key
requirements, and, at the same time, scarcity of computational
resources is a severe constraint. A typical, and increasingly
important class of systems are those involving Autonomous
Underwater Vehicles (AUVs), possibly networked and articu-
lated with other devices. Here, we present further refinements
of the control architecture presented in [1] for the management
and control of the formation of AUVs. This development is
in the sequel of [2] in which an MPC scheme with very low
on-line computational budget obtained by taking advantage
of time invariance of the dynamics and some environmental
features. This allows to pre-compute a priori objects which
are key for the on-line feedback control synthesis. This is
the essential feature of the attainable set based MPC scheme
that was addressed previously in [1], [3], [4]. In this way,
we accommodate in the control scheme the following features
which are extremely pertinent for most of the mission scenar-
ios involving this type robotic vehicles: (i) optimization driven,
(ii) state feedback, and (iii) computationally parsimonious.

The authors acknowledge the partial support of FCT R&D Unit SYS-
TEC - POCI-01-0145-FEDER-006933/SYSTEC funded by ERDF — COM-
PETE2020 — FCT/MEC — PT2020 - extension to 2018, and Project STRIDE
- NORTE-01-0145-FEDER-000033, funded by ERDF — NORTE 2020.

This innovative approach contrasts strongly with all those
so far proposed to AUV systems control as it will be seen in
the short state-of-the-art survey in section III. The motivation
to investigate sophisticated control schemes relies on the
need to acquire data required to understand earth biological,
geophysical, climate, as well as for security and surveillance
systems increasingly regarded as critical for a sustainable
human presence on earth. In [5], [6], some of the large classes
of challenges currently being addressed are discussed.

This article is organized as follows: In section II, we state
the AUV formation control problem in which the robotic
vehicles in a triangle formation to track a planned trajectory
along which data is gathered. In section III, we provide a
brief overview of the relevant state-of-the-art. In section IV, we
present and discuss the computationally efficient MPC scheme
for AUV motion control and point out some of its properties.
In section V, the most relevant one of this article, we present
and discuss the control architecture for control of the AUV
formation implemented with the Robust Attainable Set MPC
scheme. Some conclusions and an outline of prospective future
work are provided in the last section.

II. THE AUV FORMATION TRACKING PROBLEM

In this section we describe the AUV formation control
problem for a tracking mission. The AUV formation can be
regarded as a variable and reconfigurable generalized vehicle
and by its control we consider the control of each vehicle
and the way the formation evolves to achieve the mission
goal: gathering data by sensors carried by three AUVs in
triangle formation tracking a given path. Thus, the AUVs
motion control should be such that the integral error with
respect to a given reference trajectory and the total control
effort during a certain period of time is minimized subject to
constraints as indicated below.

The general optimal control formulation is

(P ) Minimize g(x(t0 + T )) +

∫ t0+T

t0

f0(t, x(t), u(t))dt

subject to ẋ(t) = f(t, x(t), u(t)) L − a.e.
u(t) ∈ Ω L − a.e., x(t0 + T ) ∈ Cf
h(t, x(t)) ≤ 0, g(t, x(t), u(t)) ≤ 0978-1-5386-5346-6/18/$31.00 c© 2018 IEEE



where g is the endpoint cost functional, f0 is the running
cost integrand, f , h, and g represent, respectively, the vehicle
dynamics, the state constraints, and the mixed constraints, C is
a target that may also be specified in order to ensure stability.

To see how this encompasses the AUV formation of 3
vehicles motion problem of tracking of a given reference
trajectory, just consider, for the AUV i:
• x = col(ηi, νi), and u = τ i,
• g(·) = 0, f0(t, x(t), u(t)) = (ηi(t)−ηir(t))TQ(ηi(t)−
ηir(t))+τ

iT (t)Rτ i(t), where ηir(·) is the reference trajec-
tory for the ith vehicle.

• By considering, for each vehicle (we drop the index i to
lighten the expressions), the state and the controls given
by η = [x, y, ψ]T and ν = [u, v, r]T and τ = [τu, τr]

T ,
respectively, the dynamics are those in [7] and [8]. For
details, [1].

• Other constraint types include: (i) endpoint state con-
straints, ηi(t + T ) ∈ Ct+T , (ii) control constraints,
τ i(s)∈U i, (iii) state constraints, (ηi(s), νi(s))∈Si, (iv)
communication constraints gci,j(η

i(s), ηj(s))∈ Cci,j ,∀j∈
Gc(i), and (v) formation constraints gfi,j(η

i(s), ηj(s))∈
Cfi,j ,∀j∈Gf (i).

This problem can be easily scaled for a larger number of
vehicles. The implementation is decentralized in the sense
that each vehicle has its own controller (RAS MPC scheme
in section IV) integrating two components: one underlying
its own motion and other activities, and another concerning
the cohesion of the specific formation pattern. Each vehicle
communicates acoustically with neighbors with full communi-
cation graph connectivity. Each vehicle is a node of this graph
whose arcs are the bidirectional communication links between
two vehicles. The vehicles navigate sufficiently close to each
other so that there is no loss of packets. Modes of operation:
data gathering, obstacle collision avoidance, communication,
and loitering. Each mode of operation requires its own forma-
tion pattern. Usually a MPC-like scheme provides a feedback
control synthesis enabling to conciliate sub-optimization with
feedback control. The MPC scheme consists in computing
the control action for the current time subinterval – control
horizon – at each sampling time, by solving the on-line optimal
control problem (P ) over a certain large time horizon – the
prediction horizon – with the state variable initialized at the
current best estimate updated with the latest sampled value.
Once the optimization yields an optimal control sequence, this
is applied to the plant during the control horizon. The details
of this standard MPC algorithm can be found in [4].

III. BRIEF STATE-OF-THE-ART

Although there is a vast amount of literature, a very good
reference in AUV motion control problems tat we single
out is [7]. Extended versions of these control systems for
very diverse robot craft have been considered for single and
multiple vehicles. Non-linear control theory and geometric
control provide tools that led to very popular design tech-
niques, [9]–[11]. Early on, it became clear that optimization

of resources play a key role in contexts of scarce resources
and MPC became a design approach of choice in many
application contexts. Moreover, MPC schemes inherit from
optimal control a huge flexibility which enables to handle
control system with complex dynamics, and subject to very
diverse types of constraints, like those arising in the control
of formation of vehicles. A wide variety of MPC controllers
for formations of autonomous vehicles designed to address
issues such as underwater communications failures and delays
in continuum and discrete times, centralized and decentralized
schemes, linear and nonlinear dynamics, leader-follower and
leaderless schemes, collision-free motion, output feedback,
cooperative motion, and competitive strategies, single and
multiple objectives, as well as a varied range of applications
(surveillance, exploration, tracking paths and trajectories),
have been considered in a vast literature of which [12]–[22].

In general, these approaches suffer from key pitfalls for
AUVs: (i) computationally intensive nature of the usual MPC
schemes that involves solving recursively a sequence of highly
complex optimal control problems (P) with very limited on-
board computation capabilities and energy (as stated it can
b inferred from the previous section); and (ii) the MPC
schemes are parameterized in order to ensure convergence and
stability and, in general, they are not related to onboard sensing
capabilities. Motivated by this hard challenge, the approach in
this article improves and refines the one proposed in [2] and
is an extension of [1] to formation of AUVs.

IV. ATTAINABLE SET MPC

In this section we present additional results concerning the
Attainable Set MPC (AS-MPC) scheme discussed in [1], [2]
whose two underlying key ideas are: (i) Replace the infinite
dimensional optimization problem by a sequence of finite
dimensional ones; (ii) Take advantage of time-invariant data
such as vehicle dynamics, and features of the environment
to pre-compute off-line and store on-board a reference short
term attainable set, and the value of the value function in an
appropriate grid of points to be recruited on-line as a function
of a number of real-time parameters.

Let us consider the short term “equivalent” cost functional
and the attainable set for the dynamic control system on the
time horizon [0, T ], with possibly T =∞.

Define V (t, z) := min
u∈U,ξ∈Cf

{g(ξ)+

∫ Tf

t

l(τ, x(τ), u(τ))dτ} with

x(Tf )=ξ, x(t)=z, ẋ(τ)=f(τ, x(τ), u(τ)), L-a.e.. By taking
into account the Principle of Optimality (i.e., for T < Tf , the
solution to (PTf

) restricted to the interval [t, t + T ] is also
a solution to (PT )). Thus, on [t, t + T ], problems (PT ) and
(PTf

) are equivalent, where

(PT ) Min V (t+T, x(t+T )) +

∫ t+T

t

l(τ, x(τ), u(τ))dτ

s. t. ẋ(τ) = f(τ, x(τ), u(τ)), L − a.e.
u ∈ U , and x(t) is given, and



(PTf
) Minimize g(x(Tf )) +

∫ Tf

0

l(t, x(t), u(t))dt

subject to ẋ(t) = f(t, x(t), u(t)), L − a.e.
x(Tf ) ∈ Cf , x(0) is given, u ∈ U ,

where U := {u : [0, Tf ]→ IRm : u(t) ∈ Ω}, with Ω closed.
Let t0 < t. The Forward Attainable Set (see [23]–[25]) is

Af (t; t0, x0):={x(t): ẋ=f(t, x, u), u∈U , x(t0)=x0}.

By a standard change of variable, see [1], and without rela-
beling, (PT ) can be formulated as follows:

(P aT ) Minimize V (t+ T, x(t+ T ))

subject to x(t+ T ) ∈ Af (t+ T ; t, x(t)).

• Remark 1. The computational burden of the Attainable
Set leads to consider an efficient approximation, such
as polyhedral of either inner or outer type, [23], [26],
ellipsoidal, [27], and “cloud of points” as endpoints
of trajectory segments generated by constant controls.
Complexity analysis led us to opt for the last one.

• Remark 2. For positional systems, [28], the value func-
tion may be computed by solving the Hamilton-Jacobi-
Bellman equation (HJBE). In general, solving HJBE
numerically is extremely computationally intensive. How-
ever, there are a number of software packages to solve
the HJBE numerically, [29], [30]. In general, we may
consider a number of value functions for given typified
situations. In real-time “mission” execution, the relevant
value function is identified via sensed data and invoked
to compute the next optimal control at any (t, x).

Let T , and ∆ be, respectively, the optimization, and control
horizons, and t the current time. The AS-MPC scheme is
follows:

1. Initialization: t = t0, x(t0)
2. Solve (P aT ) over [t, t+ T ] to obtain u∗

3. Apply u∗ during [t, t+ ∆]
4. Sample x at t+ ∆ to obtain x̄ = x(t+ ∆)
5. Slide time, i.e., t = t + ∆, update the Attainable Set

with the new x(t) by appropriate translation and rotation,
update the value function at the new t+ T , and goto 2.

It is clear that, in general, the real-time computational burden
of this scheme is extremely low as it involves only very simple
computational operations.

The simplicity of the optimization problem is apparent due
to the complexity of the computation of the attainable set.
However, the invariance of the dynamics allows the off-line
pre-computation of an approximation of Af (t0 + T ; t0, x0).
In the figure 1, it is shown: (i) the forward attainable set
for the unicycle, and (ii) the value function in the absence
of obstacles. The controls to be applied to the vehicle are
found by searching for the minimum value within the vehicle’s
forward attainable set.

In [1], [4], the following properties of the AS-MPC scheme
are stated in detail and proved. Denote by (x∗T,∆, u

∗
T,∆) the
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Fig. 1. i) AUV forward attainable set and ii) The control value function

associated MPC optimal control process. Let J(x, u) be the
value of the cost functional associated with the (x, u) over
[0,∞), by J(x, u)|[α,β] be its restriction to the interval [α, β],
and by Jk(x, u) its restriction to the interval [k∆, (k + 1)∆].
Proposition 1. Let Tf = ∞ and let (x∗, u∗) be an optimal
control process s.t. lim

t→∞
x∗(t) = ξ∗, with ξ∗ as an equilibrium

point in C∞. Then,

(i) lim
∆↓0,T↑∞

∞∑
k=1

Jk(x∗T,∆, u
∗
T,∆) = J(x∗, u∗)

(ii) lim
k→∞

∣∣Jk(x∗T,∆, u
∗
T,∆)−J(x∗, u∗)|[k∆,(k+1)∆]

∣∣=0.

Since we are using the cloud of points as approximation
to the Attainable Set, a good estimate of the Hausdorff
distance1 between these sets to determine the worst case of
sub-optimality.

Let Ωε denote the set {ui ∈ Ω : i = 1, . . . , Nε} satisfying
the following properties: (i) Ω ⊂

⋃Nε

i=1(ui+εB), and (ii) ∀i∃j
s.t. ‖f(t, x, ui)−f(t, x, uj)‖ < ε. Denote by Af (t1; t0, x) and
Aεf (t1; t0, x) the points attainable at t1 > t0 from x at t0, by
the dynamic system with controls, respectively, in L∞ with
values in Ω, and piecewise constant with values in Ωε.
Proposition 2. Let ∆ be a positive number. Under mild as-
sumptions on the dynamics, we have, for any (t, x) ∈ IR×IRn,

dH
(
Af (t+ ∆; t, x),Aεf (t+ ∆; t, x)

)
≤ ∆(ε+ ∆KfK).

Another key issue concerns the fact the point x̄ ∈ IRn to
which the system is steered at a given time is very likely not
listed in the stored value function look-up table.
Proposition 3. Assume that V at x̄ is not known, and that there
is a grid of points Gδ in IRn such that the maximum distance
between neighboring points in Gδ is less than δ > 0. Then,
there is a simplex Sx̄ = {xi : i = 1, . . . n+ 1} which are the
closest to x̄ s.t. the estimate Ṽ of V at x̄ is given by

Ṽ (x̄) =

∑n+1
i=1 Vi‖x̄− xi‖−1∑n+1
i=1 ‖x̄− xi‖−1

where, for i = 1, . . . , n + 1, Vi = V (xi) +∇V (xi) · v̄i, with
v̄i = x̄ − xi and the n × (n + 1) unknowns of the vectors
∇V (xi), i = 1, . . . , n + 1 are given as a solution of the set
of n+ 1 set of equations ∇V (xi) · (v̄i − v̄k) = V (xk)−V (xi)

‖xi−xk‖ .

Moreover, we have that, for some c > 0, ‖V (x̄) − Ṽ (x̄)‖ ≤
max

xi,xj∈Sx̄

{|V (xi)− V (xj)|}+ cδ.

1The Hausdorff distance between sets A and B, dH(A,B), is defined by

dH(A,B) := max

{
sup
x∈A
{dB(x)}, sup

y∈B
{dA(y)}

}
, where dA(a) is the

Euclidian distance between the point a and the set A.



The Robust Attainable Set MPC (RAS-MPC) scheme is a
variant of the AS-MPC scheme detailed in [1], [4] where the
optimization in each step is relaxed and the loop is closed
within the control horizon ∆ with feasible controls. This is
to prevent difficulties due to persistent drifting perturbations
during the control horizon.

V. THE CONTROL ARCHITECTURE

The role of the control architecture consists in organizing
the overall motion control problem of the AUV formation into
simpler problems. This involves the: (i) Management of the
overall formation that includes the maintenance of each of the
pre-defined formation patterns, as well as their adaptation to
circumstances specified in requirements of the listed missions;
(ii) Switching between formation patterns whenever expected
or unexpected events occurs to ensure the success of the
mission; (iii) Managing the interaction among the AUVs in
order to ensure communications and the control actions to
sustain the cohesion of the vehicles; (iv) Controlling each one
of AUVs in the order to carry out either pre-planned, or, if
needed given the high environment variability, replanned, tasks
in which the overall mission is organized.

The variability of the environment due to expected or
unexpected events, e.g., the emergence of unmapped obstacles,
unforeseen changes in the phenomenon of interests, equipment
failures, etc., requires different modes in the motion control
of the AUV formation. This amounts to regard the overall
model the formation as a hybrid dynamic control system, i.e.,
a collection of dynamic control systems - one per mode of
operation -, and a set of either controlled or uncontrolled
discrete events associated which one of them. The occurrence
of an event causes a switch from one mode of operation
to another one, entailing a change in the behavior of the
overall dynamic control system. Thus, the implementation
of the RAS-MPC controller described in section IV in a
context where the dynamics are of hybrid nature amounts,
with additional controlled discrete events to ensure liveness
and nonblocking properties, to the embedding of the RAS-
MPC controller in a control architecture. Figure 2 shows the
overall system automata representing the highest layer of the
control architecture.

Begin
AUV formation
plan execution

Replantasks
and/or reorganize

formation

Mission
accomplished

Perturbations
to mission plan

End

Reset

Mission
Start

Abort
mission

Success

Failure

Fig. 2. Main System Automaton

In order to facilitate the explanation of the main idea, we
focus solely in the motion control of a formation of three
AUVs in a plane carrying the required navigation and payload
sensors whose mission consists in gathering data along a given
path. The specific spatial distribution of the sensors is imposed
by the observation requirements. This simple scenario is easily
scalable.

A realistic scenario includes several tasks of which we
focus on the following ones: (i) Gathering data along a
given path. The AUVs keep the triangle formation and the
decentralized controller as described in section II ensures the
simultaneous path tracking and formation maintenance; (ii)
Avoiding collision with obstacles. This task, involves obstacle
detection, and characterization, path replanning, and, possibly,
reconfiguration of the formation; (iii) Communicating with
the external systems. This task is required to either transmit
gathered data to enable the mission follow-up and to receive
commands to change the mission if necessary.

The set of discrete modes associated with these tasks and the
events causing the transition between modes are represented
by the automaton diagram below. Once the mission starts, the

B

Tx
data

Thin
Passage

Obstacle
in range

C

Wide
Passage

D

Obstacle
Overcome

ABegin

Start
Survey

EOT

End

Mission
accomplished

Fig. 3. Formation Pattern Automaton

AUVs enters in the nominal mode A of data gathering while
tracking the given path on a triangle formation. The Mission
Accomplished event prompts the AUVs to the recovery opera-
tion. The follow-up of the mission requires the monitoring of
the data being gathered. This is done in mode D and it means
that, from time to time, one of the AUV surfaces, transmits
the gathered data as well as the health status of the vehicles,
which after a scrutiny, might entail a change in the mission.
The occurrence instants can be pre-planned or the result of
either controlled or uncontrolled events. Once the exchange of
information is complete, the surfacing vehicle joins the other
two AUVs that, in the meantime, had been waiting loitering, in
order to pursue the operation mode A. If an Obstacle in range
event is detected by any of the AUVs, then the system moves
to mode B. In this mode, the obstacle is characterized and a
collision avoidance path is computed. Then, two events might
occur: either a Wide passage is available and the formation is
kept unchanged and the systems moves to the nominal mode
A tracking the original path, or a Thin passage is available
and the system transits to mode C where the formation is
reconfigured to overcome de obstacle. Once this action is
completed the systems pursues its operation in the nominal
mode A.

The complexity of the collision avoidance and the fact that
it illustrates well the point concerning the interaction between
mission planning and control, and the onboard resources are
the reasons why it deserves a special attention. We impose
the following assumptions: (i) Data for obstacle detection and
characterization is obtained by using a rotating pointed range
finder; (ii) The unmapped obstacles in the environment are
relatively sparse. This does not exclude the possibility of some



obstacles being very close to one another; (iii) Obstacles are
locally modelled by circles, being this simplification justified
by the low computational complexity in estimating the circle
with smallest radius that includes all the points detected by the
range finder; (iv) The range finder sensor reaches a distance
significantly larger than that transversed by the vehicle within
the time interval of length ∆ (defined in section IV and whose
direction can vary between two limiting angles δmax and
−δmax (see figure 5).

The automaton diagram 4 shows the various modes and
associated transition events. Once an obstacle is detected, it

Characterize
obstacle

No obstacle in
range

Obst. In range

Re-plan to
overcome
obstacle

Overcoming
obstacle

Complete
Abort

mission
Failed

Reset
(Manual)

Obst.
Overcome

Complete

Characterize
“new”

obstacle

New obstacle
detected

Obstacle is
not distinct

Safe Passage
test

Obstacle is
distinct

No

Yes

Update
ahead

obstacle

Failed

Failed

Fig. 4. Obstacle Collision Avoidance Automaton

has to be characterized in order to compute the best strategy
to avoid collision and remain as close as possible to the path to
be tracked. Besides the range finder of each AUV rotation, the
formation pattern can be deformed in order to characterize the
obstacle, location and both outer limits of the obstacle. This,
together with the closest path to the mission path, enables
to optimally replan the path of each AUV, possibly including
changes in the formation pattern, how to overcome the obsta-
cle. When an AUV is close to an obstacle, then its RAS-MPC
is modified by adding penalization function guaranteeing a
safety distance ds to the obstacle. If, while circumventing an
obstacle, a new obstacle is detected, then the pertinent AUVs
range finders proceeds with the characterization of the detected
obstacle. If it is a new obstacle and the path between both
obstacles is optimal, then it is necessary to decide whether the
passage is safe, even if the AUVs have to navigate in a “line
formation”.

Figure 5, helps to understand how the criterion for this
decision is defined. The passage is safe if H1 + H2 − R1 −
R2 − 2ds > 0 where ds is given, R1, R2, C1, C2, and
PL are estimated with the range finder, H1 =

√
R2

1 + L2
1,

H2 =
√
R2

2 + L2
2, L2 = |PL − A|, L1 = |A − PV | −

|
√

(R1 + ds)2 −R2
1|, PV is the position of the AUV, and the

point A is the intersection of the segments C1, C2 and PV , PL.
Simulation results obtained with the proposed control struc-

ture are shown in figure 6. The mission consists in gathering
data while tracking a path defined by the line segment joining
points A and B in a given triangle formation.

C1

C2

dp

R2

R1

ds

PV
θV

δ

A L2
L1

H1

H2 PL

Fig. 5. Safe passage detection

At time t1, obstacle O1 is detected in the vehicle’s path. The
value function is locally altered around O1’s area by increasing
significantly it’s cost to keep the vehicle out of it. This forces
the vehicle to overcome the obstacle by the right. Since at time
t2 obstacles O1 and O2 are in range, and O1 is the closest
obstacle, the value function alteration around O1 is kept while
the system decides if there is a safe passage. At time t3, a
safe passage between O1 and O2 is detected and the value
function is now locally altered around O1 and O2 to prevent
collisions against each obstacle. The path is now chosen by
the left of O2 as it minimizes the value function. The same
happens at time t4. A safe passage is detected and the path
to B is straightforward. Had the distance between O2 and
O3 been such that the passage was unsafe, a not-so-optimal
solution would have been obtained as the traveled distance by
the left of O3 would be longer than that by the right of O2.

A

B

O1

O2

O3

t1

t2
t3

t4

t5
t5’

t6’

t6

t4’

Fig. 6. Obstacle avoidance simulations results

This scheme can only deliver a sub-optimal solution since
the decision-making is determined by the range sensor range
locally based decisions does not guarantee the overall opti-
mality. However, the sparser the unmapped obstacles are, the
better approximation to optimality is achievable.

After deployment, the AUVs are loitering in the triangle
formation for the survey around the departure point A. Once
the survey starts at time t1, mode A is activated and the
triangle formation tracks the given path to the final destination
B. At time t2, the leading vehicle detects obstacle O1. Then,
the formation switches to mode B to characterize the obstacle.
In order to do this efficiently the AUVs change to a transversal
line formation and, once this is done, a path to overcome



it is defined by the RAS-MPC by computing minimum of
a mapping obtained by adding a penalization to the value
function. Since there is plenty of space, the AUVs return to
the triangle at some time t3 while circumventing the obstacle
and trying to reach the mission path.

At time t4, obstacle O2 is detected on the right. RAS-
MPC determines that the best path is between O1 and O2.
Moreover, the safety criteria above determines that the passage
between O1 and O2 is safe for the whole formation, and the
triangle formation is kept. At time t′4, a third obstacle O3

is detected and its characterization in mode B together with
the safety criteria determines two different scenarios to pursue
the mission:(i) Follow through a thin passage between O2 and
O3 safe for a single vehicle. Choosing it means changing to
longitudinal line formation that results in being closer to the
mission path but with loss of quality of the gathered data due
to the adopted formation; (ii) Circumvent O3 by the left what
would entail a longer route far away from the mission path, but
would allow to preserve the triangle formation with a higher
quality of the data gathered.

A simple onboard optimization procedure determines that
the first option is the best one. Once the obstacles are overcome
at time t′6, the formation resumes to the normal triangle until
it reaches the final destination B where the mission mode
changes to D to proceed with data transmission. In this state
all the vehicles surface, transmit data, and remain loitering
around the final destination B.

VI. CONCLUSIONS

In this article, we extended the RAS-MPC scheme for a
single AUV presented in [1] to the path tracking control
of a formation of AUVs. The key drivers of the approach
concern the mitigation of the real-time computational burden
and the ability of adapting to unmapped obstacle avoidance.
While the former is motivated by limited onboard energy
and computational power, in a context of strict real-time
constraints, it shows the flexibility of the RAS-MPC scheme
with a control architecture to handle unmapped obstacle as
well as the various tasks of the mission and the management of
the formation pattern in order to conciliate the optimization of
onboard resources with feedback control to handle uncertainty
and variability. The mathematical details have been omitted
due to the lack of space. The obtained simulation results
are encouraging and point to the next step: migrate the
developments to a multiple AUV based system for field testing.

REFERENCES

[1] R. Gomes and F. Pereira, “A hybrid systems model predictive control
framework for auv motion control,” in Procs ECC 2018, Limassol,
Cyprus, June 12-15 2018.

[2] ——, “A Reach Set MPC Scheme For The Cooperative Control Of
Autonomous Underwater Vehicles,” in Procs PhysCon 2017, Florence,
Italy, July 2017.

[3] ——, “A Robust Reach Set MPC Scheme For Control of AUVs,” in
Procs ROBOT 2017, Seville, Spain, November 2017.

[4] R. Gomes, “AUV formation control: A model predictive control ap-
proach,” Ph.D. dissertation, Faculty of Engineering, Porto University,
2017.

[5] D. Paley, F. Zhang, D. Fratantoni, and N. Leonard, “Glider control
for ocean sampling: The glider coordinated control system,” Trans. on
Control System Technology, vol. 12, no. 4, pp. 735–744, 2008.

[6] E. Fiorelli, N. Leonard, P. Bhatta, D. Paley, R. Bachmayer, and
D. Fratantoni, “Multi-AUV control and adaptive sampling in monterey
bay,” in IEEE J. of Oceanic Eng., 2004, pp. 935–948.

[7] T. Fossen, Guidance and Control of Ocean Vehicles. Wiley, 1994.
[8] T. Prestero, “Verification of a six-degree of freedom simulation model

for the REMUS AUV,” Master’s thesis, MIT / WHOI, 2001.
[9] R. Kristiansen and P. Nicklasson, “Spacecraft formation flying: A review

and new results on state feedback control,” Acta Astronautica, vol. 65,
no. 11-12, pp. 1537 – 1552, 2009.

[10] W. Ren and R. Beard, “Virtual structure based spacecraft formation
control with formation feedback,” in AIAA Guidance, Navigation and
Control Conf., Monterey CA, 2002, pp. 2002–4963.

[11] Y. Lv, Q. Hu, G. Ma, and J. Zhou, “6 dof synchronized control
for spacecraft formation flying with input constraint and parameter
uncertainties,” ISA Trans., 2011.

[12] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, no. 6,
pp. 789–814, 2000.

[13] E. Franco, T. Parisini, and M. Polycarpou, “Cooperative control of
discrete-time agents with delayed information exchange: A receding-
horizon approach,” in IEEE CDC, 2004, pp. 4274–4279.

[14] E. Franco, L. Magni, T. Parisini, M. Polycarpou, and D. Raimondo,
“Cooperative constrained control of distributed agents with nonlinear
dynamics and delayed information exchange: A stabilizing receding-
horizon approach,” IEEE TAC, vol. 53, pp. 324–338, 2008.

[15] T. Keviczky, F. Borrelli, and G. Balas, “Decentralized receding horizon
control for large scale dynamically decoupled systems,” Automatica,
vol. 42, pp. 2105–2115, 2006.

[16] T. Keviczky, F. Borrelli, K. Fregene, D. Godbole, and G. Balas, “De-
centralized receding horizon control and coordination of autonomous
vehicle formations,” IEEE Trans. Control Systems Tech., vol. 16, pp.
19–33, 2008.

[17] L. Consolini, F. Morbidi, D. Prattichizzo, and M. Tosques, “Leader-
follower formation control of nonholonomic mobile robots with input
constraints,” Automatica, vol. 44, no. 5, pp. 1343 – 1349, 2008.

[18] Z. Chao, L. Ming, Z. Shaolei, and Z. Wenguang, “Collision-free UAV
formation flight control based on nonlinear MPC,” in Conf. on Electron-
ics, Communications and Control, Sept 2011, pp. 1951–1956.

[19] S. Quintero, D. Copp, and J. Hespanha, “Robust UAV coordination
for target tracking using output-feedback model predictive control with
moving horizon estimation,” in ACC, 2015, pp. 3758–3764.

[20] S. Bertrand, J. Marzat, H. Piet-Lahanier, A. Kahn, and Y. Rochefort,
“MPC strategies for cooperative guidance of autonomous vehicles,” in
AerospaceLab Journal, Issue 8, December 2014.

[21] R. Andrade, G. Raffo, and J. Rico, “Model predictive control of a tilt-
rotor uav for load transportation,” in European Control Conf., June 2016,
pp. 2165–2170.

[22] C. Shen, Y. Shi, and B. Buckham, “Path-following control of an
AUV using multi-objective model predictive control,” in 2016 American
Control Conf. (ACC), July 2016, pp. 4507–4512.

[23] T. Graettinger and B. Krogh, “Hyperplane method for reachable state
estimation for linear time-invariant systems,” J. of Optim. Theory and
Appl., vol. 69, pp. 555–588, 1991.

[24] P. Varaiya, “Reach set computation using optimal control,” in Proc. KIT
Workshop, 1998.

[25] A. Kurzhanski and P. Varaiya, “Dynamic optimization for reachability
problems,” J. Optim. Th. & Appl., vol. 108, pp. 227–251, 2001.

[26] V. Baturin, E. Goncharova, F. Pereira, and J. Sousa, “Polyhedral approx-
imations to the reachable set of impulsive dynamic control systems,”
Autom. & Remote Control, vol. 69, no. 3, 2006.
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