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Abstract: As many more nations actively transition their mine countermeasures (MCM) 
capability towards autonomous systems, the NATO Centre for Maritime Research and 
Experimentation (CMRE) continues to research the utilisation of robotics in the minefield to 
deliver doctrinally relevant autonomy and on-board intelligence with a view to deliver a 
NATO capability.  
This review paper will present an overview of the CMRE approach to autonomous mine 
countermeasures. In particular, this paper will highlight the development of specific enabling 
technologies regarding sensors, automatic target recognition, autonomy, and in situ planning 
and evaluation.  
These specialised and multi-disciplinary activities are brought together into a system-of-
systems approach, which will enable future war fighting capability to adapt to mission 
specifics and environmental conditions.  With a system-of-systems concept come additional 
particularities and difficulties such as passing target location and its accuracy from one 
vehicle to another, collaborative autonomy, interoperability and the performance evaluation 
of a set of heterogeneous vehicles.  

Keywords: NATO, Mine countermeasures, autonomy, robotics, automatic target recognition, 
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1. INTRODUCTION 

The Centre for Maritime Research and Experimentation (CMRE) is working to transform 
the way mine countermeasures are conducted from a post-Cold War approach that focuses on 
post-operations clearance using surface ships, to a quickly deployable, autonomous system 
that is scalable, cost effective, and minimizes risk to personnel. Recently, work in the 
Autonomous Naval Mine Countermeasures group (ANMCM) at the Centre has focused on 
using AUVs for mine hunting, including developing techniques for handling the large data 
rates associated with modern high-resolution sonar and developing AUV systems that make 
decisions based on data that is gathered in situ. Now, the Centre’s emphasis is expanding 
from using AUVs in mine hunting to using AUVs in mine identification, developing a 
network of collaborating heterogeneous vehicles and continued development of novel sensors. 
This strategy is one that is adopted by many nations and CMRE is committed to supporting 
these efforts; the Centre’s advantage is the ability to rapidly prototype and test new 
algorithms, concepts and systems at sea, work with nations to develop NATO interoperability 
and standards and exploit the vast amount of at sea data acquired in a variety of environments 

This paper will give an overview of the program of work undertaken within the ANMCM 
group. CMRE is advocating for multi-phase system-of-systems MCM missions comprising 
multiple heterogeneous unmanned systems. One such operational example is the Italian Mine 
hunting Exercise (MINEX) 2018 as shown in Figure 1.  However, in such a system-of-system 
(SOS) MCM scenario, the accuracy on the location of each of the detected targets will 
naturally affect subsequent phases of a system-of-systems MCM missions, and the problem 
needs to be addressed from a SOS point of view. The CMRE fleet of vehicles currently 
comprises:  

 the MUSCLE, a 21” Bluefin vehicle equipped with a Thales, UK synthetic aperture 
sonar which focuses mainly on wide area survey and provides a detection and 
classification capability,  

 the Black Collaborative Autonomy Testbed (Black CAT) equipped with a forward 
look 900kHz Blueview sonar, a 2.25 MHZ Blueview multibeam echo-sounder and 
an optical camera, mainly utilised to test collaborative behaviours, reacquisition of 
a target and gathering additional information on target, 

 the Bi-modal Identification Or Neutralisation DemOnstor (BIONDO), a SPARUS 
vehicle equipped with an ARIS camera, which is employed for acoustic 
identification and to simulate the behaviours of a neutralisation vehicle. 

Each vehicle is equipped with different system adapted to carry out a particular phase or 
set of tasks with a typical mine hunting scenario; however, the fundamental enabling 
technologies remain the same: 

 the development of on board perception which includes for example on board sonar 
image processing, automatic target recognition, and target clustering,  

 the implementation of in situ performance evaluation based on the data, outputs 
from the ATR and target clustering,  

 the increase in vehicle capability to make decisions and to collaborate with our 
systems. 
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    Additionally, CMRE is building a novel low frequency synthetic aperture sonar concept to 
tackle the problem of buried targets and difficult environments with a particularly high false 
alarm rate.  
 

The remainder of the paper is organised as follows: section 2 will present the work related 
to on board perception, in particular related to the CMRE MUSCLE and the exploitation of 
the synthetic aperture sonar images produced in real-time on board the vehicle; section 3 will 
explore the development of in situ performance evaluation, while section 4 will describe the 
autonomy and the collaborative framework which brings all the aspects of modern mine 
hunting together. Section 5 will briefly introduce the low frequency sonar to complete the 
program overview. Section 6 will conclude and offer some thoughts on the evolving CMRE 
program of work and the transfer knowledge to nations. 

 

 
Fig.1: CMRE ANMCM program of work overview shown in an operational view utilised 

during Italian MINEX 2018. 

2. ON BOARD PERCEPTION 

2.1. Automatic target recognition 

 
For several years, automatic target recognition research at CMRE has focused on the use of 

convolutional neural networks (CNNs) [1]. This vision led to CMRE being the first in the 
underwater MCM community to pursue such an approach [2], which has since been adopted 
by many other research groups around the world. But unlike most of these others, CMRE has 
continued to eschew the use of “off-the-shelf” networks trained on optical imagery, instead 
opting to leverage a large in-house database of MUSCLE synthetic aperture sonar (SAS) 
imagery that has been collected over the last decade during sea experiments in various 
locations. At the same time, we have incorporated extensive domain expertise into the 
network design, which has enabled the successful development of tremendously smaller 
networks (trained “from scratch”) that still achieve excellent classification performance [2-3]. 
This philosophy of tailoring the algorithms to the specific sonar modality has also facilitated 
the use of alternative data representations with CNNs [4-6], including low-frequency 
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acoustic-color data [7]. Relying on off-the-shelf networks, in contrast, would have closed 
these rich research avenues. Our work has also demonstrated the applicability of transfer 
learning, showing the feasibility of applying to other sonar sensors the CNNs that have been 
trained on MUSCLE data [8-9]. As such, there are promising opportunities for transitioning 
the CMRE-developed CNNs to similar, but distinct, systems of NATO nations in the near 
future. 

2.2. Target clustering 

The goal of Target Clustering algorithms is to merge multiple detections of the same target 
into a single entity, or cluster. Ideally, the formed cluster will benefit from the multiple 
detections of the same target, by having a better estimate of the target’s position. In order to 
do so, clustering algorithms usually build on data provided by an ATR software or from a 
human operator. In particular, they can use information of the location of a given detection in 
a tile, together with an associated score. These detections are fused into multiple target 
clusters, taking into account the estimated navigational drift of the vehicle.  However, in some 
situations the ATR can fail completely to detect the target. On the other hand, the ATR can 
sometimes detect a target but assign it a low score which then, depending on the acceptance 
threshold, can cause a target to remain disregarded. Figure 2 provides a schematic diagram of 
the interface between ATR and Target Clustering. 

In an ongoing effort to address Target Clustering, CMRE is proposing a newly developed 
probabilistic target clustering algorithm. Motivations for a probabilistic algorithm are two-
folded. First, it is desirable that the target clustering process provides not only the location of 
a given target, but also an indication of the uncertainty of such estimation, in a 
mathematically sound and robust approach. Secondly, the use of a probabilistic framework 
also favours a closer integration with other aspects related with target location accuracy, as for 
example navigation accuracy of autonomous vehicles, exploration and target reacquisition 
search behaviours, or even planning and evaluation for systems of systems MCM operations. 
For instance, the navigation accuracy of a vehicle will have a definite impact on the location 
of the targets it detects. At the same time, knowledge of the location of a target as well as its 
uncertainty can be very relevant, particularly in multi-vehicle MCM missions, where 
surveying and target reacquisition tasks might be performed by different vehicles. 
 

The proposed algorithm, based on a Probability Hypothesis Density (PHD) filter, uses 
Random Finite Sets (RFS) to model both the collection of individual target states and the 
collection of observations. Perhaps the biggest advantage of the PHD filter, is the fact that it 
does not require an explicit data association step. When addressing problems such as target 
clustering or multiple target tracking, characterized by multiple simultaneous observations, 
the data association step can be quite cumbersome, and even computationally very demanding 
or even intractable. At the same time, the usage of RFS, as opposed to random vectors, is a 
more suitable formulation for addressing varying number of targets, target (dis)appearance 
and spawning, the presence of clutter and association uncertainty, false alarms and missed 
detections or even extended targets. 
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Fig. 2: ATR and Target Clustering algorithms. The ATR algorithm provides 11 detections of 
existing targets, and false alarms. The Target Clustering algorithm merges the 13 detections 
into 6 different clusters, corresponding to the 4 existing targets, and to the 2 false alarms. 

3. IN SITU PERFORMANCE EVALUATION 

 
At the CMRE we developed an in situ performance evaluation framework, which aims to 

predict the probability of the ATR not detecting a target. We combine these probabilities into 
a Residual risk map (RRM) of the survey area [10]. RRMs give us a way to quantify the 
performance of the AUV during a mine-hunting mission. Similar to currently available 
software such as MCM Expert and DARE, these RRMs can aid in estimating the percentage 
of targets that have been detected. Unlike the methodology currently in use, the RRM 
framework is designed to properly handle side-looking sonar imagery and, instead of 
providing a single number expressing risk or coverage, the RRM can be used to identify 
which parts of the survey area should be revisited for closer inspection, or if time and 
resources do not permit this, which areas should be avoided. The algorithm through which we 
can construct the RRM is based on the range, i.e. the distance between the sonar sensor and 
the target, but crucially also on through-the-sensor features such as ping-to-ping correlation, 
and metrics that are sensitive to the texture of the image that in turn are correlated with 
different types of sea bottoms [11]. The algorithm is flexible in the sense that it is agnostic to 
the specific sensor hardware and ATR type used, as long as we have reference data to 
constrain model parameters. This means that RRMs can be generated by multiple AUVs that 
are not necessarily identical in load-out. This is ideally suited for cases where we want to 
deploy multiple assets in parallel to accelerate the survey.  

Through the use of Bayesian statistics, we not solely have a point estimate of our RRM 
(i.e. a single number per grid cell), but we also calculate a confidence interval. This means 
that the presence or absence of certain features, e.g. the presence of acoustic shadows, will not 
only tell us how strongly the probability of detection will increase or decrease, but it will also 
tell us the amount of uncertainty it will introduce in our estimate. This can be particularly 

UACE2019 - Conference Proceedings

- 979 -



useful when we wish to fuse RRMs from different vehicles with different sensors, since we 
can use these uncertainty estimates to weight their contributions to the combined RRM. 

Fig 3 shows an example RRM. The homogeneous red areas indicate grid cells not covered 
during the survey. The vertical green strip in the left hand side of the RRM is the results of the 
MUSCLE covering this strip twice, leading to an increase in the probability of detection. 
Finally, red and orange “veins” running through the RRM are the result of sand ripples being 
present there, causing a decrease in the probability of detection. To bring down the estimated 
residual risk, these areas should be revisited and viewed from a different angle to avoid the 
acoustic shadows caused by the sand ripples. 

 

 
Fig. 3: RRM constructed from data recorded by the MUSCLE during ESPMINEX18. The 
colour values express the probability of a hypothetical target going undetected. To integrate 
our uncertainty estimates into a single map, we penalize uncertain areas by adding the 
uncertainty (σ) to the expected value (E). The blue border indicates the borders of the survey 
area. 

4. AUTONOMY 

Autonomy is the mechanism through which human operators can be displaced or 
altogether removed from a mine countermeasures mission. Autonomy situated aboard 
unmanned systems uses sensor information and the results of signal processing algorithms 
(e.g. those described in Section 2), and algorithms for adaptation and intelligent decision 
making to drive mission execution. In our programme, we delineate two layers of autonomy --
- single and multi-agent. Single agent autonomy encompasses the autonomy solution(s) 
onboard a single asset for performing any of the tasks that said platform might perform, e.g. 
[12-14]. The multi-agent layer has a larger scope, and is responsible for the management of 
multiple autonomous single-agents to perform missions collaboratively [15]. In this section 
we discuss an example of a current single-agent autonomy solution, adaptive survey planning 
for improved data quality; and in general terms the approach we take to multi-system 
collaborative mission execution. 
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4.1. Adaptive Survey 

CMRE has developed a coverage path planning approach for the MUSCLE that combines 
efficiency and through-the-sensor metrics to inform the track orientation of an AUV [12]. 
Following the results from the RRM in Figure 3 [rrm map], a considerable decrease in 
probability of detection is caused by sand ripples on the seabed. Employing an adaptive 
survey instead of a predefined path allows the vehicle to react immediately to unfavourable 
environmental conditions and could eliminate the need for revisiting the area. 

 
Fig. 4: Adaptive survey based on RRM data products from ESPMINEX18. The simulated 

mission starts with the orange tracks and takes as an input only the spatial parameters of the 
survey area – the tracks are adapted to the survey area shape. With each track line, a layer of 
the RRM map from Fig. 1 is processed and updated. The AUV adapts to the discovered sand 
ripples by changing its tracks orientation, shown in green, and collects the data at an angle 
that optimises the data quality [12]. 

 
Figure 4 gives an example of an AUV adaptive survey using data products derived from 

the in situ performance evaluation shown in Figure 3 [rrm map]. At the beginning of the 
mission, it is assumed that only the spatial and temporal parameters of the mission are known 
to the AUV, but no seabed information is available in advance. The orange path of the vehicle 
adapts to the search area shape, with the aim to improve resource efficiency. Once a sand 
ripple field has been detected, the AUV changes its track orientation and follows a path along 
the ripples' ridges. At the new angle the vehicle can collect sonar data with less shadows, and 
increase the probability of target detection. Developing and improving new adaptive survey 
approaches allows collecting more reliable and high-quality data. Such strategies will also aid 
the safe waterspace management and efficient collaboration in a shared operational area for a 
heterogeneous network of manned and unmanned assets. 
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4.2. Collaborative autonomy 

 
The rationale behind using multiple agents to perform mine clearance is the overall goal of 
accelerating mission execution. Given that a mine clearance mission includes dynamic, highly 
heterogeneous tasks (from wide area survey to target revisit and identification), the creation of 
a federated squad allows the specialisation of systems for specific tasks, and allows for a 
greater rate of clearance. Our approach, architecturally, delineates a layered separation 
between the execution of tasks (known as capabilities) and the invocation or allocation of 
those tasks, at a network level, as depicted in Figure 5.  
 

 
Fig 5: Layered architecture of CMRE's ANMCM assets. D2CAF, our solution for 

managing task allocation and dissemination within a heterogeneous squad, sits above single-
agent frameworks, which might be different for each asset. The task execution interface (the 
lines between the upper two layers) shares the same interaction model between systems, 
independently of how the tasks themselves are performed. 

 
The multi-agent layer is responsible for the management of the squad-level task objectives, 
their decomposition and dissemination within the fleet, and the allocation of the objectives to 
appropriate members of the squad. The single-agent layer simply provides a task interface, 
exposing its internal capability of task execution, to be invoked by higher-level decision-
making. In this way, the intelligence or novelty of task execution is compartmentalized in a 
modular away, separate from the mechanisms which decide to invoke the execution of such a 
task. We have developed a framework, the Distributed/Decoupled Collaborative Autonomy 
Framework (D2CAF), [15], which provides infrastructure and tools in which to house 
prototype algorithms handling the distributed task allocation problem. This framework has a 
task-centric model, where tasks represent work to be done in relation to a higher level mission 
goal, and the performance of such tasks can and must be scheduled and allocated to platforms 
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that have appropriate capabilities. The framework itself is not domain specific, with domain 
specialisation being represented by the definition of a task dictionary --- the framework itself 
does not care about the specifics of the task types, but only about the abstract representation 
of the performance of those types. The framework is designed to allow distributed algorithms 
to be embedded, without a centralized master node. Moreover the framework can be used to 
amalgamate various systems into a federated squad by decoupling the task execution and 
allocation problems, and even allowing D2CAF agents to run in systems other than those 
autonomous systems that they represent. This configuration allows legacy assets to be 
incorporated into a more performant squad using off-the-shelf interfaces for command and 
control. 

5. HIGH RESOLUTION LOW FREQUENCY SYNTHETIC APERTURE SONAR 

 
Over the last decade, Synthetic Aperture Sonar (SAS) has become a tool of choice for 

Mine Counter Measure (MCM) operations. The high resolution acoustic imaging output 
coupled with a constant resolution in range has drastically improved Automatic Target 
Recognition (ATR) algorithm results in term of detection rate and probability of false alarm. 
A major effort in research and development has been made for the high frequency SAS 
systems which provide surfacic information of the seabed and prone objects. Improvised 
Explosive Device (IED) and buried targets however still may remain extremely challenging to 
detect and classify especially in difficult and cluttered environments. A Low Frequency (LF) 
system aims to counteract this particular problem: lower frequencies provide greater sound 
penetration into the seabed and the potential target, permitting additional detection and 
recognition information; LF also propagates further in water, potentially allowing longer 
imaging range. 

 
The CMRE has been developing his own high resolution low frequency synthetic aperture 

sonar (HR-LFSAS) prototype to tackle the problem of underwater mine classification and 
identification. The design of this system is based on a 2D transmitter array and a 2D receiver 
array, where elements can be driven individually. The development of such a system is not 
without challenges [16], but it also solves intrinsic problems linked to low frequencies such as 
size, bandwidth or energy output [17]. The 2D array receiver is also fundamental as it allows 
3D data collection, which is one of the main interesting features that low frequency systems 
offer. 

 
Over the last year, the HR-LFSAS team has developed theoretical tools to better 

understand and exploit the LF information gathered by such a system. These include: 
 a study of the SAS PSF (Point Spread Function) [18], which is in essence the 

building block of SAS imagery and is fundamental for multi-chromatic analysis; 
  the design and the impact of the waveforms [19] in order to maximise the efficiency 

of the system; and, 
  the potential advantages of super-resolution imaging algorithms [20] for operators 

or for improving the performance of automatic recognition algorithms improved. 
 
An important aspect of the development and the improvement of the system resides in 

realistic representations of the interactions between LF acoustic waves and an object of 
interest. Part of our effort is focusing on developing realistic, physics-based acoustic wave 
simulators [21–23] to apprehend the complex backscattering phenomena, enable the 
elaboration of a large simulated database and develop efficient strategies for information 
extraction. In particular, new ATR algorithms benefit greatly from synthetic representative 
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datasets. As an example, we showed in simulation the potential of the LF system to 
differentiate materials of an object [24]. 

 
Although the LFSAS prototype is still in construction, several trials have taken place in 2018 
including the first phase of the calibration of the transmitter array [25] at Loch Goil in 
Scotland, and the rail-based TORHEX’18 (Target Oriented Rail-based Experiment) [17, 26] 
at La Spezia, Italy. TORHEX’18 was focused on acquiring relevant scientific data with the 
upgraded hardware, and the full transmitter array. The rail facility was utilised to acquire data 
for LF aperture synthesis, and the first LFSAS images of relevant objects have been analysed 
and processed showing the great potential of this system for MCM operations. 
 
 

 
Fig 6:  (a) Multi-chromatic LFSAS image from TORHEX’18. (b) PVC shell response 
computed with SPECFEM2D. (c) Sparse LFSAS image reconstruction with the DMM 
algorithm. (d) Statistical Transmit Voltage Response 

6. CONCLUSIONS AND FUTURE PROSPECTS 

The CMRE mine countermeasures program of work is based on a multi-disciplinary 
approach, which develops complementary techniques to bring together heterogeneous 
autonomous systems and ensure the best possible outcome of a system-of-systems mission. 
The strength of the centre is its ability to rapidly prototype new algorithms and concepts at sea 
in realistic conditions. The ANMCM group will continue to develop further autonomy, 
automatic identification, navigation remediation, and low frequency solutions for difficult 
cluttered environments and buried targets.  

 
The work will seek to expand its operational envelope to very shallow waters, over-the-

horizon overt and covert and address the potential new mine threats that may challenge the 
current technologies. This will entail the development of new high resolution technologies to 
address the very shallow water conditions, adaptable vehicles to difficult surf zone 
environments and the increase in automated machine intelligence and decision making 
capabilities. 
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The CMRE regularly releases papers and reports to highlight the advances of the research 

and will periodically release software relating to the work undertaken. In particular, a first 
version of D2CAF is now downloadable for national defence laboratories if eligible. The 
centre continues to work in bi-lateral efforts with nations actively to transfer knowledge and 
algorithms for particular national systems. The Centre is also an active participant in NATO 
working groups focused on Naval Mine Warfare applications and regularly promotes novel 
and modern products such as the risk maps to operators and command and control. 
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