ACKNOWLEDGMENT:
The first author was supported by the Portuguese Foundation for Science and Technology (FCT) through the Ph.D. scholarship SFRH / BD / 70727 / 2010
Outline

• Introduction
• Underwater Navigation
• Description of the Algorithm
• Altitude Estimation
• Correlation Methods
• Bayesian Methods
• Experimental Results
• Conclusions
Introduction

• Terrain Based Navigations refers to the general problem of localizing a robot in the environment with the aid of known a-priori map of the terrain.
 – Terrain Relative Navigation
 – Terrain Aided Navigation

• The purpose is increasing the estimation accuracy of the position of the vehicle
 – Matching measurements of a terrain profile with digital terrain map (DTM)
Underwater Navigation

- **Dead-Reckoning**
 - INS + DVL: state of the art for AUVs
 - Without external corrections, position estimates will drift and grow unbounded

- **Acoustic Navigation**
 - computation of ranges or bearings to acoustic beacons, with previously established and known positions
 - Provides external position corrections

- **TBN + Dead Reckoning**
 - allow AUVs to operate autonomously in highly unstructured environments
 - No need to resurface (GPS)
 - No need to deploy beacons
Description of the Algorithm

• Matching range measurements of the terrain against DTM
 – Correlation Methods
 – Bayesian Methods

• DTMs consist of gridded nodes
 – depths for a given position are computed by bilinear interpolation

• Simple generic model:
 – Position updates computed by INS: \(\mathbf{x}_{t+1} = \mathbf{x}_t + \mathbf{u}_t + \mathbf{v}_t \)
 – Nonlinear map function: \(\mathcal{H}(\mathbf{x}_t) \)
 – Process and Measurement noise: \(\mathbf{u}_t, \mathbf{w}_t \)
Altitude Estimation

• Multibeam Echosounder (MBE)
 – nearly optimal instruments for bathymetric terrain navigation
 – for low-altitude missions (<20m), the footprint of MBE becomes too small

• Side-scan sonar
 – wide swath even at low altitudes
 – Fairly good resolutions at a low processing cost

• DVL, Single Beam Sonar (altimeter)
 – more pings and more time will be needed in order to attain sufficient terrain data
 – DVL needs to be sufficiently close to the bottom
Correlation Methods

- Initial TBN methods were based on correlation
 - Seminal work for underwater based on TERCOM with a MBE
 - Correlation can be computed in different ways:

\[
COR(x_t) = \frac{1}{N} \sum_{i=1}^{N} (z_{t,i} - h_i(x_t))
\]

\[
ASD(x_t) = \sum_{i=1}^{N} (z_{t,i} - h_i(x_t))^2
\]

\[
MSD(x_t) = \frac{1}{N} \sum_{i=1}^{N} (z_{t,i} - h_i(x_t))^2
\]

- Batch estimation methods, needs several measurements
 - With a large enough number of measurements the TBN likelihood surface will collapse to a near-unimodal distribution
Correlation Methods (ii)

- Several modifications proposed to the original TERCOM
 - TERCOM is simple and reliable
 - real-time ability is reported to be poor and the navigation accuracy is low.

- Correlation + Kalman Filter to track the vehicle
 - Kalman Filter tracks the vehicle, correlation only on subparts of the map

- Correlation as input to the Kalman Filter
 - Position given by correlation is the measurement as seen by the KF

- Image-based correlation methods
 - Image-based correlation methods
 - When using sonars producing images from the bottom (e.g. Sidescan)
Bayesian Methods

- The Bayes formula is used to incorporate the measurement data into the estimation:

\[
p(x_t | z_t) = \frac{p(z_t | x_t)p(x_t | z_{t-1})}{p(z_t | z_{t-1})}
\]

- The TBN problem consists on solving for the posterior

- Due to the nonlinearity (DTM) these integrations are in general non-tractable an impossible to solve in closed form.
Bayesian Methods (ii)

• **Extended Kalman Filter (EKF)**
 – the state and process noise are mutually independent Gaussian
 – nonlinear measurement update approximated using a 1st order Taylor expansion

• **Particle Filter (PF), Point Mass Filter (PMF)**
 – numerical approximation to the Bayesian filter.
 – large number of samples of the state vector to estimate its probability distribution
 – PF uses a dynamic stochastic state vector grid, PMF uses a deterministic state vector grid

 – The PMF is reported to be more robust and accurate, but is computationally more expensive.
Experimental Results

• A lot of different TBN approaches
 – Several methods proposed
 – Current trends focused on the use of Bayesian methods

• Not many experimental results presented so far.
 – Most use high-accuracy IMUs and sonars (MBE).
 – DTMAs with resolutions of around 10m
 – Position accuracies of few meters (<20m)

• Meduna presented (2011) interesting results using low-cost navigation sensors
 – DVL
 – Low grade IMU
Conclusion

• More accurate navigation in areas with greater bathymetric variability
 – Application for TRN are still limited by the need for an a-priori map

• Successful implementations of underwater TRN achieved high accuracy meter-level performance
 – Even with cheaper sonars and navigation sensors

• SLAM in unstructured environments is still an open question!